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1. Introduction

Let ! be a unital von Neumann algebra of operators on a complex separable

Hilbert space (
!
, and let ²T

t
, t& 0´ be a uniformly continuous quantum dynamical

semigroup of completely positive unital maps on !. The infinitesimal generator ,
of ²T

t
´ is a bounded linear operator on the Banach space !. For any Hilbert space

+, denote by "(+ ) the von Neumann algebra of all bounded operators on +.

Christensen and Evans [3] have shown that , has the form

,(X )¯R*π(X )R­K$

!
X­XK

!
, X `!, (1.1)

where π is a representation of ! in "(+ ) for some Hilbert space +, R :(
!
!+ is

a bounded operator satisfying the ‘minimality ’ condition that the set ²(RX®π(X )R)u,

u `(
!
, X `!´ is total in +, and K

!
is a fixed element of !. The unitality of ²T

t
´

implies that ,(1)¯ 0, and consequently K
!
¯ iH®"

#
R*R, where H is a hermitian

element of !. Thus (1.1) can be expressed as

,(X )¯ i [H,X ]® "

#
(R*RX­XR*R®2R*π(X )R), X `!. (1.2)

We say that the quadruple (+,π,R,H ) constitutes the set of Christensen–Evans (CE)

parameters which determine the CE generator , of the semigroup ²T
t
´. It is quite

possible that another set (+ «,π«,R«,H «) of CE parameters may determine the same

generator ,. In such a case, we say that these two sets of CE parameters are

equi�alent. In Section 2 we study this equivalence relation in some detail.

It is known from [1, 2] that, corresponding to the quantum dynamical semigroup

²T
t
´, there exists, up to unitary equivalence, a unique minimal Markov flow ((,F

t
, j

t
),

t& 0, satisfying the following properties. (1) ( is a Hilbert space containing (
!

as

a subspace. (2) ²F
t
´ is an increasing family of projections in (, increasing to 1 (the

identity projection) in ( as t!¢, and F
!

is the projection on (
!
. (3) j

t
is a n

homomorphism from ! into "(( ) such that j
!
(X )¯XF

!
, j

t
(1)¯F

t
, F

s
j
t
(X )F

s
¯

j
s
(T

t−s
(X )) for all s% t, and the map t! j

t
(X ) is strongly continuous for each X in !.

(4) The set

² j
t
"

(X
"
) j

t
#

(X
#
)I j

tn

(X
n
)u, u `(

!
, t

"
" t

#
"I" t

n
& 0, n¯ 1, 2,…, X

j
`!´

is total in (.

If we drop condition (4) in the preceding paragraph, then we say that ((,F
t
, j

t
) is

a Marko� dilation for the semigroup ²T
t
´ or, equivalently, the generator ,. In [1, 2],

the construction of the minimal dilation was achieved on the basis of a full knowledge
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of the semigroup ²T
t
´ and an application of the GNS principle. However, it would be

desirable to construct Markov dilations starting from , or some parameters (like the

CE parameters) determining ,. In the simplest case, when !¯"((
!
), the CE

generator assumes the Lindblad form [8] :

,(X )¯ i [H,X ]®"

#
3
j

(L$
j
L

j
X­XL$

j
L

j
®2L$

j
XL

j
),

where H,L
j
`"((

!
), H is hermitian, and 3

j
L$

j
L

j
is a finite or strongly convergent

countable sum. From the methods of quantum stochastic calculus [6, 9, 11], it is

known how to construct Markov dilations of , by solving quantum stochastic

differential equations (qsde) involving H and the L
j
in its ‘diffusion’ coefficients [6,

10, 11]. However, even in this case, there does not seem to exist a procedure for

constructing the minimal dilation starting from the parameters H, L
j
. In Section 3 of

this paper we start from the CE parameters in (1.2), and construct a Markov dilation

for ,. The Markov process thus obtained turns out to be a Poisson imbedding of a

discrete time quantum Markov chain, but looked at in an ‘ interaction’ picture. The

idea of an interaction picture of a quantum diffusion goes back to [4], [5] and [7].

