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Abstract In this paper, we present a brief study on vanous paradigms lo tackle complexsty or in
other words manage uncertainly in the context of understanding science, society and nature. Fuzzy
real numbers, fuzzy logic, possibabsly theory, probabihty theory, Dempster-Shafer theory, artificial
neural nets, newro-fuzzy, fractals and mullifractals, etc. are some of the paradigms to help us to
understand complex systems. We present a very detailed discussion on the mathematical theory
of fuzzy dynamical system (FDS), which is the most fundamental theory from the point of view of
evolution of any fuzzy system. We have made considerable extension of FDS in this paper, which has
great practicalvalue in studying some of the very complex systems in society and nature. The theories
of fuzzy controllers, fuzzy pattern recognition and fuzzy computer vision are but some of the most
prominent subclasses of FDS. We enunciate the concept of fuzzy differential inclusion (not equation)
and fuzzy attractor. We attempt to present this theorehical framework to give an interpretation of
cyclogenesis in atmosphenic cybernelics as a case study. We also have presented a Dempster-Shafer’s
etdence theorefic mmbaszs and a classical probabiiity theorelic analysis (from general system
theoretic outlook) of carcinogenesis as other interesting case studies of bio-cyberelics.

Introduction
Any mathematical model of a physical phenomenon consists of a number of

variables and parameters, each of which is measurable. But unfortunately,
any measurement 1s prone to error. The more we want to make a measurement
error-free the more time 1s needed to accomplish that measurement. So achieving
accuracy 1s a ime-complex (apart from other complexities) task. We can reduce
this complexity by allowing and accommodating uncertainties in our
measurements. Fuzzy sets as enunciated by Loth Zadeh are the basis of fuzzy
uncertainties. Apart from fuzzy uncertainties other uncertainties are also
there. The more the uncertainties involved the more complex is the system
(Dutta Majumder, 1993). To mode! these complex systems, uncertain systems
are born, where complexity is reduced by accommodating uncertainty. In this
paper, we have discussed various uncertainties and their role in modeling
complex general and cybemetic systems.

Progress of sciences and all other components of civilization can be traced to ©
certain types of challenges and responses. The subject of cybernetics eme€rged
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through the interaction of traditional sciences when scientists faced a set of
problems concerned with communication, control and computation in
machines and living tissues. The foundation of cybernetics was laid and its
basic principles formulated over centuries by the work of mathematicians,
physicists, physicians and engineers. Though the decisive factor in the
emergence of cybernetics (Wiener, 1949) was the swift development of
electronic automation and especially the appearance of the high-speed
computers which opened up boundless vistas in data processing, simulation
and the modeling of control systems (Dutta Majumder, 1975, 1979).

A problem of fundamenta! impartance in nature, man, society and machines,
in developing a general theory of physical systems is the system causalty
(Dutta Majumder, 1979). From this comes the notion of general dynamical
system. By a dynamical system we mean a system which changes with respect
to time. Like Euclidean geometry a general dynamical system too has a few
undefined basic concepts. They are precisely three in number, namely time,
state (phase) space and fime evolution law (Katok and Hasselblatt, 1995).
Although time is generally regarded as an undefined concept, Majumndar
(2000a) has recently proposed a definition of time from a mathematical
analytical stand point, which is different from the notion of time as presented
by Coveney (1988). When we intend to mathematically model a physical
phenomenon, we identify a set of attributes (e.g. mass, length and time in
physics). Then we “quantify” each attribute, ie. construct a real valued
function over the domain of that attribute (this way we obtain an unit for
an attribute, e.g. second for time, etc). Collection of all such independent
(i.e. one’s value does not depend on any other) attributes make the state space.
If there are »# independent attributes the dimension of the state space is ».
Let this n-dimensional state space be denoted by X,,. The time evolution law is
a continuous function f:X,x T— X,, where T is the space of time.
Additionally £ also satisfies the following two conditions.

Q) fx,00=x, for any x € X,,.
2 fx, s+ =f(f(x,5),t) for s, t € T.

A dynamical system is formally denoted by (X, f) or just by f, when there is
no confusion about the state space X,,.

The concept of state has long played an important role in the physical
sciences. It was towards the turn of this century that the concept of state was
given a more precise formulation by H. Poincare and later by the subsequent
works of Birkoff (1977), Kalman (1962), Markov (1931), Nemytskii et al
(1963). The concept of state space is a great unifying tool in the theory
of general dynamical systems and in the theory of cybemnetic systems
Mutta Majyumder, 1979).



For any physical system (X, f ) to determine the system it is essential to be
able to measuire each input state and each output state. In other words, we must
be able to measure each point in the State space X,. But by Heisenberg’s
uncertainty principle, for any physical dynamical system, we have

AxAf = h/2, L1

where Ax is the error in measuring x € X (assuming the state space to be
one-dimensional for simplicity), At is the error in measuring ¢ h Planck’s
constant. According to equation (1.1), if we want to make Ax—0, we
automatically get At — oo, That is, if we employ a computer (or an automaton
more fundamentally) to “exactly” determine the location of a point in Xj it will
take infinite time. A more realistic interpretation of this fact is that, “The more
we wish our computer to be accurate in locating a state in the state space the
more time it will take.” Or in other words, “The more is the demand for
accuracy from the computer (in determining a value) the more time complex the
job will be for the machine.” So the inherent (and insurmountable) uncertainty
in determining a state in the state space gives rise to complexity in a cyberhetic
or a general dynamical system.

Heisenberg’s uncertainty principle gives the ultimate limit of uncertainty or
indeterminacy in a dynamical system. But in our day-to-day real life we even
need not go that far to find an uncertainty. Suppose a die is thrown and you are
asked to guess the top face. Your uncertainty about the outcome is attributed to
randomness. The best way to approach this question might be to describe the
status of the die in terms of probability distribution on the six faces.
Uncertainty that arises due to chance is called probabilistic uncertainty (PU)
(Pal and Bezdek, 1994).

To make the situation more complex, suppose an artificial vision system
analyzes a digital image of the top face. Based on the evidence gathered, the
system might suggest that the top face is either a 5 or 6, but cannot be more
specific. This kind of uncertainty arises from limitations (for example, sensor
resolution) of the evidence gathering system. Uncertainty in the second
situation reflects ambiguity in specifying the exact solution, and is called
non-specificity by Yager. Pal and Bezdek (1994) have preferred to use the
alternate term resolutional uncertainty (RU). If we are certain that the top face is
either 5 or 6, this case involves only nonspecificity. More generally, the vision
system might also supply a certainty factor with its information. For example,
the system might suggest that the top face is either a 5 or 6 with belief of 0.8,
In this case, uncertainty due to chance is also present because the top face can
take any value, so the system contains both PU and RU (Pal and Bezdek, 1994).

Finally, you are asked to interpret the top face of the die as, say, high (or low).
Here.a third type of uncertainty appears due to linguistic imprecision or
vagueness. This is called fuzzy uncertainty (FU). FU differs from PU and RU
because it deals with situations where set boundaries are not sharply defined.
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PUand RU are not due to ambiguity about set boundaries, but rather, about the
belongingness of elements or events to crisp sets (Pal and Bezdek, 1994).

Uncertainties in information theory have been categorized differently by Kiir
(1991). There he talks about probabilistic and possibilistic uncertainties, both of
which are special cases of Dempster-Shafer theory of evidence (Shafer, 1976).
In the next section, we shall describe various forms of uncertainties.

Different uncertainties
Webster's New Twentieth Century Dictionary gives the following six clusters
of meaning for the term uncertainty:

(1) not certainly known; questionable; problemetical;

(2) vague; not definite or determined;

(3) doubtful; not having certain knowledge; not sure;

(4} ambiguous;

(5) not steady or constant; varying;

(6) liable to change; not reliable or dependable.

In Indian languages, particularly in Sanskrit-based languages, there are other
higher (spiritual) levels of uncertainties, the approximate meaning of which
are mysterious and unknowable (Dutta Majumder, 1993; Klir and Folger, 1988).
We shall not deal with them here.

In our view, these six or seven or eight levels of uncertainties are linked with
different levels of human cognition (according to the Buddhist philosophy there
are eight levels of cognition). But these six semantic clusters indicated above
emerge out with two distinct groups or forms. The first group of three is under
the form vagueness and the second group of three 1s under the form ambiguity.
Some of the concepts connected with vagueness are fuzziness, haziness,
cloudiness, unclearness, indistinctiveness and sharplessness. Some of the
concepts connected with ambiguity are nonspecificity, one-to-many relations,
variety, generality, divergence and diversity (Figure 1).

Fuzzy sets and fuzzy measures reflect two fundamentally different types of
uncertainties, namely:

() vagueness, and
(2) ambiguity
- Type 1l ambiguity. Nonspecificity in evidence (measures of
nonspecificity).
« Type 2 ambiguity. Dissonance of evidence {measures of dissonance).
+ Type 3 ambiguity. Confusion in evidence (measures of confusion).

It can be seen that the concept of fuzzy set provides a good mathematical
framework for dealing with the concepts connected with vagueness.



Mesasures of Measgures of Measureg of
Dissonance:E Confision Non-specificity
| Mathematical Theory of Evidence )|

For dealing with the clusters of concepts connected with ambiguity the concept
of fuzzy measures provides a general mathematical framework.

A fuzzy measure is defined by a function
g: P(X)—-10,1],

which assigns to each crisp subset of X a number in the unit interval [0,1]
It should be noted that the domain of the function g is the power set AX)
of crisp set X and not MX) the collection of all the fuzzy subsets of X.
When a number is assigned to a subset A € P(X), g{A) represents the degree
of available evidence or our belief that a given element of X (a priori nonlocated

in any subset of X) belongs to the subset A (Figure 2).
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Some approaches to tackle complexity
Complex systems are much less understood and not even well defined
mathematically, They are in the frontier between simple and chaotic systems: a
complex system is a dynamical system depending on many parameters, in
constant evolution and distances along trajectories increase (decrease)
polynomially and not exponentially. One considers that the brain’s neural
network is one such system (Palis, 2002). Some salient features of complex
systems are:

(1) itis a dynamical system in constant evolution formed by a great number

of units;
(2) some characteristics of the system are randomly distributed; and
(3) the system may have several attractors (Palis, 2002).

