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1. Introduction

Let .o/ be a unital von Neumann algebra of operators on a complex separable
Hilbert space #,, and let {7}, = 0} be a uniformly continuous quantum dynamical
semigroup of completely positive unital maps on .o/. The infinitesimal generator ¥
of {T;} is a bounded linear operator on the Banach space .«/. For any Hilbert space
A", denote by #(A") the von Neumann algebra of all bounded operators on .
Christensen and Evans [3] have shown that .# has the form

LX) = R*a(X)R+ KX+ XK, Xe, (1.1)

where 7 is a representation of .o/ in (") for some Hilbert space 4", R: #; — A is
a bounded operator satisfying the ‘minimality’ condition that the set {( RX — n(X)R)u,
ue A, Xes/} is total in 4", and K| is a fixed element of .«/. The unitality of {7;}
implies that (1) = 0, and consequently K, = iH—3R*R, where H is a hermitian
element of .o7. Thus (1.1) can be expressed as

L(X) = i[H,X] — XR*RX + XR*R—2R*n(X)R), Xe.. (1.2)

We say that the quadruple (¢, z, R, H) constitutes the set of Christensen—Evans (CE)
parameters which determine the CE generator & of the semigroup {7;}. It is quite
possible that another set (4, 7', R’, H’) of CE parameters may determine the same
generator . In such a case, we say that these two sets of CE parameters are
equivalent. In Section 2 we study this equivalence relation in some detail.

It is known from [1, 2] that, corresponding to the quantum dynamical semigroup
{7}, there exists, up to unitary equivalence, a unique minimal Markov flow (/, £, j,),
t = 0, satisfying the following properties. (1) 5 is a Hilbert space containing %, as
a subspace. (2) {F} is an increasing family of projections in J#, increasing to 1 (the
identity projection) in # as t—oo, and £, is the projection on . (3) j, is a *
homomorphism from ./ into #(#) such that j(X) = XF, j(1) =FE, Ej(X)F, =
J{(T_(X)) for all s < t, and the map ¢ — j,(X) is strongly continuous for each X in .o7.
(4) The set

Un XD (X0 (X )t e Ay 1, > 1,> > 1,20, n= 1,2, ..., X,e.o/}

n

is total in 7.

If we drop condition (4) in the preceding paragraph, then we say that (o, F,j,) is
a Markov dilation for the semigroup {7} or, equivalently, the generator .#. In [1,2],
the construction of the minimal dilation was achieved on the basis of a full knowledge
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of the semigroup {7;} and an application of the GNS principle. However, it would be
desirable to construct Markov dilations starting from . or some parameters (like the
CE parameters) determining .. In the simplest case, when &7 = #(J), the CE
generator assumes the Lindblad form [8]:

LX) = i[H, X]—3Y (LF L, X+ XL} L,—2L¥ XL),
i

where H, L;e #(A,), H is hermitian, and ), L¥* L, is a finite or strongly convergent
countable sum. From the methods of quantum stochastic calculus [6,9,11], it is
known how to construct Markov dilations of ¥ by solving quantum stochastic
differential equations (qsde) involving H and the L, in its ‘diffusion’ coefficients [6,
10,11]. However, even in this case, there does not seem to exist a procedure for
constructing the minimal dilation starting from the parameters H, L,. In Section 3 of
this paper we start from the CE parameters in (1.2), and construct a Markov dilation
for . The Markov process thus obtained turns out to be a Poisson imbedding of a
discrete time quantum Markov chain, but looked at in an ‘interaction’ picture. The
idea of an interaction picture of a quantum diffusion goes back to [4], [5] and [7].

The Markov dilation presented here depends very much on the parameters
(A", 7, R, H) which determine . through (1.2). It should be interesting to explore
the connection between the dilations determined by different parametrizations for
the same generator .%.

2. An equivalence relation for the Christensen—Evans parameters

Let A, o/, % be as in Section 1, and let (4}, 7, R;, H)), j = 1,2, be two quadruples
determining the same CE generator % via (1.2), so that H, R}R;€.</, and

LX) =i[H, X]—3(R'R, X+ XRR,—2Rn(X)R)), Xeo,j=12. (2.1)
Denote by /" the commutant of .o/ in #(#,).