The Markov dilation presented here depends very much on the parameters

(+,π,R,H ) which determine , through (1.2). It should be interesting to explore

the connection between the dilations determined by different parametrizations for

the same generator ,.

2. An equi�alence relation for the Christensen–E�ans parameters

Let (
!
,!,, be as in Section 1, and let (+

j
,π

j
,R

j
,H

j
), j¯ 1, 2, be two quadruples

determining the same CE generator , via (1.2), so that H
j
,R$

j
R

j
`!, and

,(X )¯ i [H
j
,X ]®"

#
(R$

j
R

j
X­XR$

j
R

j
®2R$

j
π(X )R

j
), X `!, j¯ 1, 2. (2.1)

Denote by !« the commutant of ! in "((
!
).

P 2.1. There exists a unitary isomorphism Γ :+
"
!+

#
such that, for all

X `!, the following hold :

(1) Γπ
"
(X )¯π

#
(X )Γ ;

(2) (Γ*R
#
®R

"
)X¯π

"
(X ) (Γ*R

#
®R

"
).

Proof. Let

δ
j
(X )¯R

j
X®π

j
(X )R

j
, X `!, j¯ 1, 2. (2.2)

By elementary algebra, we have

δ
j
(X )*δ

j
(Y )¯,(X*Y )®X*,(Y )®,(X*)Y, X,Y `!, j¯ 1, 2, (2.3)

where , satisfies (2.1). By the definition of the CE parameters, the set ²δ
j
(X )u, u `(

!
,

X `!´ is total in +
j
. Hence (2.3) implies that the correspondence δ

"
(X )u! δ

#
(X )u is

scalar product preserving, and there exists a unique unitary isomorphism Γ :+
"
!+

#

satisfying

Γδ
"
(X )¯ δ

#
(X ), X `!. (2.4)

Replacing X by XY and using the relation δ
j
(XY )¯ δ

j
(X )Y­π

j
(X )δ

j
(Y ) for all X,Y

in !, we obtain from (2.4) the relation Γπ
"
(X )δ

"
(Y )¯π

#
(X )Γδ

"
(Y ), which proves

property (1) of the proposition.
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Substituting for δ
"
, δ

#
in (2.4) from (2.2), and using property (1), we obtain

property (2).

P 2.2. Let Γ be as in Proposition 2.1. Then there exist C `!, D `!«,
Z `!f!« such that :

(1) R$

#
ΓR

"
¯C­D ;

(2) H
#
®H

"
¯ "

#
i (C*®C )­Z.

Proof. Write L¯Γ*R
#
®R

"
. From the remarks at the beginning of this section,

we know that R$
j
π
j
(X )R

j
`!, j¯ 1, 2, for all X in !. We have, from Proposition 2.1,

(Γ(R
"
­L))*π

#
(X )Γ(R

"
­L)¯R$

"
π
"
(X )R

"
­L*LX­R$

"
LX­XL*R

"
,

so

L*LX­R$

"
LX­XL*R

"
`! for all X `!. (2.5)

From (2.1) and Proposition 2.1, we also have

i [H
"
,X ]®"

#
(R$

"
R

"
X­XR$

"
R

"
®2R$

"
π
"
(X )R

"
)

¯ i [H
#
,X ]®"

#
((R

"
­L)*(R

"
­L)X­X(R

"
­L)*(R

"
­L)®2(R

"
­L)*π

"
(X ) (R

"
­L)),

which simplifies to

i [H
"
®H

#
,X ]¯ "

#
[R$

"
L®L*R

"
,X ], X `!.