Our view of complexity is slightly different from that of Palis (2002). A chaotic
is also very much a complex system. Therefore, the trajectories may vary
exponentially also. Not all uncertainties in a complex system are essentially
statistical in nature. There may be other uncertainties too as we are going to
describe below. The possible notions of applications of complex systems are
not yet conclusive, like the case of the brain, origin of life, evolution of tumour
(Majumdar and Dutta Majumder, 2004a), economics, etc. Some of the methods
of dealing with complexity, in general dynamical and cybernetic systems, used
to model scientific, social and natural phenomena are described below
(Majumdar, 2001).
(1) Probability theory is the oldest branch of science dealing with complexity
due to uncertainty in a system. Like fuzzy measure probability is also
a measure. But probability measure is much more restricted compared to
fuzzy measure. Each probability measure is to satisfy a set of three
axioms due to Kolmogrov. In a dynamical system for an x if f(x, )
cannot be determined exactly for any ¢ > 0, instead f(x, t) takes a value y
with certain probability, we call the dynamical system a stochastic
process. Stochastic processes are certainly more complex than the
ordinary deterministic dynamical systems.

(2) Fuzzy set theory unlike probability theory is based on nonstandard or
many-valued logic. A dynamical system whose state space is a fuzzy set
is known as a fuzzy dynamical system (FDS). In a fuzzy state space each
point is a fuzzy point, ie. each point is a fuzzy subset. In a dynamical
system f(x,f) we can neither specify the initial value x, nor can we
specify the final value f(x, t), moreover we cannot measure the inherent
uncertainties in determining x and f(x, f) by probability measure but by
fuzzy measure only. In that case, the dynamical system is a FDS. Clearly
an FDS is even more complex than a probabilistic dynamical system or
a stochastic process.



(3) Chaos theory is also known as applied nonlinear dynamics. According to
Devaney (1989), a dynamical system f is said to be chaotic if:

+ f has sensitive dependence on initial conditions. That is, for any
€ >0, 36> 0, such that, |x - y| < €, there exists ¢ for which
fx,) - f(5 D] > §

+ fis topologically transitive. That is, for any two open sets %, ¢ in
the phase space, such that, ¥« Nv =, there exists ¢ for which
fabhnNe#d

+ the peniodic points of f are dense in the phase space.

For a given x, we cannot, in general, assign any probability or fuzzy measure
to f(x,t). That is, the uncertainty involved in determining f(x, #) is neither
fuzzy nor probabilistic in nature,

(4) Dempstar-Schafer’s theory of evidence is a unifying approach for fuzzy
set theory and probability theory. Both possibility or fuzzy membership
measure and probability measure follow from this theory. A brief outline
of the theory is as follows.

Let X be an universal set. PX) be the power set of X. Then, the
Dempster-Shafer theory (DST) (Shafer, 1976) is based upon a function

m: P(X)— [0,1), 3.1
such that,

m(Q) =0 and Zm(A) =1 (3.2)
Acx

where (J is the null set. The function m is called basic probability assignment.
and the quantity m(4) is called A's basic probability number, and it is
understood to be the measure of the belief that is committed exactly to A, But
m{A) is not the total belief committed to A. To calculate the total belief, Bel(A).
committed to A

Bel(4) = }:m(B). (3.3)
b

A function Bel : P(X)— [0, 1] is called a befief function over X if it is given by
equation (3.3) for some probability assignment m : P(X)— [0,1). A subset A
of X is called a focal element of a belief function Bel over X if m(A) > 0.
The pair (F, m), where F denotes the set of all focal elements of m, is called the
body of evidence. According to DST, belief measure is less than or equal to
the probability measure, and probability measure is a special case of belief
measure.
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Another fundamentally important measure of DST is the plaustbility
measure, denoted by Pl and given by Pl(4) =1 — Bel(4’), whete A’ is
the complement of A. We have, Bel(A) = PI(A) for all A C X. According to
DST plausibility measure is greater than or equal to the probability measure.
When all focal elements are singlefons, Bel(4) = PI(A) for all A C X and we
have Bel(A) = Pl(A) = probability measure of A.

When all focal elements and hence, also the body of evidence, are nested,
i.e. ordered by set inclusion, then the belief function is said to be consonant.
In this particular case, the plausibility measure is called possibility measure,
denoted by Pos, and the belief measure is called necessity measure, denoted by
Nec. Pos is described by a possibility distribution function r : X — {0, 1] via the
formula

Pos(A) = max r(x), (34)

for all A C X. Also for all A C X, Nec(A) =1 — Pos(4").

Let A be a fuzzy subset of X. uy : X —[0,1] is a membership function
denoting the grade of membership (degree of belongingness) of any point
2 € X to A. If r, is the possibility distribution function over A, then Zadeh
(1978) has proposed that,

ra(x) = pa(x), (3.5
for all x € X. Also for all B € P(X)
Posy(B) = max74(x). (3.6)

In this interpretation of possibility theory, focal elements correspond to distinct
a-cuts of the fuzzy set A. Zadeh (1978) has taken equation (3.5) to define 74 over
A in terms of u,. But we propose to just reverse this approach here to obtain
a definition of u4 in terms of 4. Yen (1990) has generalized the DST to fuzzy
sets. He has suggested methods of near programming problems to calculate
plausibility measure. So by that method Pos(Mx)) may be calculated, where
N(x) is an infinitesimal neighborhood of x. This way by substituting Mx) for 4
in equation (3.4) we have ry(%) = pn (%) for any x. I pw(¥) =0 for
y € N(x) then,

pa®) = > ). 37
A=UN@E@NENN()=D for sy

This method of calcylation of s will work in most (but not in all) practical
situations.

Some other soft-computing approaches obtained, including fusion methods
(the methods obtained by combining more than one method out of fundamenta



methods, described in (1), (2), (3) and (4) above, to tackle complexity) to tackle
complexity in science, society and nature are
+ Genetic algorithm (nonlinear dynamical system combined with
evoluhonary optimization). The direction of evolution (bio-cybernetic in
nature) 1s modeled either by statistical or posstbilistic inference;
» artificial neural network (nonlinear dynamical system modeled after
neuronal bio-cybernetics);

» neuro-fuzzy (fusion of artificial neural network and fuzzy set theory);
+ fuzzy genetic algorithm (fusion of fuzzy set theory and genetic algorithm);
and

* neuro genetic algorithm (fusion of neural network and genetic algorithm).

Concerning all the above uncertainties, three major areas of investigation for
engineering applications are:

(1) design of control systems for diverse applications;
{(2) pattern recognition and machine learning systems design;

(3) uncertainty management in (1) and (2) above and many other
applications in science, society and nature.

In a recent paper, Yajnik (1999) has identified and separated regularity and
irregularity, which remain intertwined in a complex system. Regularity means
existence of periodic trajectories or existence of periodic part in an arbitrary
trajectory. On the other hand, irregularity means the existence of nonperiodic
trajectories or existence of nonperiodicity in an arbitrary trajectory. This
means that a complex system can be decomposed into two mutually disjoint
systems, one regular (accurate prediction is possible in this part) and the other
is irregular {prediction will fail exponentially in this part). It peints out to
an aspect in the analysis of a complex system, namely the optimum analysis
of 2 complex system will be one in which the maximal regular part is identified,
the complement of which is the minimal irregular part. The most efficient
prediction making will then be possible for the system. There may be
a potentially remarkable application of Yamik’s (1999) method in the dynamics
of evolution of tumour in human tissues. Yajnik's (1999) method can be applied
to identify maximal regular and minimal irregular parts of the dynamics of
tumotr evolution. Once this becomes possible we shall be able to accurately
predict which therapy will have how much effect within certain range.

Various dynamical systems

(1) A general dynamical system consists of a continuous function
f:XxT— X, where X is the phase or state space and T is the space
of time, such that, f(x,0) = x forallx € X and f(x, s + ) = f(f(x,9), ).
When f is obtained as a solution of a set of differential equations,
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the dynamical system is called a differential dynamical system. The
dynamical system is linear or nonlinear depending on whether fis linear
or nonlinear.

(2) Cybernetics is the systemic study of automatic activities of animal and, in
particular, human bodies and their systems of control on the one hand
and the study of machines particularly for mechanization of thought
process and its mathematical counterpart, namely mathematical logic
(standard or nonstandard) on the other. So the mathematical model of
a cybernetic system is any dynamical system f such that, f is common
to a given biological and a given mechanical system. In the application of
cybernetics, we derive f in biology and implement it in engineering.

(3) Fuzzy dynamical system is a dynamical system whose phase space is the
collection of fuzzy subsets of some given set. An FDS is often understood
as a fuzzy set of collection of crisp dynamical systems representing some
uncertain or imprecise system. We do not know which crisp dynamical
system exactly models that imprecise system. Instead each crisp
member of the fuzzy set has certain possibility or membership grade to
represent the uncertain system. We shall discuss FDSs in detail in the
next section.

(4) Chaotic dynamical system is a nonlinear dynamical system f, such that,
« f has sensitive dependence on initial conditions (for any € >0,
35 >0, such that, {x—y| <€ there exists ¢t for which
|f@x,0) = f(3,] > 8);
- fis topologically transitive (for any two open sets «,v in the phase
space, such that, ¥ N v = &, there exists ¢ for which f(u,£) N v # ©);
+ The periodic points of f are dense in the phase space.

(5) Attractor is the asymptotic phase space of a dynamical system. That is if
X is the initial phase space (i.e. the dynamical system may start from any
point of X) then a subset A of X is called the attractor of the dynamical
system f iff

Jim f0X, = A

When f is an FDS, A is called a fuzzy attractor. Of course, a fuzzy
attractor is a fuzzy subset of the state space.

In practice, a chaotic dynamical system f is characterized by:

(1) sensitive dependence on initial conditions (e.g. by measuring Liapunov
exponents); and
(2) by the presence of a strange attractor, i.e. a fractal attracting set.



By a fractal attracting set we mean an attracting set (attractor) whose
Hausdorff-Besicovitch dimension strictly exceeds the topological dimension.

Fuzzy dynamical systems

When a scientific, social or natural phenomenon is studied not all of its aspects
are studied simultaneously. The aspect which is identified for study is modeled
for analysis and understanding. To model a scientific, social or natural
phenomenon the identifiable attributes are quantified often by real numbers,
e.g. mass in physics, price in economics, etc. After that we determine relations
among these quantified attributes in the form of a set of mathematical
equations (often differential or difference equations). If the system is changing
with respect to time then the solutions of this set of equations are time
dependent functions. The set of these time dependent functions is the
mathematical dynamical system modeling the corresponding scientific, social
or natural phenomenon. Each quantifiable attribute must be measurable.
This means locating a particular value in the set of real numbers. The more
complex the system the more is the difficulty to measure a value of an attribute.
Nevertheless, each and every practical system is endowed with uncertainties.
Heisenberg’s uncertainty principle is for microlevel in physical systems.
But something like some form of uncertainty principle is inherent in micro and
middle levels of biological systems and at ail levels of natural and social
systems. According to Zadeh, “Fuzziness comes from description of complex
systems.” The more the complexity of a system the greater is its uncertainty
due to fuzziness. That is, each quantity we want to measure becomes fuzzy
valued instead of precise valued. Thus, the set of crisp numbers is replaced by
set of fuzzy numbers. When more than one attribute is involved, we obtain
multidimensional fuzzy numbers, i.e. fuzzy vectors (Majumdar, 2000b, 2002a).
Equations become fuzzy equations and differential equations become fuzzy
differential equations (FDEs).