PROPOSITION 2.1.  There exists a unitary isomorphism I : #] — A, such that, for all
Xed, the following hold:

(1) Ty (X) = m(X)I';

(2) @M*Ry,—R)X = 7,(X) (I'*R,— R,).

Proof. Let
0(X) =R X—n(X)R,, Xed,j=12. (2.2)

By elementary algebra, we have
0(X)*0(Y) = L(X*Y)-X*L(Y)-L(X*)Y, X, Yeod,j=1,2, (2.3)

where & satisfies (2.1). By the definition of the CE parameters, the set {5,(X)u, ue #,
Xe.o/} is total in 4. Hence (2.3) implies that the correspondence J,(X)u — 6,(X)u is
scalar product preserving, and there exists a unique unitary isomorphism I": 4] — %,
satisfying

I'0,(X) =0,X), Xe. 2.4)

Replacing X by XY and using the relation 5,(XY) = 6,(X)Y +r(X)o,(Y) for all X, Y
in o/, we obtain from (2.4) the relation I'z,(X)d,(Y) = n,(X)['6,(Y), which proves
property (1) of the proposition.
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Substituting for J,,0, in (2.4) from (2.2), and using property (1), we obtain
property (2).

PrOPOSITION 2.2.  Let T be as in Proposition 2.1. Then there exist Ce .o/, De o’,
Zeod N such that:

(1) RITR, = C+D;
) H,—H, =%(C*—C)+Z.

Proof. Write L = I'*R,— R,. From the remarks at the beginning of this section,
we know that Rfn(X)R,e o/, j= 1,2, for all Xin .«/. We have, from Proposition 2.1,

(T(R, + L))*n,(X)[ (R, + L) = R¥n,(X)R, + L*LX + R*LX + XL*R,,
$O
L*LX+ R¥LX+XL*R, e o/ for all Xe.o/. (2.5)

From (2.1) and Proposition 2.1, we also have

i[H,, X]—1(R¥R, X+ XR¥R, —2R¥m,(X)R,)

=i[H,, X]—3((R,+ L)*(R,+ L)X+ X(R, + L)*(R, + L) —2(R, + L)*r,(X) (R, + L)),

which simplifies to

i[H —H,, X] =R*L—L*R,,X], Xe.
Since every derivation of .«7 is inner and H,— H, e </, it follows that

H,= H,+%(R¥L—L*R,)+ B, (2.6)

where B = B*e.o/’.

Substituting for L in (2.5), we conclude that [R¥T'R,, X]€ .o/, and hence, by the
same argument as above, R¥T'R, can be expressed as

RiITR,=C+D, Cedl,Dedd 2.7)
Substituting for L in (2.6), we conclude that
H,—H, —4{R¥T*R,—R)—(RFT—R¥R et
Now (2.7) implies that H,—H,—3i(C*—C)e.s/ N .o/’, which together with (2.7)

completes the proof.

THEOREM 2.3.  Two CE quadruples (#;,n;, R;, H)), j = 1,2, determine the same CE
generator & if and only if there exist a unitary isomorphism I : A, — A, and elements
Ced,Ded', Z=2Z%cod N such that:

(1) I'my(X) = (X)L

(2) T*R,— R)X = m,(X)(I'*R,— R));

(3) RITR, =C+D;

4) H,—H,=%i(C*—C)+Z.

Proof. Propositions 2.1 and 2.2 imply the ‘only if” part. To prove the converse,
consider I', C, D, Z satisfying conditions (1)—(4), and the CE generators % defined by
LX) =i[H,X]—3(R*R, X+ XRR,—2Rfn(X)R)), Xed, j=1,2.

Write L =T*R,— R, so that LX = (X)L and R, = I'(R,+ L). Then, substituting
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for H,, R, and n, from (1)—(4) in %(X), we obtain
LX) = i[H,, X]-3[C*—C. X]
—HR+D*(R+ L)X+ X(R,+ L)*(R,+ L)—2(R,+ L)*n,(X) (R, + L)}
= L(X)—3[C*—C—RfL+L*R,, X]
= L(X)—3[C*—C—RiT*R,+ RITR,, X]
= Z4(X)

for all Xe.o7.