Since every derivation of ! is inner and H
"
®H

#
`!, it follows that

H
#
¯H

"
­"

#
i(R$

"
L®L*R

"
)­B, (2.6)

where B¯B* `!«.
Substituting for L in (2.5), we conclude that [R$

#
ΓR

"
,X ] `!, and hence, by the

same argument as above, R$

#
ΓR

"
can be expressed as

R$

#
ΓR

"
¯C­D, C `!, D `!«. (2.7)

Substituting for L in (2.6), we conclude that

H
#
®H

"
®"

#
i ²R$

"
(Γ*R

#
®R

"
)®(R$

#
Γ®R$

"
)R

"
´ `!«.

Now (2.7) implies that H
#
®H

"
®"

#
i (C*®C ) `!f!«, which together with (2.7)

completes the proof.

T 2.3. Two CE quadruples (+
j
,π

j
,R

j
,H

j
), j¯ 1, 2, determine the same CE

generator , if and only if there exist a unitary isomorphism Γ :+
"
!+

#
, and elements

C `!, D `!«, Z¯Z* `!f!« such that :

(1) Γπ
"
(X )¯π

#
(X )Γ ;

(2) (Γ*R
#
®R

"
)X¯π

"
(X ) (Γ*R

#
®R

"
) ;

(3) R$

#
ΓR

"
¯C­D ;

(4) H
#
®H

"
¯ "

#
i (C*®C )­Z.

Proof. Propositions 2.1 and 2.2 imply the ‘only if ’ part. To prove the converse,

consider Γ,C,D,Z satisfying conditions (1)–(4), and the CE generators ,
j
defined by

,
j
(X )¯ i [H

j
,X ]®"

#
(R$

j
R

j
X­XR$

j
R

j
®2R$

j
π
j
(X )R

j
), X `!, j¯ 1, 2.

Write L¯Γ*R
#
®R

"
, so that LX¯π

"
(X )L and R

#
¯Γ(R

"
­L). Then, substituting
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for H
#
,R

#
and π

#
from (1)–(4) in ,

#
(X ), we obtain

,
#
(X )¯ i [H

"
,X ]®"

#
[C*®C,X ]

®"

#
²(R

"
­L)*(R

"
­L)X­X(R

"
­L)*(R

"
­L)®2(R

"
­L)*π

"
(X ) (R

"
­L)´

¯,
"
(X )®"

#
[C*®C®R$

"
L­L*R

"
,X ]

¯,
"
(X )®"

#
[C*®C®R$

"
Γ*R

#
­R$

#
ΓR

"
,X ]

¯,
"
(X )

for all X `!.

For constructing Markov dilations, it is useful to modify the CE parametrization.

To this end, we prove the following result.

T 2.4. Let , be the generator of a conser�ati�e and uniformly continuous

quantum dynamical semigroup on a �on Neumann algebra !Z"((
!
). Then there exist

a unital completely positi�e map Ψ :!!!, a positi�e element K `!, and a hermitian

element H `! such that

,(X )¯ i [H,X ]®"

#
(K #X­XK#®2KΨ(X )K ), X `!. (2.8)

Proof. In (1.2), put K¯ (R*R)"/# and consider the polar decomposition R¯VK,

where V is an isometry from the closure of the range of K in (
!

onto the closure

of the range of R in +. Denoting by P the projection on the closure of the range of

K in (
!
, we see that

R*π(X )R¯KPV*π(X )VPK¯KΨ
!
(X )K,

where
Ψ

!
(X )¯PV*π(X )VP.

Clearly, Ψ
!
is a contractive completely positive map satisfying Ψ

!
(1)¯P. Now , can

be expressed as

,(X )¯ i [H,X ]®"

#
(K#X­XK#®2KΨ

!
(X )K ), X `!. (2.9)

Since ,(X ),H,K `!, it follows that KΨ
!
(X )K `! for all X in !. Hence

KmΨ
!
(X )Kn `! for m, n& 1. Thus for any two polynomials p, q such that p(0)¯

q(0)¯ 0, it follows that p(K )Ψ
!
(X )q(K ) `!. Hence for any two continuous functions

},ψ on [0,¢) satisfying }(0)¯ψ(0)¯ 0, we have }(K )Ψ
!
(X )ψ(K ) `!. Define

}
n
(x)¯ (nx

1

if 0%x! 1}n,

if x& 1}n,

and observe that

w[ lim
n!¢

}
n
(K )Ψ

!
(X )}

n
(K )¯PΨ

!
(X )P¯Ψ

!
(X ) `!.