The potential application to system theory has from the beginning
significantly motivated and influenced the direction of development of the
theory of fuzzy sets. Fuzzy systems were first discussed in 1965 by Zadeh in his
expository paper (Zadeh, 1965). The first systematic treatment of abstract
FDSs was by Nazaroff (1973), who fuzzified Halkin’s crisp topological
polysystems to obtain fuzzy topological polysystems. These were further
investigated by Warren (1976). They, however, suffer the shortcoming of not
explicitly exhibiting the time dependence of the systems. Time dependent fuzzy
sets were considered by Lientz (1972), but were not, strictly speaking, FDSs as
they did not admit variations in initial conditions. Kloeden (1982} defined and
developed the notion of FDSs on line of the classical notion of mathematical
dynamical systems developed since the time of Poincare in the 1880s.

In a parallel development almost at the same time, FDS theory was
developed from a more system theoretic and less topological outlook.
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In a system, where some deterministic dynamical characteristics are unknown
or deliberately ignored as well as uncertainties attached to their mathematical
model, probabilistic approach cannot be used. This observation led Chang and
Zadeh (1972) to the concept of fuzzy system. De Glas (1983) considered FDS
{or fuzzy dynamical system as he himself liked to call it F as the fuzzy set of all
possible crisp dynamical systems representing an uncertain dynamical system.
He even considered a-cuts of this fuzzy set to signify the system behavior with
the degree of possibility & or more. De Glas (1984) was the first to consider
stability and attractor of an FDS.

Before defining an FDS, let us define a mulfivalued or generalized
semi-dynamical system as a prerequisite. From this point onwards, we shall call
it generalized dynamical system (GDS) only.

Basic definition of fuzzy dynamical systems
Defnition 5.1.  GDS is defined axiomatically in terms of an attainability set
mapping F : X X T — C((C, k) be the metric space of all nonempty compact
subsets of X with the Hausdorff metric %), where for each (x,f) € X X T the
attainability set F(x,t) is the set of all points in X attainable at time t € T
(unless or otherwise mentioned T will always mean the set of time in this
chapter) from the initial point x, satisfying following four generalizations of
axioms (1)-{4):

(1) Fisdefinedforall (x,) € XX T;

@ Fx,0)={x} forallx e X;

() F(x,s + 8 = F(F(x,5),t) = U{F(3,1); y € F(x,5)} for all x € X and

s,;te T,
(4) F is jointly continuous in (x, {).

Definition 5.2. A trajectory of a GDS F is defined to be a single-valued
mapping ¢ : {ty, 1] — X for which

#(t) € Figs),t - 9), (6.1

forallfp=s=st=4.

The existence of trajectories and attainability by trajectories of all points in
the attainability sets follows from axioms (1)-(4).

Before we extend Kloeden’s (1982) definition of FDS we should do a little
ground work. Let D be a metric on X x I(I = [0,1}) defined by

D((x1,1), (x2,72)) = max{d(x1, x2), In — 72}, m,m€X and r,rr €L

Then (X x I, D) is also a complete, locally compact metric space {usually R for
some #). A fuzzy subset A is defined by its membership function gy : X — 1.

Definition 5.3 The support of fuzzy subset pa, denoted by supp g,
such that



supp pa = closure{x € X{us(x) > 0}.

Definiton 54.  The endograph of a fuzzy subset u4, denoted by end e, is the
subset

endpyg = {(x,r) € X XIjpy(x) = 7},
of X x I and the supported endograph, denoted by send p4, the subset
send pq = end py N supp py X 1.

4 is a compact fuzzy subset of X if and only if 14 is an upper semi-continuous
function on X and supp 4 is compact subset of X or equivalently, if and only if
send ps is a compact subset of X XI. Let # denote the collection of all
nonempty compact fuzzy subsets of X, and let 8 be the metric on # defined by

&(pa, up) = H(send pg, send pg),

where H is the Hausdorff metric for nonempty compact subsets of X x I.
(#, 8) is not a complete metric space (Kloeden, 1982). The metric space (C, k) is
embedded in the metric space (#, 6) under the mapping i : C~ _# defined by
#(A) = xa, the characteristic function of A. Each individual point of X is
a compact subset of X. So {x} C C, forallz € X. So {x} C Fforx € X.

Now, we are in a position to present an extended version of Kloeden’s
definition of FDS.

Definition 5.5. FDS (#, o) on a state space ¢ is defined axiomatically in
terms of a fuzzy attamability set mapping (FAM) (the so-called time-evolution
law) o: # X T — ¢ satisfying the following four axioms:

(1) o(x,t) is defined for all (x,f) € #Fx T,

2 o(x,0)=p forallx € #;

3 ox,s+ bt =alox,s),Hforallx€ Fands,tET;

(4) o is jointly continuous in (x, £).

Since each individual point of X is also a member of ¢, an FDS ¢ can start
from X as well. In fact, in Kloeden's original definition of an FDS o always
starts from X.

Definition 5.6, o (x,1) is called the fuzzy atfainability set or fuzzy reachable
set of (#, o) at time ¢ starting from the fuzzy point (which is a nonempty
compact fuzzy subset of X) x € _#. The time-evloution law o is also called
fuzzy attainability set mapping (FAM).

Of course an attainability set is also a nonempty compact fuzzy subset of X
and hence is an element of #. Definition 55 is a slightly more generalized
version of Kloeden's (1982) definition of FDSs in terms of FAMs. De Glas (1983}
has defined an FDS as representable by a fuzzy subset of all the possible
crisp time-evolution laws representing an uncertain crisp system. Here also
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the time-evolution law representing a fuzzy system turns out to be an FAM
(Theorem 4.1 of De Glas (1983)).

Axioms (1)-(4) of an FDS are fuzzified version of axioms (1)-(4) of a crisp GDS
and because the metric space (C, k) is embedded in the metric space (#, §) by
the identification mapping i : C—~ ¢ defined by #(A) = x4 for each A € C.
Thus crisp dynamical systems can be considered as a subclass of FDSs.

Definition 5.7. A fuzzy trajectory of an FDS o is a mapping ¢ : [fo, 1] — #
for which ¢(#} is a singleton fuzzy subset of X for each ly=<¢ =< #; and

!Kt) € al('lb(s)i t— S)i (52)

forallfp<s<t=H.
Unlike a crisp trajectory a fuzzy trajectory need not be continuous (Kloeden,
1982). Also note that, forfp <t =<t

) = riDxsw, (6.3)

where ¢(f) = supp Y() and r(t) = Yt} (f)). If 7(f) = « for all £ then it is
a-trajectory of De Glas (1983). Existence of fuzzy trajectories has been proved
in theorem 5.2 of Kloeden (1982). The most important thing to note here is that
the classical fuzzy trajectory is actually a “crisp” trajectory with each point on
the trajectory having a membership value in [0,1] Membership value of a
particular point on the trajectory is determined by belongingness (membership)
of that point to a nonempty compact fuzzy subset (the attainability set) of X
i.e. a point of the state space ¢.

FDSs have been defined in terms of fuzzy reachable set mapping
(Hullermeier, 1997, 1999) also. Reachable set and attainability set are same.
Another important notion of FDS is that, let S be the set of all possible crisp
models of an imprecise dynamical system. By a fuzzy model of the system a
suitable fuzzy subset of S is understood (De Glas, 1983). This clearly comes
down to the notion of:

(1) identifying and accommodating the initial (fuzzy) imprecision by

choosing a suitable fuzzy initial point in the phase space and

(2 then identifying and accommodating the propagation of imprecision in

determining any subsequent state by a suitable FAM.

Obviously the description of FDSs in terms of FAMs is the most generalized
and the most powerful notion so far. Also such description is an immediate
generalization of the notion of crisp dynamical systems to the FDSs.
Therefore, it is quite natural to expect that, many important notions of the crisp
dynamical systems may be extended to the FDSs described in terms of FAMs.
Now we want to extend the notion of dissipativeness to the FDSs to define
fuzzy dissipative dynamical systems (Majumdar, 2003a).



Fuzzy dissipative dynamical systems

Definition 58 (f,0), where ¢ is defined over X as above, is a fuzzy
dissipative dymamical system if o(X, ) C o(X, h) (Rox ) = Mo, in fuzzy
set terminology), where (X, d, p) is 2 nonempty compact metric space, which is
also a fuzzy set with membership function p. £y, 2, € T such that, tj < ;. Xis
the initial phase space of ¢, i.e. at #, (the time at which the system starts) o can
start from any point of X. If (X, #3) C (X, #;) holds strictly for #; < #; we
call that the system is strictly dissipative or monotonic dissipative.Given the
importance of dissipative dynamical systems in real life let us suggest here an
easy-to-implement test for dissipativeness of an FDS (Majumdar, 2003a). If
there exists a nonnegative k € R such that,

Jim 8K, o(X, ) < b, | 64

holds, then we call o a dissipative FDS. Clearly, X = o(X,0) and
dissipativeness implies that o(X,#) C o(X,0) for ¢t =0, which means
&o(X,0),0(X,1)) =k for some nonnegative # € R and all nonnegative
t € T. On the other hand, if equation (5.4) holds and o(X, ) € o(X,0) for
some ¢ > 0 then we can extend X in the following manner

closure (zLaJoa(X , t)) =X (5.5)

Because of equation (5.4), X' is a bounded metric space. Being union of fuzzy
subsets X' is also a fuzzy set. But X' is not compact in general. However, in
most cases of interest, X is a compact subset of R " for some 7 and in that case
X being closed bounded subset of R” is compact (by generalized Heine-Borel
theorem). We extend d to X' and get the space (X', d, 1). We just replace
(X,d, p) by (X, d, ) and define (#', §) on (X', d, n). Because of equation (5.4)

fm8(X', o(X', ) < k 56

holds, which implies ¢ is dissipative on X' or rather on #'.

Now we are in a position to define fuzzy attractor (Majumdar, 2003a).
De Glas (1984) was the first to define and discuss fuzzy attractor (or rather
a-attractor). Cabrelli ef al (1992) have used the term “attractor” only, instead of
“fuzzy attractor”. In a recent paper, Bassanezi ef al (2000) have dealt (in a
different way) attractors and stability of FDSs from a purely mathematical
point of view. Here we have defined a fuzzy attractor in terms of an FAM o of
the FDS (£, o).