For constructing Markov dilations, it is useful to modify the CE parametrization.
To this end, we prove the following result.

THEOREM 2.4. Let ¥ be the generator of a conservative and uniformly continuous
quantum dynamical semigroup on a von Neumann algebra .o/ < B(H,). Then there exist
a unital completely positive map Y : of — o/, a positive element K e o/, and a hermitian
element He of such that

LX) =Ii[H,X]-3(K*X+XK*—-2KP(X)K), Xe.. (2.8)

Proof. 1n(1.2), put K = (R*R)"* and consider the polar decomposition R = VK,
where V' is an isometry from the closure of the range of K in J#, onto the closure
of the range of R in 2. Denoting by P the projection on the closure of the range of
K in #,, we see that

R*n(X)R = KPV*r(X)VPK = K¥ (X)K,

Y, (X)=PV*n(X)VP.
Clearly, ¥, is a contractive completely positive map satisfying ¥ (1) = P. Now £ can
be expressed as
LX) =i[H,X]-3(K*X+XK*—2K¥ (X)K), Xe. (2.9)

Since ¥ (X),H,Ke./, it follows that KV (X)Ke.o/ for all X in /. Hence
K™Y, (X)K"e.o/ for m,n = 1. Thus for any two polynomials p, g such that p(0) =
q(0) = 0, it follows that p(K)¥,(X)q(K) € /. Hence for any two continuous functions
@, w on [0, c0) satisfying ¢(0) = w(0) = 0, we have p(K)¥,(X)w(K)e /. Define

where

(x) = nx if0<x<l1/n,
LA PR T )
and observe that

welim ¢, (K)¥,(X)p,(K) = PE,(X)P = ¥,(X)e .
Define

YX)=¥Y,X)+(1—-P)X(1-P).

Then V¥ is a unital completely positive map from .o into itself, and ¥ assumes the
form (2.8).

REMARK. Our construction of a Markov dilation for .Z in the next section
depends on the discrete time quantum Markov chain defined by the unital completely
positive map ¥ on .. It should be interesting to know the exact relationship between
the parameter triples (H,K,¥) and (H’,K’,¥’) which determine the same ¥
according to (2.8) in Theorem 2.4.
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3. A Markov dilation for the semigroup e'?

We consider a CE generator % expressed in the form (2.8) of Theorem 2.4 in
terms of the parameters H, K, ¥. Since W is a unital completely positive map on .oZ,
it follows from [1, 2] that there exists a unique (up to unitary equivalence) minimal
discrete time Markov dilation (#, F,.j,), n =0,1,2, ..., where »# is a Hilbert space
containing #; as a subspace, {F,} is an increasing sequence of projections in 4, F; is

the projection on #;, s-lim,_  F, =1,
E j (X, =j,¥Y"™X)), Xed, 0<m<n<oo,
Jo(X) = XK,

and {j,(X,)j,_1(X,_1) " Jo(Xu, X,e o/, n=0,1,2,..., ue A} is total in .

Our strategy for constructing the dilation for .# will be to imbed (o, F,,j,) in a
quantum version of the Poisson process and look at it in an appropriate interaction
picture. To this end, we introduce the boson Fock space T'(L*(R,)), and consider the
Poisson process {N(f)}, where N(t) is a selfadjoint operator realized as the closure of
AN () +A({)+A(H)+t on the domain of exponential vectors, A7, A, A being the
creation, conservation and annihilation processes of quantum stochastic calculus.
We write (forgoing rigour) N(f) = A'(t) + A(f)+ A(f) + t, with the convention that 1
denotes the identity operator, and a scalar times the identity operator is denoted by
the scalar itself. We now make the Poisson imbedding of the discrete time chain by
putting # = #®T(L*(R,)) and defining

JrX)= X 10BN,

where 1,,, denotes the indicator of the singleton {n} in R. We have used the fact that
N(t) has spectrum {0, 1,2, ...} for > 0, and N(0) = 0.