Define
Ψ(X )¯Ψ

!
(X )­(1®P)X(1®P).

Then Ψ is a unital completely positive map from ! into itself, and , assumes the

form (2.8).

R. Our construction of a Markov dilation for , in the next section

depends on the discrete time quantum Markov chain defined by the unital completely

positive map Ψ on !. It should be interesting to know the exact relationship between

the parameter triples (H,K,Ψ) and (H «,K «,Ψ«) which determine the same ,
according to (2.8) in Theorem 2.4.
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3. A Marko� dilation for the semigroup et,

We consider a CE generator , expressed in the form (2.8) of Theorem 2.4 in

terms of the parameters H,K,Ψ. Since Ψ is a unital completely positive map on !,

it follows from [1, 2] that there exists a unique (up to unitary equivalence) minimal

discrete time Markov dilation ((,F
n
, j

n
), n¯ 0, 1, 2,…, where ( is a Hilbert space

containing (
!
as a subspace, ²F

n
´ is an increasing sequence of projections in (, F

!
is

the projection on (
!
, s[lim

n!¢ F
n
¯ 1,

F
m

j
n
(X )F

m
¯ j

m
(Ψn−m(X )), X `!, 0%m% n!¢,

j
!
(X )¯XF

!

and ² j
n
(X

n
) j

n−"
(X

n−"
)I j

!
(X

!
)u, X

i
`!, n¯ 0, 1, 2,…, u `(

!
´ is total in (.

Our strategy for constructing the dilation for , will be to imbed ((,F
n
, j

n
) in a

quantum version of the Poisson process and look at it in an appropriate interaction

picture. To this end, we introduce the boson Fock space Γ(L#(2
+
)), and consider the

Poisson process ²N(t)´, where N(t) is a selfadjoint operator realized as the closure of

A†(t)­Λ(t)­A(t)­t on the domain of exponential vectors, A†, Λ, A being the

creation, conservation and annihilation processes of quantum stochastic calculus.

We write (forgoing rigour) N(t)¯A†(t)­Λ(t)­A(t)­t, with the convention that 1

denotes the identity operator, and a scalar times the identity operator is denoted by

the scalar itself. We now make the Poisson imbedding of the discrete time chain by

putting (h ¯(CΓ(L#(2
+
)) and defining

j
N(t)

(X )B 3
¢

n=!

j
n
(X )C1²n´(N(t)),

where 1²n´ denotes the indicator of the singleton ²n´ in 2. We have used the fact that

N(t) has spectrum ²0, 1, 2,…´ for t" 0, and N(0)¯ 0.

P 3.1. Let F
N(t)

¯ j
N(t)

(1). Then :

(i) F
N(!)

¯F
!
C1Γ(L#

(2+))
;

(ii) F
N(s)

%F
N(t)

for all 0% s% t!¢ ;

(iii) s[lim
t!¢ F

N(t)
¯ 1(h .

Proof. (i) is obvious since N(0)¯ 0. To prove (ii), we first observe that

N(t)¯N(s)­N(t)®N(s), where N(s) and N(t)®N(s) are ampliations of operators in

Γ(L#[0, s]) and Γ(L#[s, t]), respectively, in the factorization

Γ(L#(2
+
))¯Γ(L#[0, s])CΓ(L#[s, t])CΓ(L#[t,¢)).

Thus

F
N(t)

¯ 3
¢

n=!

F
n
C1²n´(N(t))

¯ 3
¢

n=!