Fuzzy attractor and stability of fuzzy dynamical systems
Definition 59. In a fuzzy dissipative dynamical system lim;..o(X,f) =
A C X, we define A as fuzzy attractor of o. Of course A is a fuzzy subset of X.
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If we introduce the notion of a-cuts into, it we will obtain limy_.[c(X, )]* =
[A)* for 0 < a < 1. [A]* is the a-aftractor defined by De Glas (1984).

Now, how to define the membership function g4 for A? Note that the fuzzy
trajectory given by yAf)-in expression (5.2) converges to A as t — . Also each
point of A belongs to a fuzzy trajectory y(#) for some £, From equation (5.3), it
transpires that membership value of (f) is {t). So for each x € A, there exists
a t € T such that, x = (), and

pa(i(®)) = r(t) = pa(x). 6.7

But through a given point x € A more than one trajectory may pass. In that
case, to determine a unique value for u14(x) we are to take the fuzzy set union of
wa(Pe(t)) over all ¢, where yi.(f) is a (fuzzy) trajectory passing through 1.

Ucra(Ye()) = supc{r(t)} = pa(x). (5.8)

Attractors have played an increasingly important role in thinking about
(classical) dynamical systems since their introduction in the 1960s of the last
century. Since attractor is actually the phase space of the underlying dynamical
system as ! — 00, we may consider attractor as a matured state of the phase
space. Naturally, the dynamical system evolving within the attractor is rather
matured compared to the initial state. To understand a dynamical system
therefore the study of attractor, when one exists, is of considerable importance.

Definition 5.10. Let fuzzy nonwandering set of an FDS o be denoted by
Q0), which is a fuzzy subset of X, Then, x € (¥ o) implies that o(x, ) C }(o)
forallt € T.

payoy: X —[0,1] and for any y € ((0) paw(y) > 0. Now, following
Ruelle and Tukens (Milnor, 1985) we can give the following.

Definition 5.11. A subset A of the fuzzy nonwandering set {}{(o) is a fuzzy
attractor if it has a neighborhood U such that,

‘DOO'(U 1) =A. (5.9)

Of course, o(U, t3) C o(U, h) for t < £y, i.e. o is dissipative.

Note that the above definition of fuzzy attractor implies that all fuzzy
trajectories sufficiently close to the fuzzy attractor A must converge to A.
This is a standard stability condition of a dynamical system, and when this
stability condition is satisfied we call the underlying FDS ¢, stable. This form
of stability is known as Liapunov stability. Let us state this more formally in
the following.

Definition 512. A is a closed subset (in sense of fuzzy topology (Chang,
1968)) of X with o(4,?) = A(uxan = pa in fuzzy set terminology) for any
t =0 will be called Liapunov stable (also cailed orbitally stable) if A has
arbitrarily small neighborhoods U with o(U,¢) C U for all ¢ > 0.



There is another important form of stability called asymptotical stability.
Before we can define it for an FDS we need to develop some more concepts.

Definition 5.13.  Omega himit set w(x) of a point x € X is the oollection of all
accumulation points (y will be called an accumulation point of the sequence
{o(x, 1)} 12q, if and only if there exists a fuzzy trajectory through x which
converges to y for some £ = 0) of the sequence {o(x, £)} ;20

Definition 5.14.  The realm of attraction of an attractor A, denoted by p(4),
is the collection of all points ¥ € X for which w(x) C A.

Obviously, for any (fuzzy) attractor A of a an FDS o, o(4,1) = A for all
t=0.

Definition 5.15. A fuzzy attractor A of an FDS is called asymptotically
stable if it is Liapunov stable and its realm of attraction p(A) is an open set
{in sense of fuzzy topology (Chang, 1968)).

In the asymptotically stable case if we choose U with closure (in sense of
fuzzy topology) contained in p(4), then it follows that A is equal to the
intersection of the sequence of forward images U D o(U) D ¢*(U) D
o)+~ ~+, where ¢*(U) = o(U, ). This discussion of stability of a fuzzy
system is generalization of stability discussed by De Glas (1984) and Tathachar
and Viswanath (1997).

Robustness of fuzzy dynamical systems
Let us next extend the concept of robustness to fuzzy attractors (Majumdar,
2003a). Again, we shall have to do some ground work.

Definition 5.16. The likely limit set A = A(c) of an FDS ¢ is the smallest
closed subset (in sense of fuzzy topology (Chang, 1968) of X with the property
that w(x) C A for every point x € X (Remember (X, d) is a compact metric
space)) outside a set of lebesgue measures zero. (Lebesgue measure can be
defined on X, for (X, d) is compact and embeddable in R”™ for some finite n.)

Clearly, the likely limit set A is the largest attractor of o.

Definition 5.17. Hausdorff distance between two closed sets is the smallest
number 8 such that, each closed ball of radius & centered at a point of either set
necessarily contains a point of the other set.

Definition 518.  The likely limit set A(oy) of an FDS o is called robust if
and only if the likely limit set A(o») of any other FDS o, has Hausdorff
~ distance with A(ay) 8 then oy converges uniformly to o3 on X implies §— 0.

Fuzzy chaotic dynamical systems

Our next target is to define fuzzy chaotic dynamical system. Crisp chaotic
dynamical system has been defined by Devaney (1989). We shall make a
straightforward extension of this definition to FDS o (Majumdar, 2003a). But
fuzzy chaos has already been defined by Buckley and Hayashi (1998) and
Kioeden (1991). Kloeden has defined fuzzy chaos in terms of iterative maps on
fuzzy sets on line of what Li and Yorke (1975) did for certain crisp cases. Liand
Yorke's definition of chaos is only slightly different from that of Devaney.
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Buckley and Hayashi's (1998) approach is also similar. A chaotic fuzzy set A is
represented by 114 and this y4 is then taken as the limit of an iterated function,
which is known to be chaotic under iterations, subjected to suitable conditions
(e.g. the logistic function for suitable parameter values). Apart from Buckley
and Hayashi (1998) and Kloeden (1991), fuzzy chaos has also been described by
Teodorescu (1992). Kloeden (1991) has defined fuzzy chaos for discrete FDS.
Next we shall extend Devaney's definition of chaos to the FDS.

Definition 5.19.  Let obe an FDS. A point p € X is called periodic of period
S(> 0) if and only if xp € o(p,S) and yp & o(p, S forany 0 < §' < §.

Clearly p is a fuzzy singleton of X and hence a member of #.

Definition 5.20. o will be called a fuzzy chaotic dynamical system if and
only if the following three conditions are satisfied.

(1) There exists € > 0 such that, for any x € # and any neighborhood
Nz} of x there existy € N(x) and ¢ = 0 such that, oz, £), o(y,8)) >€
(8 is Hausdorff distance). We say that, o has sensitive dependence on
initial conditions. As usual here x, y are nonempty compact fuzzy subsets
of X, i.e. fuzzy points of X and hence individual elements of #.

(2 For any two nonempty fuzzy open sets A and B in (¢, 8) such that,
pa A pg =0, there exists £ > 0, such that uyn A ug # 0. We call
that o is topologically transitive.

(3) Let Pbe the collection of periodic points of . P C #. I Pis dense in ¢,
ie. equivalently, in each open subset of (#,8) there is at least one
member of P, density of periodic points property is satisfied by o.

Notice that if we take £ in the set of all nonnegative integers instead of all
nonnegative real numbers, we obtain the discrete chaotic FDSs of iterated
functions on fuzzy sets. But this time the definition of fuzzy chaos is on line of
Devaney rather than Li and Yorke as adopted by Kloeden (1991).

Buckley and Hayashi (1998) have iterated the logistic fumction for
suitable parameter values to generate chaotic membership functions over
the set of real numbers R to get the concomitant chaotic fuzzy numbers.
But in reality chaotic fuzzy sets may be far more complicated.

In a crisp dynamical system an attractor plays a decisive role to determine
whether the underlying dynamical system is chaotic. The presence of a
homoclinic point in the attractor implies that the underlying dynamical system
is behaving chaotically.

If two curves C; and G; intersect in R” at a point B, then C, and G, will
be called transversal to each other at B if and only if they cannot be pulled
apart from each other at B by a small deformation of either of them or
both, ie. in other words, their intersection at B is stable (Figure 3).

Definition 5.21. In a crisp dynamical system p will be 2 homocknic point if
and only if two different trajectories T} and T transversally intersect at p



such that, neighboring points of  on T} converge to p and neighboring points
of p on T diverge from p under the dynamical system.

Definition 5.22. In an FDS let two fuzzy trajectories T} and T intersect
transversally at /. If membership values along T increase towards p’ and
membership values along T decrease towards §/, then p/ will be called a fuzzy
homochnic point of the underlying FDS.

Likewise, we define fuzzy homoclinic point of an FDS in terms of changing
membership values (Majumdar, 2003a).

Horse shoe effect, described by Smale (1967), is another very important
aspect of a multidimensional (crisp) chaotic dynamical system. Like fuzzy
homoclinic point fuzzy horse shoe effect can also be defined in a similar
manner.

This membership interpretation of §/ is equivalent to crisp notions of
converging towards (increasing membership values) and diverging from
(decreasing membership values) p.

Definition 5.23. When there will be a fuzzy homoclinic point in a fuzzy
attractor of an FDS, we call that attractor fuzzy chaotic attractor.

Definition 5.24.  For all practical purposes we shall call a fuzzy dissipative
dynamical system evolving in (X, d) chaotic if:

» the fuzzy attractor A is a fractal subset of X, and

+ A contains at least one fuzzy homoclinic point.

According to the above criterion of chaotic FDS it is clear that the shape of the
fuzzy attractor will usually be very complicated and the membership function
defined on the attractor will take abruptly fluctuating values within any
arbitrarily small neighborhood of almost every point (in sense of measure
theory) of A. Ideally, the set of fuzzy homoclinic points will be dense in A in the
relative metric topology of A as a subspace of (X, d).

Fuzzy Liapunov exponent

Liapunov exponent is perhaps the most important of all parameters of
a dynamical system. Fuzzy system theorists have already defined and
measured various forms of Liapunov exponent of a fuzzy system (Tathachar
and Viswanath, 1997). Here, we would like to define the notion of Liapunov
exponent for an FDS, which will be called fuzzy Liapunov exponent.

Transversal intersection Non-transversal intersection
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Note that we have been describing the FDS in terms of time series. In this type
of description of a dynamical system the Liapunov exponents are relatively
easy to measure. For an FDS o(x,f) (for simplicity we take here x
one-dimensional, extension to higher dimension is straightforward) we define
the Liapunov exponent A as follows (Majumdar, 2003a).