PROPOSITION 3.1.  Let F ) = jyq(1). Then:
(i) E’\'(O) = E)®1F(L2(R+));
(i) Fyy < Fyy forall 0 <s<t<oo;
(iii) s-lim,_ . Fy, =1,
Proof. (1) is obvious since N(0) =0. To prove (ii), we first observe that
N(#) = N(s)+ N(t) — N(s), where N(s) and N(¢)— N(s) are ampliations of operators in
(L0, s]) and T'(L?[s, 1]), respectively, in the factorization

C(LX(R,)) = T(L?[0, s @T(L?[s, N @T(L[t, 0)).
Thus

F,

NG

8

E®1,,(N©)

0

=
Il

Il
18

£® Z L (NG)®T,,(N(1) = N(5))

0

=
Il

Ew@ l{j;(N(S))® 1 g/c;(N(l) — N(s))

=0,k

= Z E@1{_)’}(N(S))®l{k)(N(l)_N(S))

J
J

v

S

N (s)*
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This proves (ii). Finally,

8

Ewr) = Ez®(1<n,n+1,...>(N(t)) - l{n+l$n+2.‘..)(N(t)))
0

n

Y (=)@ =10 (V).

By the isomorphism [11] between I'(L*(R,)) and the L? space with respect to the
probability measure of the Poisson process of unit intensity, and the fact that N(7)
viewed as a Poisson random variable tends to oo with probability 1 as ¢t — oo, it
follows that

S'thn; Fyoy = Z (F,—F_)® IF(LZ(R+)) =1z

n=0

In the von Neumann algebra %(# ), we consider the Fock vacuum conditional
expectation E,, which is defined as follows. For any X e (# ), consider the operator
X, on A QI(L0,7]) defined by {p,X,y) = {p®Q,, Xy®Q,,>, where Q, is the
Fock vacuum vector in I'(L*[¢, 00)), and put E, X = X,®]1,,, where 1, is the identity
operator in ['(L*[z, o0)).

ProPOSITION 3.2.  Let Fy, jyq be as in Proposition 3.1. Then

[Es] EN‘(s)j;\'(t)(X)EN(s) :.jA’(s)(St—s(X))a 0<s<t<ow, Xed,
where
S(X) = TTN(Y), Xedd,

id being the identity map on </ .

Proof. We have, from properties of the Poisson process {N(1)},

Ev(s)jN(t)(X)EV(s) = Z F® l{n,;(N(S)) Z ]n(X)® ]m;(N([)) Z E®I1 {n}(N(S))

n=0 n=0 n=0

Y. B (OE®1,(N)L, (N(1)

k,n=0

Y B XE®1(N6)1, (N — N(s))

n=k=0

X (TN (N, (N (D) — N(s)).

k=0,n—k=0

Now, applying E,, on both sides,

. o N (K4
[Es] EN’(S)JA’(t)(X)E’\"(S) = Z ]Ic(\P/(X))l{]c)(N(S))e ¢ ()(/T)

k=0,/>20

= jN(s)(e(ti”(Wim)(X))-
COROLLARY 3.3. Let

;t(X) :.jN(t)(X) ® |Q[t > <Q[t|’
I:? =ﬁ(1) = FN«,)®|QU >< Q[z|-

Then (]?,E,ft), t =0, is a Markov dilation for the conservative quantum dynamical
semigroup {e"Y71V} 1> 0.
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Proof. Immediate.
ProrosITION 3.4. Let H,K be hermitian elements in of. Then the quantum
stochastic differential equation
AW(1) = {jyu(H) (dA"—dA) + ]y o, (—iK—3H*)dty W(1) 3.1
with W(0) = 1 admits a unique isometric solution W(t).

Proof. The proof is along the same lines as in Section 4 of [4]. Write W (¢) = 1,
and define iteratively

t
W, =1+ J U (H)(dA" = dA) + iy o (— iK—3H*)ds} W, ,(s).
0

By the inequality (ii) of Proposition 27.1, page 222 of [11], we conclude that
LI =W, (D) fe()|| <o

for all fe # and exponential vectors e(u) in T'(L3(R,)). This implies the convergence
of W,(f)fe(u) in # as n —oo. Denoting this limit by W(7) fe(u), we obtain a solution
of (3.1). A routine application of quantum Ito’s formula implies the isometric
property of W(¢). Uniqueness follows from the fact that any solution of (3.1) with
initial value 0 is identically 0.