F
n
C3

n

j=!

1² j´
(N(s))C1²n−j´

(N(t)®N(s))

¯ 3
j&!,k

&
!

F
j+k

C1² j´
(N(s))C1²k´(N(t)®N(s))

& 3
j&!,k

&
!

F
j
C1² j´

(N(s))C1²k´(N(t)®N(s))

¯F
N(s)

.
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This proves (ii). Finally,

F
N(t)

¯ 3
¢

n=!

F
n
C(1²n,n+",

…´(N(t))®1²n+",n+#,
…´(N(t)))

¯ 3
¢

n=!

(F
n
®F

n−"
)C(1®1²

!,",#,
…,n−"

´(N(t))).

By the isomorphism [11] between Γ(L#(2
+
)) and the L# space with respect to the

probability measure of the Poisson process of unit intensity, and the fact that N(t)

viewed as a Poisson random variable tends to ¢ with probability 1 as t!¢, it

follows that

s[lim
t!¢

F
N(t)

¯ 3
¢

n=!

(F
n
®F

n−"
)C1Γ(L#

(2+))
¯ 1(h .

In the von Neumann algebra "((h ), we consider the Fock vacuum conditional

expectation %
t]

which is defined as follows. For any X `"((h ), consider the operator

X
t

on (CΓ(L#[0, t]) defined by ©},X
t
ψª¯©}CΩ

[t
, XψCΩ

[t
ª, where Ω

[t
is the

Fock vacuum vector in Γ(L#[t,¢)), and put %
t]
X¯X

t
C1

[t
, where 1

[t
is the identity

operator in Γ(L#[t,¢)).

P 3.2. Let F
N(t)

, j
N(t)

be as in Proposition 3.1. Then

%
s]

F
N(s)

j
N(t)

(X )F
N(s)

¯ j
N(s)

(S
t−s

(X )), 0% s% t!¢, X `!,

where

S
t
(X )¯ et(Ψ−id)(X ), X `!,

id being the identity map on !.

Proof. We have, from properties of the Poisson process ²N(t)´,

F
N(s)

j
N(t)

(X )F
N(s)

¯ 3
n&

!

F
n
C1²n´(N(s)) 3

n&
!

j
n
(X )C1²n´(N(t)) 3

n&
!

F
n
C1²n´(N(s))

¯ 3
k,n&

!

F
k
j
n
(X )F

k
C1²k´(N(s))1²n´(N(t))

¯ 3
n&k&

!

F
k
j
n
(X )F

k
C1²k´(N(s))1²n−k´(N(t)®N(s))

¯ 3
k&

!,n−k&
!

j
k
(Ψn−k(X ))1²k´(N(s))1²n−k´(N(t)®N(s)).

Now, applying %
s]

on both sides,

%
s]

F
N(s)

j
N(t)

(X )F
N(s)

¯ 3
k&

!,
F&

!

j
k
(ΨF(X ))1²k´(N(s))e−(t−s)

(t®s)F

F !

¯ j
N(s)

(e(t−s)(Ψ−id)(X )).

C 3.3. Let

jh
t
(X )¯ j

N(t)
(X )C rΩ

[t
"!Ω

[t
r,

Fh
t
¯ jh

t
(1)¯F

N(t)
CrΩ

[t
"!Ω

[t
r.

Then ((h ,Fh
t
, jh

t
), t& 0, is a Marko� dilation for the conser�ati�e quantum dynamical

semigroup ²et(Ψ−id)´, t& 0.
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Proof. Immediate.

P 3.4. Let H,K be hermitian elements in !. Then the quantum

stochastic differential equation

dW(t)¯² j
N(t)

(H ) (dA†®dA)­j
N(t)

(®iK®"

#
H #)dt´W(t) (3.1)

with W(0)¯ 1 admits a unique isometric solution W(t).

