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SUMMARY. (X,. 1> 0)donotos s standard Brownian motion procas. A nonnogativy
non-inoreasing function ¢ Hofined for emall argumonts and such that /1g(1) in nondecrassing i
said 10 bo upper olass at 0 if almost all samplo patha oxcood $(s) only Gnitely often aa 0. Tho
Kolmogorov integral test provides & cocossary and sufficiont oondition. Horo tho related firet.
oroming timo is considersd and eatimates for its distribution funotion near 0 aro obtained, the
estimnate doponding on tho integrsl in the Kolmogorov tewt.

-1. INTRODUOTION

Throughout the paper {X; : # > 0} will denote a standard Brownian motion
process. Let ¢ be a nonnegative non-increasing function defined for small
arguments. We say ¢ ¢ F if the function

o0 = 8n0
is non-decreasing near 0. ¢ ¢ F ia said to be upper class &t 0 (¢ € ¢,) if for
almost all sample paths 8 there is ¢(8) > 0 such that for all ¢ < ¢
X, < glt).
Otherwise we say ¢ is lower olass at 0. (¢ & o).

A necessary and sufficient condition for ¢ ¢ F being upper class at 0 is
furnished by the Kolmogorov-Petroveki-Erdds-Feller (KPEF) integral test
(8eo Sirao and Niaida, 1952)

Loxp(—mt))ﬂt)r‘dl <. o
Khinchin's weak law of the iterated logarithm (LIL) follows directly from
this.

We define the first aroeaing time Ty by

T, = inft : X, > g(t)). - @

AMS (1980) rubject classifieasion : Primary 80G16.

Koy words and phrases : Bimple Brownian motion process, upper olss funation, first cross-
ing time.
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We are interestod in the distribution of Ty. For 7 > 0 leb us write
P = P(Ty < 1) = P(Xi > ¢(t) for some ¢ < 7) . (3)

Iyfr) = (2m [ expl—igH0p0-'at )

If ¢ is lower class at O then 7', has o degonerate distribution with all the mass
at 0. On the other hand, if ¢ ¢ &, we shall show that the integrand in (1)
aots like a peeudo-denzity for T, in the sense of the following theorem :

Theorem 1: Let ¢ € 2, Then as 70

+0807(1+o{ 1)) o(7) < P, € e(l4-0(1))],l7).

The method used consists of elementary quantification of the Borel-
Cantelli arguments used in standard LIL-type rosults, involving the first and
the second Bonferroni inequalities. The idoa is that slight modification of
the standard methods not only gives us the KPEF test but also provides an
interpretation of the integral in tho test in terms of the distribution of the
first crossing timo. It i3 to bo noted here that the constants -0807 and e in
the theorem are artifacts of the mothods used and wo conjecture that (perhape
with a slight modification of the intogrand in (1)) we can make the two bounds
coincide at some intermediate velue. In fact Strassen (1967) has done this
using entirely different methods and under stronger assumptions. Our
methods are quite general and have been used in Sen (1981) to obtain analognes
for Brownian shosts on R and Ré(d > 1).

2. PROBABILITY ESTIMATES

The following results will be used in the proof of the theorem. Lemms 1
is woll-known. Lemmas 2, 3 and 4 are refinements of results due to Chung,
Erdés and Sirao (1959); the fluctuation inequality, Lemma 6, is well-known
(see Billingsley, 1979).

Lemma 1: (Tail probability lomma): Let U~ N0, 1) and A> 0,
Then

(2m)~A-1 (1t o(1)exp(— }AY) < P(U 3 ) < (2m)"A-lezp(— ).
Proof :  Uso integration by parts.
Lemma 2: (small p lemma): Jef

() ~mt{o) (5 1))

Al4
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Then for each 8> 0,

; PV > b|U>a) "
.lr'm- -<A.:bu‘a.;>o PV 3 0) <t
Proof: Fora<d
PUaV2b)=PU>a,b{ V<2)+PUS4a V52
<PU>abg V <%+ > 2.
For b large, Lemma 1 givea

P(V > 2) < (2m)-H(2p)-te™¥!

= ((2m) (1 of1))e ym) o)1t
< OoNP(T > by
< APV > a)F(V > b).
For a > 2pb,
PU>ab< V<2
f ”P(U> a|V =v)P(V edv)

g <

= [ Ppo+(1—-p)2U 3 a)P(V ¢ dv)
[XX<4 ]

< PWU > (a—2pb)1—p")"MP < V < 20)
< P(U > a—2pb)P(V 3 b).
By Lemma 1
P(U > a—2pb) < (2m)1a—2pb)oxp(— Ha—2pb)Y)

< (27!)‘”‘0—’('“'( 1 —w)_l etead

= (L+o(1))P(U > a)e¥
for pab < & and g large.
Lemma 8: (Moderate p lemma): Le

() ~m(() ()
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Then for each 0 < v < 1, there exisls a conslant a = afr) such that
PV > 510 > a) < eap(— 81 —p)

frbpapaand 0L pr
Proof: For 0< a < b ond 8§ =¢(1—p?) > 0,
PUSaV3b)=PaU<Yi+8), V3 b+PU D 148,V 5 b)
. PV 3 b|U=uPU sdu)+PU > Y1+8)

aCuH1+Y
=141, e (8)
Now for b largs,
TI & b-(14-8)}(2m)-Viexp{— §b4{1 +8)%)
< (2m)7-lexp(— b1 +8)exp(—8bY)

< (VoINPT > a)148)"exp(—e{1—p")Y) e (8)
and, provided
p = B1—p(1 41 —p") 22 == by
is positive,
I= e ! mmP(V > (b—pu)(1—p")"P(U ¢ du)

< P(U > a)P(V > 9) < P(U > ayem)y 1 ®

< P > aamynp-iorp( —y o (225 220 )

=P > u)(2ﬂ)'"‘b"‘)’“0xp( ol Llata) ((l+/>)"-12%)) :
.M

Now ohoose ¢ 80 that
(141201 4P)) =6
ie.,
o = §(1+p) A1+20)
Note that
6> (3x3x ) =112 &
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and
1—p—p8 1-p _
Y= o= |)m /l+p —ep(1—pf)'
—(l_pypn__ 2t
= 0= )i 20)

is positive. In fact, v is bounded away from 0 for p bounded away from 1.
So for 0 < p < r < 1, the lemma follows from (5). (8), (7) and (8).