Definition 5.25. For an FDS (¢, o) evolving on (¢, 8) the fuzzy Liapunoy
exponent A is given by the equation

A= ,}irg(llk)g Jm log8(otx, t), 0tx, te-)/ts — el (5.10)

Generally, o(x, t) is a fuzzy subset of X (attainability set) for any given x and ¢.
So fuzzy Liapunov exponent A is in general a fuzzy number (because the
Hausdorff distance between two fuzzy sets can never be determined with crisp
precision), 1.e. a crisp number equipped with a membership value. In a
multidimensional fuzzy system if the largest Liapunov exponent tends to zero
(ie. membership value at 0 is 1 and membership values are uniformly zero
outside a progressively smaller compact intervals of R containing 0} the system
is said to be stable. Liapunov exponents are very cructal in analyzing local
instability and predictability of a dynamical system.

Fuzzy metric entropy and fuzzy Liapunov time

Definition 5.26. In an FDS o, evolving in (¢, 8), the local metric entropy
(LME) is defined at any point x to be the sum (in the sense of fuzzy arithmetic)
of all the fuzzy Liapunov exponents at x, where each fuzzy Liapunov exponent
is such a fuzzy number that, no crisp member of that fuzzy number is
nonpositive or in other words, this is a fuzzy number of the form p,5;,8 > 0,
where [a, &] is the support of g p).

Definition 5.27.  Sum of all the Liapunov exponents at x is the divergence of
the phase space at x.

The greater the value of LME the more the system is chaotic and the less it is
predictable. We can conclude that T = 1/A (in sense of fuzzy arithmetic),
where A is the average value (calculated according to the arithmetic of fuzzy
numbers) of the maximum Liapunov exponent over the elapsed time.

Definition 5.28. T, is called Liapunov time, i.e. the system is predictable
almost up to a time T),.

Fuzzy differentiable dynamical systems

In the previous section, we extended some important dynamical system
theoretic notions to the FDSs. In this section we shall be concentrating on the
special case when the underlying fuzzy attainability set mapping of the FDS is
a solution to a set of FDEs or fuzzy differential inclusions (FDIs), i.e. fuzzy
differentiable dynamical systems (FDDSs).



Fuzzy differential equations

Defimition 6.1. When one or more of the FDEs are time-dependent we
call the system momautonomous FDDS. Time-dependent expressions in a
nonautonomous system are of the form

') =fa, 0)=x, (6.1)

where equation (6.1) is an FDE, « is fuzzy derivative of the fuzzy valued
function x.

Definition 6.2. When none of the FDEs is time-dependent we call the
system autonomous FDDS. An FDE of an autonomous system takes the form

M) =f), xlto) = x. (6.2)
FDDS was first defined by De Glas (1984). But his definition of “fuzzy
derivative of a real valued function” is rather restrictive. Puri and Ralescu
(1983) have presented two definitions of derivative of a fuzzy valued function
whose domain of definition is an open subset of some normed (crisp) space.
One of them is H-derivative or Hukuhara derivative and the other is a more
generalized notion called canonical derivative. Since the H-derivative had great
influence on latter works we are presenting the following definition.
Let Ube an open subset of R. Let Sy(R™) be the collection of fuzzy subsets
(#: R" — [0,1]) of R™ satisfying the following properties:
(i) u is upper semicontinuous;
() u is fuzzy convex, ie. #(Ax;+ (1 — A)xg) = minfu(x;),u(xp)] for
f,% ER® A E(0,1];
(it} closure([#1*) is compact for @ € (0,1).

Definition 6.3. A fuzzy function F : U — Sg(R"), which associates with each
pointy € U a fuzzy subset F{y) of R”™ with properties (i), (i) and (iii) described
above, is called H-differentiable at yy € U if there exists DF(y;) € So(R™) such
that, the limits

. F(3+ k) — F(y) . F(y)—F(y —h)
B T

6.3)

both exist and are equal to DF(yp).

Kaleva (1987) was the first to define FDE in terms of H-derivative. At the
same time, Seikkala (1987) also defined FDE in terms of a slightly generalized
form of H-derivative. Their formulation of fuzzy initial value problem (FIVP) is
as follows,

x'(t) = ft,2(t)), x(a)=1 6.4)

where 2(f) is a fuzzy valued function defined on T (whose range set is certain
class of fuzzy subsets of R"), ¥(f) is the H-derivative (or some generalized
form of H-derivative) of x(#), fis also a fuzzy valued function and xg is an initial
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value of equation (6.4), which is a fuzzy point in the phase (solution) space. In
their works and in almost all subsequent works x(f) takes values only in the
class of normal subsets of So(R”) denoted by E™ This E" is the phase
(solution) space of the FDEs.

Recently Buckley and Feuring (2000, b) have generalized equation (6.4)
in terms of various definitions of derivatives of a fuzzy valued function.

R =X, XO=C 65
assuming that we have adopted some definition for the derivative of the
unknown fuzzy function X{f). In equation (6.5), all capital letters denote fuzzy
quantity. X : T — S(R™), where S(R") is the collection of fuzzy subsets of
R"K = (K,...,K,) is an n-dimensional fuzzy number and C is a fuzzy
number. X(0) is of course the initial value of X. Equation (65) is the
Buckley-Feuring form or BF-form of FDESs. In their paper, Buckley and Feuring
(2000a, b) have taken K;,i € {1,...,n} and Cas triangular fuzzy numbers, but
here for the sake of generality we prefer to keep them as arbitrary fuzzy
numbers. To obtain a solution for equation (6.5) the entire range of crisp
solution set of equation (6.5) is considered and then a-cuts over various fuzzy
quantities responsible for generating that solution set is taken. Then the
required solution set is constructed by using Zadeh's extension principle.
Buckley and Feuring (2000a, b) have also defined fuzzy partial differential
equations.

Solution of an FDE usually involves summation of two fuzzy numbers. But if
we add two fuzzy quantities generally the diameter of the resultant fuzzy
quantity is greater than any of the constituent fuzzy quantity. As a result diam
X(t) = o as t ~ o, where X(f) is the solution of an FDE. This render FDEs
unsuitable for modeling. Also due to the same reason the classical dynamical
systems’ theoretic notions are not possible to extend to the FDEs.

Since the solution or phase space of equation (6.5) is supposed to represent
the behavior of the system represented by equation (65), determining the
degree of possibility of the solution set is very crucial to determine the system
behavior. In this situation, if we only concentrate on determining the solution
set of highest possibility, which obviously represents the best system behavior,
we shall be able to reduce the computational complexity to a great extent.
Taking the solution space with highest degree of possibility has been
emphasized by Hullermeier (1997, 1999).

Fuzzy differential inclusions
FDI is a reformulation of equation (6.4) in a different form, where equality (=)
is replaced by inclusion (€) as formulated below:

2() € ft,2(t), (@) € x 6.7)



Unlike in equauon (6.4), in equation (6.7) x(f} is a crisp trajectory and £(¢, () is
a fuzzy set of cnsp functions (actually in equation (6.7) X(t) € f(t,x(t)) means
2t € [f(t, x()]%). The derivative of x(f) is not the Hukuhara derivative but
the classical derivative. Equation (6.7) in more general form in terms of
arbitrary a-cuts becomes

2() € [f¢t, s, x(a) € % 6.8)

where 0 < a < 1. 1(a) € 1o means x(a) € [x;]°.

A classical FDE due to Kaleva (1987) or Seikkala (1987) proceeds from a
fuzzification of the differential operator and considers the entire fuzzy flow (by.
the fizzy flow of equation (6.4) we mean the FAM x(f) as a solution of equation
(6.4)) which describes the system behavior. As opposed to this the FDI
proceeds from a generalization of differential inclusion relations and considers
a fuzzy set of individual, crisp solutions, much the same way De Glas (1983)

thought of an FDS. In the original formulation of FDI, equation (6.8) has been-

described as J!(t) e[ f (&, 2(ED)7, x(a) € [x)°. But in equation (6.8) we have
taken %, (that is [x]°) in place of [%]®. This has been done to keep the
formulation of an FDI as general as possible. Our ultimate concern in equation
(6.8) is to know the a-cut of the fuzzy set of functions f(Z, x(£)). So initially we
allow x(a) to take values from whole of x,. We may restrict x{g) within some
level subset of the support of x, only to determine [f(¢,2(£))]%. So x(a) €
[%])® is actually needed when we want to solve equation (6.8) (step 3 of
Algorithm 6.1). At the formulation stage, it can be dispensed with to keep the
formulation as general as possible, just as in equation (6.8). As long as the
crisp initial value problem

2 = folt,x(1), x(@)= A € x,

where f; is a crisp member of the fuzzy set of crisp functions f(t, x(#)) and A is
a crisp member of x, has a unique solution, existence of unique solution of
equation (6.8) as a-cuts of fuzzy set of crisp solutions is guaranteed. The a-cut
of the fuzzy set of crisp solutions of equation (6.8) is the fuzzy flow
representing the system behavior with possibility e or more.

Be it equations (6.4) or (6.8) the solution is more difficult compared to the
classical crisp differential equations. So the quest for a qualitative rather than
a quantitative solution to equation {6.4) or (6.8) is even more natural than the
Crisp case.

Numerical methods for solving FDIs like equation (6.8) have been developed
by Hullermeier (1999), which is as follows. The admissible domain of ¢ is y to 6.
We partition [y, 8] in # equal subintervals, where the sth subinterval is denoted
by I.

To obtain a solution of equation (6.8) we shall have to determine the
fuzzy reachable set x(f} for any arbitrary value of ¢ Like equation (17) of
Hullermeier (1997), we can write
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Yi+l — Vi

A7 € f(t,3) (6.9)
where fis a fuzzy valued function with values in E*. Note that a fuzzy set of
crisp functions, when considered as a single function, maps a crisp or fuzzy set
onto a fuzzy set and hence may be called a fuzzy valued function. E” is the
collection of normal fuzzy sets of So(R™). E” is a metric space (E®, D), where D
is the Hausdorff metric on E". Based on equation (6.9) the following generalized
difference equation scheme can be defined for fuzzy valued function of a crisp
variable

Yt)=_U {y+Atf(t;, YN}, YO =1 (6.10)
YEY ()

Since the set Y(#;) may have very complicated structures, it is generally not
possible to represent them exactly. So in addition to discretization of time,
discretization of a class of subsets of R" has also been considered. Let A be
a class of subsets of R” which can be represented by means of a certain
data structure. Denote by A(Y) € A the approximation of a set ¥ € R”.
The following approximation of equation (6.10) has been defined in
Huellermeier (1997).