Proof. The proof is along the same lines as in Section 4 of [4]. Write W
!
(t)3 1,

and define iteratively

W
n
(t)¯ 1­& t

!

² j
N(s)

(H ) (dA†®dA)­j
N(s)

(®iK®"

#
H #)ds´W

n−"
(s).

By the inequality (ii) of Proposition 27.1, page 222 of [11], we conclude that

3
n

s(W
n
(t)®W

n−"
(t)) fe(u)s!¢

for all f `( and exponential vectors e(u) in Γ(L#(2
+
)). This implies the convergence

of W
n
(t) fe(u) in (h as n!¢. Denoting this limit by W(t) fe(u), we obtain a solution

of (3.1). A routine application of quantum Ito’s formula implies the isometric

property of W(t). Uniqueness follows from the fact that any solution of (3.1) with

initial value 0 is identically 0.

P 3.5. Let

j
N(t)+k

(X )¯ 3
¢

n=!

j
n+k

(X )C1²n´(N(t)), k& 0.

Then

dj
N(t)+k

(X )¯ ( j
N(t)+k+"

(X )®j
N(t)+k

(X ))dN(t).

Proof. We have

dj
N(t)+k

(X )¯ (3
¢

n=!

j
n+k

(X )C(1²n´(N(t)­1)®1²n´(N(t)))*dN(t)

¯ (3
¢

n="

j
n+k

(X )C1²n−"
´(N(t))®j

N(t)+k
(X )*dN(t)

¯ ( j
N(t)+k+"

(X )®j
N(t)+k

(X ))dN(t).

P 3.6. The isometric process ²W(t)´ of Proposition 3.4 is unitary.

Proof. Let X(t)¯ 1®W(t)W(t)*. Then ²X(t)´ is a projection-valued Fock

adapted process with initial value 0. The proposition will be proved if we show that

dX(t)¯ 0. By a routine application of quantum Ito’s formula and some algebra, we

obtain

dX(t)¯ [ j
N(t)

(H ),X(t)] (dA†®dA) (t)

®[² j
N(t)

(iK ),X(t)]­"

#
[ j

N(t)
(H ), [ j

N(t)
(H ),X(t)]]´dt. (3.2)
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Define P
n
(t)¯ 1²n´(N(t)), and observe that

dP
!
(t)¯®P

!
(t)dN(t),

dP
n
(t)¯ (P

n−"
(t)®P

n
(t))dN(t) if n& 1.

This, together with (3.2), quantum Ito’s formula and some tedious algebra, implies

dP
n
XP

n
(t)¯ (P

n−"
XP

n−"
®P

n
XP

n
) (t)dN(t)

­P
n−"

(t) [ j
N(t)

(H ),X(t)]P
n
(t)dA†(t)­P

n
(t) [X(t), j

N(t)
(H )]P

n−"
(t)dA(t)

­²P
n−"

(t) [ j
N(t)

(H ),X(t)]P
n
(t)­P

n
(t) [X(t), j

N(t)
(H )]P

n−"
(t)

®P
n
(t) ([ j

N(t)
(iK ),X(t)]­"

#
[ j

N(t)
(H ), [ j

N(t)
(H ),X(t)]])P

n
(t)´dt. (3.3)

Note that operators and their ampliations to tensor products have been denoted by

the same symbols. Since P
k
(t) and j

N(t)
(B) commute with each other, and P

k
(t)j

N(t)
(B)

¯ j
k
(B)P

k
(t)¯P

k
(t)j

k
(B) for any B in !, (3.3) can be expressed as

dP
n
XP

n
¯ (P

n−"
XP

n−"
®P

n
XP

n
)dN

­( j
n−"

(H )P
n−"

XP
n
®P

n−"
XP

n
j
n
(H ))dA†

­(P
n
XP

n−"
j
n−"

(H )®j
n
(H )P

n
XP

n−"
)dA

­² j
n−"

(H )P
n−"

XP
n
®P

n−"
XP

n
j
n
(H )­P

n
XP

n−"
j
n−"

(H )

®j
n
(H )P

n
XP

n−"
­[ j

n
(®iK ),P

n
XP

n
]

­"

#
[ j

n
(H ), [ j

n
(H ),P

n
XP

n
]]´dt. (3.4)

Putting n¯ 0, we obtain

dP
!
XP

!
¯®P

!
XP

!
dN­²[ j

!
(®iK ),P

!
XP

!
]®"

#
[ j

!
(H ), [ j

!
(H ),P

!
XP

!
]]´dt.