PROPOSITION 3.5. Let

jA*(t)+k‘(X) = Z .]n+k(X)® l{nz(N(t))a k = 0.
n=0
Then
djN(t)Hc(X) = (j;\"(t)+lc+l(X) _jN(t)+k(X))dN([)'
Proof. We have

Ayl X) = { ij7,,+k(X )&, (N +1)— 1{71,}(1\’(1)))}611\’ (1)

n=0

= { i ]n+)c(X)® l{n—n(N(t)) _.jw’(t>+k(X)}dN(t)

n=1

= (jN(t)+Ic+1(X) _jN(t)+h'(X))dN(l)'
PROPOSITION 3.6. The isometric process {W(t)} of Proposition 3.4 is unitary.

Proof. Let X(t) =1—W({)W()*. Then {X(¢r)} is a projection-valued Fock
adapted process with initial value 0. The proposition will be proved if we show that
dX(t) = 0. By a routine application of quantum Ito’s formula and some algebra, we
obtain

dX(1) = [Jyo(H), X()](dA"—dA) (1)
— KD XOV+ 3Ly iy (D, Lo (H ), X1}t (3.2)
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Define P,(t) = 1,,,(N(#)), and observe that
dBy(1) = — P(DdN(1),
dP,(t) = (P,_,(t)—P,())dN(t) ifn=1.
This, together with (3.2), quantum Ito’s formula and some tedious algebra, implies
dP,XP,(1) = (P, , XP, ,— P, XP,)()dN(1)
+ P, (8) Lo (H D), X(O] P,(0)dA'(2) + P () [X(2). oy oy ()P, 1 (1) dA(1)
P, 1 (D) [y (H), X(DIP, () + B, (0) [X(2), ]y (H)IP, -1 (1)
— P(0) ([ (KD, XO1+ 3o (), [y o (), X(DID P (1)}dt. - (3.3)
Note that operators and their ampliations to tensor products have been denoted by
the same symbols. Since P,(f) and j,(B) commute with each other, and P(¢)j . (B)
= j.(B)P.(t) = P,(1)j,(B) for any B in .«/, (3.3) can be expressed as
dl)n XPn = (Pn—l XPn—l - Pn XPn)dN
+ (Pn X})n—ljn—l(H) _jn(H)Pn XPn—l)dA
+ {]n—l(H)PnlePn - Pnfl XPn]n(H) + Pn XPn—ljnfl(H)
_]n(H)Pn X[)n—l + [jn(_ ZK)’ Pn XPn]
+31/.(H), [, (H), P, XP,]l}dt. (3.4)
Putting n = 0, we obtain
AP, XP, = — B, XP,dN+{1j(—iK), B, XP) =3 Lja(H). Lja(H). P, X Bl
This is a constant operator coefficient quantum stochastic differential equation (qsde)
for Py XP, with initial value 0. Hence (P, XP,)(¢#) =0. Since X(¢) and PF,(¢) are
projections, we conclude that Py(#)X(¢) = X(1)P,(¢) =0. Let us now make the
induction hypothesis that P, ,(1)X(?) = X(¢)P,_,(t) = 0. Then (3.4) becomes
dP, XP, = — P, XP,dN+{1j,(~iK), P, XP,+31j,(H).Lj,(H), P, XP 1L,
which is once again a constant operator coefficient gsde for P, XP, with initial
value 0. Hence (P, XP,)(?) = 0, which implies that P,(1)X(¢) = X(¢)P,(¢) = 0. Thus
X(t)P,(r) = 0 for every n > 0. Since )_, ., P,(¢) = 1, we conclude that X(r) = 0.

PROPOSITION 3.7.  Let {W(t)} be the unique unitary solution of the equation (3.1) in
Proposition 3.4. Then, for any Xe o/,
AW (1) o (X))
= W([)*{(jN(t)+1(X) _jA'(t)(X))dN(t) + (jN(z)+1(X)jN<t)(H) _jmt)(HX))dAT(t)
+ (jN(t)(H)jN(t)ﬂ(X) _jN(t)(XH))dA(t)
+(JyoHYX)H—3(H*X+XH?)—HX—XH+i[K, X])
+jN(t)+1(X)jN(t)(H) +jN(t)(H)j;\f(t)ﬂ(X))dt} W(t) (3~5)