Z(tia) = A(Uz + At A(f(5,2)),  Z(0) = AKX) (6.11)

The implementation of solution of equation (6.8) is based on iteration of
equation (6.11). The class A used in equation (6.11) for approximating sets
was implemented as different classes of geometrical bodies, such as convex
hulls or more general classes including nonconvex sets. All this have been
very elaborately described by Hullermeier (1999). In Hullermeier (1999),
some examples have also been presented with simulated results. However, the
entire process is extremely computational intensive and complicated, which
may be a stumbling block to the application of FDIs to model real situations
despite its immense potentiality. Here we have been able to find out an easier
method to solve FDIs. But unfortunately, this process will work only in
one-dimensional case. It is not possible to extend it to solve the
multidimensional FDIs. Nevertheless in one-dimensional cases our method
will give better result than those obtained by the method of Hullermeier (1999).

A method for solving one-dimensional fuzzy differential inclusions

In one-dimensional formulation of an FDI in the form of equation (6.8) the
graph of x(t) is a (crisp) trajectory in R 2 and £ (0 is a fuzzy valued function
(as a fuzzy set of crisp functions) defined on R * with values in E2 x(a) € R is
an initial (crisp) point (that is at ¢ = a). x4 is a fuzzy point in R. x(a) varies over
all crisp members of the fuzzy point x;. xq is known as the fuzzy initial point.
t is always a crisp quantity. Then f(¢, x(2)) 1s fuzzy valued because x(f) can



start (at £ = a) from any member of the fuzzy point x and some fuzzy valued
parameters may also be present in (¢, (). Let fo(t, 2(¢)) be a crisp member of
f(¢,x(t)). We may call £, a representative member or seed of f. We shall attempt
to obtain the fuzzy solution of equation (6.8) by “fuzzyfying” f,. The algorithm
is called crystalline algorithm (Majumdar, 2002d), where the entire fuzzy
solution set of equation (6.8} is built around the seed solution just like formation
of a crystal around a seed in a super-saturated liquid. The ordinary crisp
numbers have also been considered as fuzzy numbers. Crisp numbers are only
special fuzzy numbers. The set of all fuzzy real numbers is denoted by £.

Algorithm 6.1.  (Crystalline Algorithm):

START

Step 1: Let folt,x(8)) = Py, ....0n 1, %(1). x(t) starts from a crisp

member A of [xo]® Solve (directly or numericaly) #(f) =
So(t, x()). . (A).
Step 2: Fix a € [0, ]1).
Step 3: Let x() = YAq1,...,qm,t) be the solution of (A) in step 1. Each
bi = g; for some jim > k). qm = A € [x0)°. If fp is to vary over all
members of f then each q; must belong to a fuzzy number, that s,
g; € 8,41 ({a;,5), g p3) € R. But we are to make £ (t) =
folt, x(t)) € [f(t, x(t)}°. This implies g; € [t14q,1)" for all j and
x(@) = A =qm € [%0)*(X0 = s, b))
Step4: Takex(t) = Y{a§, ..., a5,1).. (B andx(t) = (b5, ..., b3, 1).. {C),
where [pig,51)* = [a,b7). The region on R bounded by (B) and (C)

D is the solution or phase space of equation (6.8).

Solution of a very important one-dimensional FDI has been obtained by the
above procedure in the next section. In step 1 standard numerical methods for
solving ordinary crisp differential equations are to be employed when methods
for direct solution are not available.

Justification: Now, let us justify Algorithm 6.1.

In practice in step 1 we just need to consider a crisp version of the expression
f(t,%(t)). We accomplish this in two steps.

(1) We just choose a crisp member from each fuzzy parameter (constant
fuzzy number) and substitute the respective fuzzy parameter by the
chosen crisp number in the expression of f(£, 2(£)).

(2) We treat any fuzzy variable as an ordinary crisp variable in the
expression of f (¢, x(£)).

This way we obtain fo(¢, x(£)) = D(py, .. ., pr, £, 2(¢)). Then we solve (directly
or numerically) the ordinary crisp differential equation ¥'(f) = fo(¢, 2(8)) =
®(p1,.... P t,x(t)). This way obtaining the seed solution as x(f) =
¥qy,. .., qm, ) is completed. x(¢;41) satisfies the following equation up to the
desired degree of approximation
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x(kig1) = x + At folli, x(1)), x(@)=A
from which we obtain

X = Y s+ MAOGX), X@=2n 612

X(#) is an approximation of the fuzzy attainability set obtained at time # by the
fuzzy flow of solution of equation (6.8) starting at ¢ = 4. So by the way of
equation (6.12) we can reach at an approximation of the fuzzy attainability set
given by equation (6.10).

In step 2, we fix a, where 0 < & =< 1. The more the value of a the higher is
the possibility of the solution set of equation (6.8) to represent the actual system
behavior. Often only the highest value of a is taken to represent the best
system behavior.

In step 3, by allowing each crisp parameter value g; to vary over the whole
range of the corresponding fuzzy value we actually determine the whole range
of the fuzzy valued function (as a fuzzy set of crisp functions) (¢, 2(¢)). In this
algorithm we actually never try to approximate the fuzzy attainability set by
X(#) of equation (6.12) but in step 3 we directly try to determine the fuzzy
attainability set (given by Y{) in equation (6.10)).

In step 4, we demarcate the a-level subset within the fuzzy attainability set
by specifying the boundary of the a-level subset. In step 4, we achieve the same
goal, which is set to be realized in Hullermeier (1997) by iteration of equation
(6.11). Unfortunately, this technique of curving out the a-level subset out of the
fuzzy aftainability set will not be effective in multidimensional case. This is
precisely where the algorithm fails in multidimensional case.

So far, the theory of FDEs or FDIs has remained confined to treating
first-order and first-degree equations or inclusions only. The crystalline
algorithm is also designed to solve first-order first-degree FDIs like
equation (6.8). But in the following example we shall solve a simple
second-order FDI with the help of this algorithm.

Exampie 6.1. (Majumdar, 2002d): Find the solution representing the best
possible behavior of the system given by

() € [kx]* (6.13)
keKY (6.14)
YO EL) for x(H EM])* (6.15)
(0) € (%)’ (6.16)

where x(f) = dx'(f)/dt, £'(t) = dx(t)/d¢t, K is a trapezoidal fuzzy number
given by Figure 4, L is a triangular fuzzy number given by Figure 5, M is
a triangular fuzzy number given by Figure 6 and x, is a triangular fuzzy



number given by Figure 7.0 < a < 1. Also shown is the simulated state space Complexity
of the system. analysis

Solution. In search of a “seed” solution we shall have to fix a representative crisp expression
in the fuzzy expression [kr)® or [kx(f)]* on the right of equation (6.13), surely & € [K])*.
Notice that we are to determine the solution representing the best system behavior only.
Inthatcase a = 1.So k € [K]! = [0.6, 1] (Figure 4). x(¢) is & crisp variable but £(0) can take

any crisp value from a fuzzy number. This contributes to the “fuzziness” of x(f) {there may be 1169
other factors as well to contribute in this direction), that is x(f} becomes a crisp member of
a fuzzy set of crisp functions. So, in search of 2 seed solution it suffices to take

L) =kt 617

where 2 € [0.6,1) and x is an ordinary crisp variable We shall proceed by solving
equation (6.17) just like an ordinary crisp differential equation. Multiplying both sides
of equation (6.17) by 2¢'(¢) and then integrating we obtain

&V =k*+C (6.18)

where C is an integration constant. From equation (6.15), we obtain that #'(0) € [L)* for
x(t) € [M]°, which means ¥'(0) € [L]! for x(f) € [M}". Since L, M are traingular fuzzy
numbers given by Figures 6 and 7, respectively, we have 1'(0) = 0 for x(¢) = 1. Hence from
equation (6.18) we obtain C = —&. Or,

20 = Jhz? - D2, (6.19)

Solving equation (6.19), we obtain
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Trapezoidal fuzzy
number K

0 04 06 1 12

.y
B - TR
rly
o
e
am

Triangular fuzzy
number xo

(-3
b
o



Triangular fuzzy
number [

Figure 7.
Triangular fuzzy
number M

sin~Lx(f) = Jkt + D, (6.20)

where D is an integration constant and we are considering the positive square root of k only.
From equation (6.16), we obtain x(0) € [%,)°. But we are interested only in %(0) € (]! or
x(0) = 0 (Figure 5). So

x(t) = sin(/kt), (6.21)

where k€ [0.6,1]. The seed solution of equations (6.13-(6.16) for any & € [0.6,1).
To determine the fuzzy flow corresponding to the best possible behavior of the system
represented by equations (6.13)46.16) in the phase space we shall have to determine
the boundary of the fuzzy flow in RZ The boundary is represented by the graphs of
2(}) = sin(0.7746¢) (curve “1” of Figure 8) and x(¢) = sin(#) (curve “2” of Figure §),

Stability of a fuzzy system represented by a set of fuzzy differential inclusions
Of course the FDSs theoretic notions defined and discussed in the last séction
can be applied to the FDIs in a very straightforward manner. Let us describe
the notion of stability in terms of critical points (not in terms of attractors)
in case of a system of FDIs defined over a two-dimensional phase space.
Let a system be described by

S U
-0""

T

b
[ 3 I
>

.

..
L R i T

T



£

o B

L)

. g 8 8B

g
=

Notes: Fuzzy state space of the slystem represented by (6.13), (6.14), (6.15) and (6.16) is
enclosed by curves ‘1’ (¢xtreme left curve of the band) and ‘2’ (extreme right curve of the
band). Only the region representing the best system behaviour has been considered
x'(t) € [F@x, )", (6.22)
y'(t) € [Gx, )%, (6.23)

where F,G:R?—EL In order to solve this system we may write the
equations as

& [Feay) ©2)

The system represented by equation (6.24) will be stable on all points
(x,) € R? such that, 0 & [G(x,5)]* and 0 & (F(x,y)]” for any a > 0.

Definition 6.4. In the system described by equations (6.23) and (6.24) if
Py = (x5, %) is a crisp point on the phase plane (ie. two-dimensional phase
space) such that, 0 € [F(xo,¥)]* and 0 € [G(%9,p)]* for @ > 0 then we call F
a cnitical point of the system.

If S is the region of R? consisting all the critical points of the system
represented by equations (6.23) and (6.24), then the system is stable at any point
in the complement of S. For an implementation of this criterion let us consider a
system represented by FDIs in Hullermeier (1999). Under certain assumptions
dynamics of the corresponding economic system is described by the crisp
differential equations

db_ [G(x,y)] ‘

2(f) = ax(tanh(kx + o7 y) — 2)cosh(xx + 03 ), (6.25)

¥() = ay(tanh(kyy + ayx) — y)cosh(kyy + 0y%). (6.26)
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Here the state variables —1 =< x(t), ¥(t) < 1 characterize the stages of business
cycle. The parameters ay, ay, Kz, Ky, 03, 0y, Which have certain economic
interpretation, not only influence the quantitative but also the qualitative
behavior of the system.