This is a constant operator coefficient quantum stochastic differential equation (qsde)

for P
!
XP

!
with initial value 0. Hence (P

!
XP

!
) (t)¯ 0. Since X(t) and P

!
(t) are

projections, we conclude that P
!
(t)X(t)¯X(t)P

!
(t)¯ 0. Let us now make the

induction hypothesis that P
n−"

(t)X(t)¯X(t)P
n−"

(t)¯ 0. Then (3.4) becomes

dP
n
XP

n
¯®P

n
XP

n
dN­²[ j

n
(®iK ),P

n
XP

n
]­"

#
[ j

n
(H ), [ j

n
(H ),P

n
XP

n
]]´dt,

which is once again a constant operator coefficient qsde for P
n
XP

n
with initial

value 0. Hence (P
n
XP

n
) (t)¯ 0, which implies that P

n
(t)X(t)¯X(t)P

n
(t)¯ 0. Thus

X(t)P
n
(t)¯ 0 for every n& 0. Since 3

n&
!
P
n
(t)¯ 1, we conclude that X(t)3 0.

P 3.7. Let ²W(t)´ be the unique unitary solution of the equation (3.1) in

Proposition 3.4. Then, for any X `!,

dW(t)*j
N(t)

(X )W(t)

¯W(t)*²( j
N(t)+"

(X )®j
N(t)

(X ))dN(t)­( j
N(t)+"

(X )j
N(t)

(H )®j
N(t)

(HX ))dA†(t)

­( j
N(t)

(H ) j
N(t)+"

(X )®j
N(t)

(XH ))dA(t)

­( j
N(t)

(HΨ(X )H®"

#
(H#X­XH#)®HX®XH­i [K,X ])

­j
N(t)+"

(X ) j
N(t)

(H )­j
N(t)

(H ) j
N(t)+"

(X ))dt´W(t). (3.5)

Proof. This is immediate from Proposition 3.5 for the case k¯ 0, equation (3.1),

quantum Ito’s formula, and the fact that

j
N(t)

(H ) j
N(t)+"

(X ) j
N(t)

(H )¯ j
N(t)

(H )F
N(t)

j
N(t)+"

(X )F
N(t)

j
N(t)

(H )

¯ j
N(t)

(HΨ(X )H ).



624 . .   . . 

P 3.8. Let W(t) be as in Proposition 3.7. Then

F
N(t)

W(t)¯W(t)F
N(t)

.

Proof. Put X¯ 1 in Proposition 3.7. Since Ψ(1)¯ 1 and F
N(t)+"

&F
N(t)

, we have,

from (3.5),

W(t)*F
N(t)

W(t)¯F
!
­& t

!

W(s)*(F
N(s)+"

®F
N(s)

)W(s) dN(s). (3.6)

On the other hand, the differential equation for W implies

W(t)¯ 1­& t

!

² j
N(s)

(H ) (dA†®dA) (s)­j
N(s)

(®iK®"

#
H #)ds´W(s)

¯ 1­F
N(t)& t

!

² j
N(s)

(H ) (dA†®dA) (s)­j
N(s)

(®iK®"

#
H #)ds´W(s)

¯ 1­F
N(t)

(W(t)®1),

or W(t)¯ 1®F
N(t)

­F
N(t)

W(t). Substituting this in the right-hand side of (3.6), we

have

W(t)*F
N(t)

W(t)¯F
!
­& t

!