Proof. This is immediate from Proposition 3.5 for the case k = 0, equation (3.1),
quantum Ito’s formula, and the fact that

jN(t)(H)jN(t)H(X)jN(t)(H) = jN({,)(H)EN(t)jN(t)+1(X)E’\"(t)jN(t)(H)
= jN(t)(HlP(X)H)'
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ProrosITION 3.8.  Let W(t) be as in Proposition 3.7. Then
E\*(t) W([) = W(Z)F:\"(t)‘

Proof. Put X = 1in Proposition 3.7. Since ¥(1) = 1 and Fy,,, > Fy,, we have,
from (3.5),

t
W(O)*Fy, W(1) = K, +J W) (Fy o1 — Fy) W(s) dN(s). (3.6)
0
On the other hand, the differential equation for W implies

W) =1+ f U (H) (dA"—dA) () + o (— IK—3H*)ds W(s)

t
=1+ E\'(t) J {jN(s)(H) (dAT —dA)(s) +.jN(s)( - iK—%H2)dS} W(s)
0

=1 +E\’(t)(W(t) —1),
or W(t) = 1—F, +Fy, W(?). Substituting this in the right-hand side of (3.6), we
have

¢
W([)*E’V(t) W([) = E) + J (E\r(s)n - E’V(s)) dN(S)
0

= EN’(t)’
by Proposition 3.5.

PrOPOSITION 3.9. Let {W(t)} be as in Proposition 3.7. Then
Ey By W04 (X) VO Fy gy = W) (€ CXO) W)
forall Xeo/, 0 <s <t <oo, where

M(X) = i[K, X]—L(H+ 12X+ X(H+ 1) —2(H+ DY (X) (H+1)).

Proof. From Proposition 3.7 and basic quantum stochastic calculus, we have
E W(0)*)y o (X)W(0)
= W(S)*jN(s)(X) W(S)
t

+ | Ey W) * o (HP(X)H — Y H2X + XH?)— HX — XH + i[K, X])

+jN(f)+1(X)jN(r)(H) +jN(r)(H)jN(r)+1(X) +jf\"(7:+1)(X) _jN(z)(X)} W(z)dr.
Pre- and post-multiplying by Fy,, on both sides, noting that F,,, = F,, Iy, fort > s,
and using Proposition 3.8, we obtain

Fyo oy WOy (WD}
= WOy (OWO)+ [ B B W0 (HPCOH Y (HX 4 XY

— HX—XH +i[K, X] .\ Y(X)H + H¥(X)+¥(X)— X)W(1)Fy,, dt
= WO 0W)+

s

Fy By WO )y o (M (X)W (D)} ) ds.
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Now the result follows from general principles of ordinary differential equations.

THEOREM 3.10. Let & be the Christensen—FEvans generator of a uniformly
continuous semigroup of unital completely positive maps on a unital von Neumann
algebra of < RB(H,) given by

LX) = i[K, X]-Y(H*X+ XH*—2HY(X)H), Xes,

where H and K are hermitian elements in o/, H> 0, and Y is a unital completely
positive map on </ . Let (A, E.j,),n>=0,bea Markov dilation of the discrete semigroup
(W', n=>0. Let # = A QT (L (R,)), N(t) = A1) + A1)+ A(1) + 1,

F([) = E’\"(t)(lzj®|Q[t >< Q[zD,

where 1, is the identity operator in A @I (L0, 1]) and Q,, is the Fock vacuum vector
in T(L*[t, 0)), and

/:(X) = W(t)*jN(t)(X) W(Z)(lt]®|Q[t> < Q[tDa
where {W(t)} is the unique unitary solution of the gqsde
dW(t) = {jyo(H—1)(dA"—dA) (1) =]y, (K +5(H—1)*)dt; W(1)

with W(0) = 1. Then (J#,F(1).]), t >0, is a Markov dilation of the semigroup {e'”},
t=0.

Proof. This is immediate from Proposition 3.9.

REMARK. It is curious that a shift of H by —1 is required in the equation for W
in order to construct the Poisson imbedding in the interaction picture for obtaining
the dilating homomorphisms j,. It is also to be noted that we have dealt with the case
when no ‘structure maps’ in the sense of Evans and Hudson may be available for
writing a flow equation for the required dilation.
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