But in an economic system precise values of the parameters
ay, Qy, Kz, Ky, 0x, 0y may not be known. The uncertainty remains involved in
equations (6.25) and (6.26) makes it more appropriate to formulate the system
in terms of FDIs, which takes the form

£'(f) € [ax(tanh(kex + 03 ¥) ~ x)cosh(kex + o, ¥)]° 6.27

¥'(t) € [ay(tanh(x,y + oyx) — y)cosh(iyy + oy)]° (6.28)

where each of the parameters ay, ay, ks, Ky, 0%, 0y has been treated as a fuzzy
number. It is easy to verify that the only critical point of the system is (0, 0).
Also 0 must not belong to the support of fuzzy numbers a;, @y, &, &y, 0%, Gy t0
make the system stable.

Let P, be an isolated critical point of the system represented by
equations (6.22) and (6.23). If Py has a neighborhood Ns(Pp) with diameter
8 > 0 such that, all trajectories starting from any point P € N 3(Pp) converges
to Py then P, is called a Liapunov stable critical point of the system. This
notion of Liapunov stability of the critical point P, follows directly from
Definition 5.11, where P is an attraching critical point. In the system given by
equations (6.27) and (6.28) (0, 0) is a Liapunov stable critical point.

Case studies

To demonstrate the efficacy of FDI relations in modeling very complex natural
phenomena let us describe a case study here. We have in mind cyclogenesis, i.e.
genesis of cyclones (Majumdar, 2002a, b). We shall apply Dempster-Shafer’s
theory of evidence in medical image fusion (Bhattacharya and Dutta
Majumder, 2000; Dutta Majumder and Bhattacharya, 2000). We have also
presented a statistical analysis (from general system theoretic point of view) of
the development and regression of cancer in human body (Dutta Majumder and
Roy, 2000). As a very interesting example of atmospheric cybemnetics,
following Majumdar (2002a, b), here we shall propose a FDS modeling of
a climatic disturbance created by winds coming from different directions and
colliding to give rise to a vortex under certain conditions. Under favorable
conditions, this vortex may lead to the development of a cyclone (Case study 1).
Then, following Bhattacharya and Dutta Majumder (2000} and Dutta
Majumder and Bhattacharya (2000) we shall present a novel bio-cybernetic
fusion technique for multimodal medical images by applying Dempster-Shafer
theory of evidence (Case study II). Finally, following Dutta Majumder and
Roy (2000} we shall present a path breaking bio-cybernetic and general system



theoretic approach to induce spontaneous regression on malignant tumour by
means of large fluctuating perturbations.

Case study I Evolution of cyclonic weather - cyclogenesis

Through sustained research, particularly after the Second World War, the
physics behind the genesis and development of a tropical storm has already
been understood to a large extent. It is well known that despite the prevalence
of favorable geographic and climatic conditions over a large part of the globe
during the storm seasons the actual occurrence of a tropical storm is a
relatively rare phenomenon. Even when a tropical storm is developed, about
the half of all of them cannot reach hurricane strength (say of intensity T 3.5 or
more in the Dvorak (1984) scale). The reason behind the relative rare occurrence
of a strong tropical storm (called Hurricane in USA, Typhoon in China, Cyclone
in India, etc) is that, a sufficiently strong initial disturbing vortex is essential to
give rise to an intense tropical storm (Emanuel, 1988). So not only the favorable
geographic and climatic conditions are essential prerequisites but also a
sufficiently strong initial disturbance is required. Following Ooyama (1969)
there have been innumerable models of steady state cyclones. But there is
almost no model for the initial strong disturbance instrumental behind the
genesis of a cyclone. Here we shall present a simple but elegant model of this
strong initial disturbance. Normally it could have been a very complex task.
But due to the inherent efficiency of the FDIs to model complex systems it has
become a rather simple task.

To present our idea in a concise form let us assume that not one but two
initial disturbances are needed to give rise to a strong initial disturbing vortex.
Each of the disturbance is in the form of linear wind jet propagating parallel to
the ground. One of them is very strong (speed more than 40 km/h) acting in the
cross-radial direction to the vortex to be created and the other is very weak
{speed about 5 km/h) acting at the radial direction of the vortex.

With respect to a cylindrical coordinate system expressions for the radial,
cross-radial and vertical components of the velocity are as follows.

dr/dt = radial component;
#(d6/df) = cross-radial component;

dz/dt = vertical component.

We know that the shape of a cyclonic vortex, as observed through the satellite
images and also through the RADARs, is log-spiral. But to have a log-spiral
(or equiangular spiral) shaped vortex out of linear wind jets the ratio of radial
and cross-radial components of the velocities must be a constant. Since the
linear wind jets propagate parallel to the ground the vertical component of
the velocity is zero. So the mode! of the initial disturbing vortex is given by
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Figure 9.
Trapezoidal fuzzy
number M

dr/dt

r(de/dt)=m (a constant). (7.1)

But equation (7.1) in its present form is trivially inadequate. It can never model
the real situation, because m being the ratio of two wind speeds cannot be a
fixed value over an interval of time needed for the formation of the vortex. m is
liable to fluctuate even within a very small interval of time. But surely m will
not go beyond certain range. That is, the values of m will always lie within
some interval of the real line. So we find that m takes values from a fuzzy real
number M. m is not fixed. But M as a fuzzy number is fixed. M is a trapezoidal
fuzzy number (g,c,d,b) as shown in Figure 9, which behaves as a (fuzzy)
constant.

Let us explain why we have taken the fuzzy constant M as a trapezoidal
fuzzy number. M : R— [0,1] is of course a membership function. M(m) = 0
if m & [a,b]. This means that the created vortex for m & [a,5] will not be a
stable one. Vortex created for those m will collapse shortly due to the wind
shear. As the value of m moves from g to ¢ the possibility of the created vortex
to become a cyclone increases under favorable climatic and geographical
conditions. Whenm € [¢, d] the possibility of the created vortex to mature into
a tropical storm of hurricane strength is the highest under favorable climatic
and geographical conditions (although M(m) = 1 for m € (¢, d ] this does not
mean that a tropical storm will develop without fail for m € [c,d]). Again as
values of m progress from d to b the possibility of the created vortex to mature
into an intense tropical storm even under favorable climatic and geographical
conditions diminishes before finally becoming zero for m = b. Values of , b, ¢
and d will have to be determined experimentally. We have inferred the values
of a,b,c and d for the northem hemisphere with the help of numerical
simulation on synthetic data. These values are given in Table L.

So formulation of equation (7.1) as an FDE rather than a crisp differential
equation is more realistic. But as we have already explained the limitations of
FDEs in modeling and simulation, it is better to give a FDI relation formulation
of equation (7.1), which will be the FDS modeling of the initial climatic
disturbance leading to the genesis of a cyclone.




7(6) € [mr(8)]°, 7(0) € [r0)”. (7.2)

Equation (7.2) is the FDI relation formulation of equation (7.1). 7o is a triangular
fuzzy number given in Figure 10.

Typical value of {0) is 1,000km. But some inaccuracies always remain
involved in its measurement. So we have taken r, as a triangular fuzzy number,
which is the fuzzy set of all possible values of 7{0).

Now we are in a position to present the phase (solution) space of equation
(7.2) with the help of the crystalline algorithm described in the last section,
which is the simulated initial disturbing vortex. We shall opt only for those
solutions which represent the best possible system behavior. That is, we shall
consider the solution of equation (7.2} for a = 1 only (Figure 11).

Case study II. Mullimodal medical smage fusion for cancerous cells

A more exciting case study is treating the very complex development of
diseases in human body from a bio-cybernetic and general systems’ theoretic
point of view as proposed by Dutta Majumder and Bhattacharya (2000) and
Dutta Majumder and Roy (2000). Here, the complexity is due to the extreme
difficulty in determining the systems parameters and the exact relationships
among them.

Dutta Majumder and Bhattacharya (2000) have made a very novel and
interesting application of Dempster-Shafer theory of evidence to combine {fuse)
three different kinds of images of brain tissues of an Alzheimer’s patient.

The combination of information from multimodal imageries as a fused image
would provide optimum information (Hall, 1998). The multimodal medical
image fusion may provide integrated information to the medical practitioners

=02 -0.1 ~0.05 -0001

Complexity
analysis

1175

Table 1.
Numerical specification
of M

500 1,000 1,500

Figure 10.
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Figure 11.
Numerical simulation of
equation (7.2)

for improved diagnostics and therapeutic planning (Dutta Majumder and
Bhattacharya, 1997, 1998a, b, ¢, 1999). The objective is to indicate an approach
based on soft computing methods in uncertainty management for
decision-making in context-dependent and context-independent systems of
data fusion for medical images.

Let A, be the class of images of brain tissues of an Alzheimer’s patient
obtained by using 7 weighted MR, A, be the class of images of the same
brain tissues of the Alzheimer's patient obtained by 7T, weighted MR and A3
be the class of images of the same brain tissues of the same Alzheimer’s
patient obtained by CT imaging. From Dempster-Shafer theory of evidence
(Shafer, 1976), we obtain

Bel(4; U A2 U A3) = m(A1) + m(Az) + m(As) + m(A; U Az) + m(As U A3)
+m(A3 U A+ m(A; U 42 U Aj),

where m is the measure of the basic probability assignment. Let the frame of
discernment 6 be the set of all elementary propositions m(6), which is the basic
probability assignment indicating to what extent a sensor is able to distinguish
any elementary proposition.

Thus from the D-S theory a number in the interval [0,1] is used which
indicates the degree of evidence to support a proposition. Thus, m: 28 —[0,1]

¥y = AsIn{THETA).exp{m.THETA)
: P )
- 8§ 8 B B

B

'2nm

_2‘ A L n &
50-3.000 2,000 1,000 0 1,000 2,000

X = A.cos(THETA).exp(m.THETA)

Note: Where o, = 1, that is, the phase space is showing the fuzzy flow (the entire region
enclosed between the two curves including the curves also) representing the best
behaviour only. This flow tends to converge to 8 (fuzzy) point of the (fuzzy) phase space,
which is known as the fuzzy attractor of the system. If this vortex ultimately matures info a
severe cyclonic storm this fuzzy attractor will become the cye of the cyclone



and Zm(A) =1 for all A contained in 6 and m(@) = 0, where @ is the null
hypothesis. A are the focal elements of  having nonzero m values.

The two images Iml (Figure 12(a)) and Im2 (Figure 12(b)) are
complementary to each other. By the D-S method of fusion the basic
probat;i(liity masses are assigned in an area where the union of classes defined
is mixed.