(F
N(s)+"

®F
N(s)

) dN(s)

¯F
N(t)

,

by Proposition 3.5.

P 3.9. Let ²W(t)´ be as in Proposition 3.7. Then

F
N(s)

%
s]
(W(t)*j

N(t)
(X )W(t))F

N(s)
¯W(s)*j

N(s)
(e(t−s)-(X ))W(s)

for all X `!, 0% s% t!¢, where

-(X )¯ i [K,X ]®"

#
((H­1)#X­X(H­1)#®2(H­1)Ψ(X ) (H­1)).

Proof. From Proposition 3.7 and basic quantum stochastic calculus, we have

%
s]

W(t)*j
N(t)

(X )W(t)

¯W(s)*j
N(s)

(X )W(s)

­& t

s

%
s]

W(τ)*² j
N(τ)

(HΨ(X )H®"

#
(H#X­XH#)®HX®XH­i [K,X ])

­j
N(τ)+"

(X ) j
N(τ)

(H )­j
N(τ)

(H ) j
N(τ)+"

(X )­j
N(τ+")

(X )®j
N(τ)

(X )´W(τ) dτ.

Pre- and post-multiplying by F
N(s)

on both sides, noting that F
N(s)

¯F
N(s)

F
N(τ)

for τ& s,

and using Proposition 3.8, we obtain

F
N(s)

²%
s]

W(t)*j
N(t)

(X )W(t)´F
N(s)

¯W(s)*j
N(s)

(X )W(s)­& t

s

F
N(s)

%
s]

W(τ)*j
N(τ)

(HΨ(X )H®"

#
(H#X­XH#)

®HX®XH­i [K,X ]­Ψ(X )H­HΨ(X )­Ψ(X )®X )W(τ)F
N(s)

dτ

¯W(s)*j
N(s)

(X )W(s)­& t

s

F
N(s)

²%
s]

W(τ)*j
N(τ)

(-(X ))W(τ)´F
N(s)

ds.
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Now the result follows from general principles of ordinary differential equations.

T 3.10. Let , be the Christensen–E�ans generator of a uniformly

continuous semigroup of unital completely positi�e maps on a unital �on Neumann

algebra !Z"((
!
) gi�en by

,(X )¯ i [K,X ]®"

#
(H#X­XH#®2HΨ(X )H ), X `!,

where H and K are hermitian elements in !, H& 0, and Ψ is a unital completely

positi�e map on !. Let ((,F
n
, j

n
), n& 0, be a Marko� dilation of the discrete semigroup

²Ψn´, n& 0. Let (h ¯(CΓ(L#(2
+
)), N(t)¯A†(t)­Λ(t)­A(t)­t,

Fh (t)¯F
N(t)

(1
t]
CrΩ

[t
"!Ω

[t
r),

where 1
t]

is the identity operator in (CΓ(L#[0, t]) and Ω
[t

is the Fock �acuum �ector

in Γ(L#[t,¢)), and

jh
t
(X )¯W(t)*j

N(t)
(X )W(t) (1

t]
CrΩ

[t
"!Ω

[t
r),

where ²W(t)´ is the unique unitary solution of the qsde

dW(t)¯² j
N(t)

(H®1) (dA†®dA) (t)®j
N(t)

(iK­"

#
(H®1)#)dt´W(t)

with W(0)¯ 1. Then ((h ,Fh (t), jh
t
), t& 0, is a Marko� dilation of the semigroup ²et,´,

t& 0.

Proof. This is immediate from Proposition 3.9.

R. It is curious that a shift of H by ®1 is required in the equation for W

in order to construct the Poisson imbedding in the interaction picture for obtaining

the dilating homomorphisms jh
t
. It is also to be noted that we have dealt with the case

when no ‘structure maps’ in the sense of Evans and Hudson may be available for

writing a flow equation for the required dilation.
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