Experimental procedure and result
In Im1 and Im2 the classes are discriminated in;

(1) gray matter;

(2) white matter;

(3) cerebrospinal fluid (CSF);
(4) ventricle;

(5) bones.

The gray matter and the white matter together constitute the brain region and
according to our notation this is class G, while the ventricle and the CSF
together are denoted by C,. The overlapping regions of C; and C; are denoted
by Ci N C; = C5 and the outer bony layer of each slice is denoted by C,. So the
four classes of brain matter are defined as Ci,Cs,Cs,Cy. To assign the
probability mass for each class a central or focal element is chosen. This central
element is related to each class of the Iml and Im2. The null mass m(0) is
defined for each class which is not assigned. To determine the probability
masses the frame of discernment is proposed as 8 = (Cy, Cz). The power set of
8,2% = (8, Cy, Ca, C1 U Cy). The mass functions are assigned for two images
as my and my, respectively, and mass functions assigned for the classes are
m(C1),mi(C),m(CLU Cy) for Iml and as mp(Cy), ma(Ca), ma(Cy U Co)
for Im2, such that, m,(Cy)+ mi(Co) +m(CLUC)=1, where 1=1,2.
bel(Cy) = mi(Cy) and bel(Cy) = mi(Ca), bel(Cy U Cy) = mi(Cy) + mi(Cy) +
mi(CL U Cp) =1.

In pixel-based classification the distribution of different pixels over a
specified gray level is considered. In Iml, the pixels are spread over the
range 20-190. Primarily we have considered the distribution of pixels over
the range below 130, between 130 and 190 and above 190.

(a) Image 1(Iml) (b) Image 2(Im2) (c) Fused image
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Figure 12.
Fusion of medical images




When M is the number of pixels lying in the region over a specified gray level
and if N is the dimension of the region (N = N; X N;) taken as small image of
the brain:
(1) for pixels having gray values less than 130, m(Cp) = 1, m;(C;) = 0and
my(Cy U Co) =G
(2) for pixels with gray level values greater than 190, m(Cy) =1,
ma(Cy) =0, m(C;UCp)=(;
(3) for pixels with gray level values between 130 and 190, m;(Cy) = 0.49;
my(Cz) = 0.3 and my(C; U C3) = 0.193.

Similarly for Im2 the range of gray levels distributed over the pixels:

(1) for pixels having gray values less than 90, my(Cy) =1, ma(Cy) =0,
m(CUCy) =G

(2) for pixels having gray values 90-135, my(Co) = 0, my(Cy) = 0.552,
my(Cy U Cp) = 0.498;

(3) for pixels having gray values between 135 and 140, ma(Cy) = M'/N',
ma(Cy) = M /Ny and my(CLUCy) =1—-M'/N'+ M|/N}, thus
mZ(Cl) = 001; mZ(CZ) = 0: mZ(Cl U Cz) = 099;

(4) for pixel gray level values from 140 to 197 my(Cy)=0.03,
my(Co) = 0.07 and my(C; U C3) = 0.9;

(5) for pixel gray level values between 197 and 255, my(C;) =0,
my(Cg) = 0.9 and my(Cy U Co) =0.7.

The pixels at the specified gray level value ranges are classified from both
the images of T3 and T, weighted MR images of brain and are fused after the
registration in a common reference frame using Dempster-Shafer accumulation
theory. The fused images of both the modalities are shown in Figure 12(c).
For a pixel the decision is taken in favor of either ; or C; as to whether
beCy) > bel(Cs) or vice versa. Thus, the belief measure indicates in which
class a pixel belongs to the fused image (Figure 12(c)).

Case study ITI. A general system theoretic analysis of cancer self-remission
The dynamics of cancer development and regression are given by the following
equation (Dutta Majumder and Roy (2000)):

dM/dt = g + [sM{1 — (M/K)}] ~ rf(M), (7.3)

where M is the density of tumour cells, ¢ {a constant) is called malignant
ceflular transformation, i.e. the rate of normal cells to malignant ones. The term
within the square bracket is a Fischer logistic growth term indicating the
increase of tumour cells with replication rate s (constant) and maximum
carrying or packing capacity K (constant). The last term 7{M) denotes the
rate of destruction of tumour cells by the immune cells, where » (constant) is



the rate of tumour cell destruction and AM) is a function in M. In a
dimensionless form equation (7.3) can be reformulated using rescaled variables
and a rescaled time { = (s — g)¢:

dm/dt = v+ m(l — um) — r{m/(L + m)}. (7.4)
Let 7, denote the fluctuation of » about a mean value of r. Then 7, is
given by

7 =r+oHy, (7.5)

where H; is the statistical perturbation with standard deviation o. It is
clear that for normal cytotoxic or immunological interactions these
fluctuations vary much more rapidly than the macroscopic evolution of the
tumour. The probability distribution function P(m) has been calculated by
Dutta Majumder and Roy (2000) as

P(m) = exp(2/a®)~v/m+ (v + 2 — u - r)m — (1 — 2u)ym?/2
—um®f3+ Qv —1-r-cP)nm+otin( +m)). (7.6)

We now wish to find the effect of increasing the fluctuation of the tumour
cell destruction rate 7, that is increasing its o, and observe the consequent
change of probability P(m). Dutta Majumder and Roy (2000) have kept the
range of increasing o as 0 < g =< 3. The cancer cell reduction rate 7 can
be fluctuated by perturbing various parameters which influence r, such as
perturbing any of the following parameters:

(1) radiation flux;

(2) cytotoxic chemical flux;

(3) immune cell concentration;

(4) tumour temperature;

(5) glucose level of the blood impinging on the tumour;

(6) oxygen partial pressure, Oy, i.e. oxygen level in tumour matrix;

(7) haemeodynamic perfusion of the tumour; and so on.

We know that variations in these parameters are reflected as random
variations of indices like » which give them a stochastic character (Lefever and
Horsthemke, 1979). We see that, as o increases from 0.5 to 0.854 to 2.83, the
probability density function P(m) exhibits a non-equilibrium phase transition,
apropos the Glansdorff-Prigogine (1971) theorem. The peak probability density
of tumour cells shifts towards very low value of tumour cell density X; for
instance, tumour cell density X shifts from 4.3 (macro-cancer focus) to 0.46
(micro-cancer focus), i.e. there occurs the phase transition:

Macro-cancer foous ~———  Micro-cancer focus.
Increaseof o

Complexity
analysis

1179




This corresponds to regression and elimination of malignancy. Hence, we infer
that if one or more parameters such as, oxygenation, radiation or temperature,
etc. are varied then the tumour may have a predisposition to regress and
destabilize if the standard deviation o of the parameter’s variation crosses the
following threshold.

The tumour regression threshold : o =< 2.83.

We can thus enunciate the corresponding stability principle for tumour
regression and malignancy (Dutta Majumder and Roy, 2000).

General stability principle for tumour regression. A tumour may
have predisposition to destabilize and regress if there is a sufficient fluctuation of
the malignant cell reduction rate, so that o is 2.83 or above, which may be achieved
by correspondingly high variation of temperalure, oxygenation, radiation, efc.

A successful implementation of the above principle has been christened as
multiplicative fluctuation as a new multimodality therapy in Dutta Majumder
and Roy (2000). Here perturbations have been used in the form of:

(1) increasing arterial pO, to 90 mmHg, decreasing venous pO, to 20 mmHg;

(2) using hyperthermia up to 105°F;

(3) hyperglycaemia up to 600mg percent blood glucose level, which also
produces pH perturbations (up to 6.5 from the normal tissue level of 7.8).

Owing to variation of oxygenation there is perturbation in the oxygen index of
the blood nas 18.5 < 9 < 42. The treatment was administered daily for 2h for
a period of 18 days. In terms of the number of tumour cells destroyed the
technique presents a hundred-fold increase in cell kill leading to regression of
a huge clear cell tumour above the knee with a size of 2kg (Dutta Majumder
and Roy, 2000).

Exploring new ways in this direction is still on. The treatment process
towards this goal is bi-thermia (Dutta Majumder and Roy, 2000). It is a
combination of hyperglycaemia (ghucose level is varied between 400 mg/100 ml
blood and normal level of 100 mg/100 m! blood) and hyperthermia (temperature
variation used is from 98 to 103°F, using high-frequency inductive heating).
pH fluctuation and bi-thermia have been devised in Dutta Majumder and Roy
(2000). Much higher fluctuation can be achieved safely by temperature
variation from 96 to 102°F with o = 5. This has resulted in disappearance of
metastatic spread in a lymph node in the waist {Dutta Majumder and Roy,
2000).

Conclusion

In this paper, we have studied various uncertain dynamical systems and
cybernetics as convenient tools for modeling various complex biological,
physical and natural phenomena. We have first discussed various uncertainties
and then their roles in modeling various dynamical and cybernetic systems.



We have presented a very detailed discussion on FDSs. Although the
mathematical theory of FDSs is the most fundamental of all fuzzy systems, of
which fuzzy controllers are perhaps the most prominent examples, the
development of this theory so far did not get the attention it deserves. In this
paper along with presenting a review of the up to date important developments
of the mathematical theory of FDSs we have attempted to extend the same on
line of the development of the mathematical theory of classical crisp dynamical
systems. In the process, we have made a slight extension to the Kloeden's
(1982) definition of an FDS. Then we have introduced the notion of fuzzy
dissipative dynamical system, We also have formulated an easy to implement,
criterion to test the dissipativeness of an FDS. Then we have given a very
broad based definition of fuzzy attractors in terms of fuzzy attainability set
mappings. We have defined stability of an FDS in terms of the attractor.
We also have introduced the notion of robustness for an FDS in terms of its
attractor. We have extended Devaney’s (1989) definition of chaos ta the FDSs.
Along with this the concept of homoclinic points has been extended to the
FDSs. Then we have defined fuzzy Liapunov exponent, fuzzy metric entropy
and fuzzy Liapunov time. Fuzzy differential dynamical systems have been
discussed in a separate section, where we have given an algonthm for solving
one-dimensional FDIs. Solving one-dimensional FDIs by this algorithm takes
much less number of computations (it only calculates the boundary of the
solution set rather than the whole set as done in the existing one). A stability
criterion has been formulated in terms of critical points for a fuzzy system
represented by a set of FDIs.

Finally, we have presented three interesting case studies involving
atmospheric and medical cybemetics to show how some of the theories
described in the earlier part of this paper actually works in real life. In the
second case study we have later extended the model of cycolgenesis from
two dimension to three dimension (Majumdar and Dutta Majumder, 2004b).
In the third case study, we have presented the bio-cybernetic model of
cancer regression in terms of PU. We have already made an FDS model of the
evolution of tumour in human tissue (Majumdar and Dutta Majumder, 2004a).
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