Lemma 4: (Large p lemma): Let

U 0 1 .
() ~m (oM, 1)
Then for 0 <a b<oo and 0 < p < 1,

PV 2 8|U > a) € 4(2n)Hay/ 1 —p¥)~texp(—a¥1 —pt)8).
Proof: For b3 a,
PO>a V38 <PU>aV>a
=2Pag ULV
= 2u 2_[‘ P(U & du)Plup+(1—pHV2V 2 u)

<2 PUedP (V> 'f“:’ﬂ)

w3a (1—pHiR

I
El
<2 | PO eduwP(V > la(l—pha)

< 2P > an) i o exn(—aX1—phl8). O

Lemma &§: (Fluctuation oqu&lxty): Let X, be a standard Broumian
molion process and ¢ > 0. Then

P (ng x.>a) = 2P(X, > a).

3. PROOF OF THE THEOREM
For the sake of hetter comprehension and organization the proof will be
divided into several parts. First, we shall define a sequence {uy} to diacretize
time. Then the upper bound half of the theorem will be proved using Lemmas
1and 5. Finally Lemmas 1, 2, 3 and 4 will be used to prove the lower bound
hslf,
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3.1. The sequence (up). Given 7> 0 and 0 < & < ¢*(r) we define ux by

induction as follows :
Uy =7, Ur,, = u{l—afoNur)), k> 0.

Lemma 6 : (properties of {ur}) : For ¢ ¢ &, and {u} as above the follow-

ing are true :

(4)
(B)
()]
(D)
(E)
(®
G)
(H)

Nole.

4 | 0ask— oo
Hug) T coask— o
ry = t(1+0(1)).
Ur—tg,y | 0ask— oo
$lur,,) = glur)(1+0(1)"
Supn)(1—upy, fur) = a(l+0o(1)).
For 0 < f < 1 and fur < m < ug, gXun)(1—wfur) > flall—F).
FHur)—¢(ur) < 2a(1+o(1)).
In this lemma, as in what follows, the o(]) terms are to be inter-

preted in the sense “uniformly in k as 7 — 0.”

Proof :  Facts (A) through (F) are straightforward consequences of the
definitions and the fact that ¢ ¢ F.

(G) a1 —wfur) = G ur)(ux—w)fux

> PNur)(ux—w)ffu_,

> $Hun)l—k)w —u)ffur_y
= gHur)i—k)fo/pury)

> fall—km, fur

> fla(l—k).

(H)  $Xur,)—Yur) = (Hurn) +H(ur)lPlur,)—$(ur)

< 20(Uny B0 (1—Blthx) /B (0rs,))
< 2Mur, X1—uififulf?)

< 26%(upy (1 —upyfur)

= 2¢Yurs )2/ wr)

< 2a(l+a). O
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3.2. The upper bound. Using Lemmas 1, 5 and 6(F) and also the fact
that g is nondeoreasing,

P, = P& > g¥) for some t < 7)

< %P ( sup X;» 9(“k+1))
=0

Uy Kt <we

<2 % KX, > glur)
=0

1y 1 ugy, Vi _
< 2(2m) ”'E;“P (—f 'y ¢'("hx)) v T

= 92m)1n é., oxp ( ——; Pur.,)) oxp ( % PNy f))

(0]

X (Wrftheyy ) HP(ur ) (ve—nyy) g

& 2L-Fo{l))(2u) et et i oxp (—; #10) O g0

1 \=1
=(1to(1)en (5 a)” 1n).

Now, sinoe

. 1 -t
ot [ . =e.

.u>1fa ¢ ( ) a) e

the upper bound half of the theorem follows.

3.3. The lower bound. Let

Ay = (X, > glur).
Then by the second Bonferroni inequality,

2> P (0 &)

> Py (1- % P4y 4). - ®
k-0 1>k
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Now by Lemma 1 and Lemma 6 (C) and (E)

Z P(4y)
k=0
> (L+aam E oxp — 5 $¥un))burs
k=0

= (hon)an S exp (—5 #) ) (Bl —upe £

2 (1+o(1))at (7). e (10)
Set

p=pu=onX,, X mi(::\/‘zz = (uifu)?

for I > k. To estimate terms like P(4;| Ay) in (9) wo use Lemmas 2, 3 and 4
depending on the size of p,
3.3.1. Low dependence. By Lemma 2, jor 7 small and
(wifuz) Pdlur)dlug) < 1 (1)

we have
P(4;] Ax) < 8P(4)) . (12)

we shall call the set of all Is satisfying (11) the low dependence range Ry, (for
fixed k). By Lemmas 1 and 6(H)

£ P4y < @y B (Bt oxp (— g ¢
k=0 k=0

< (@ny (1 +a(1)) E (Blua)t
k=0

FHw)
aug

X exp (—% ¢“(“m)) X(ur—try)

< (1o{L))a el (7).
From this follows
I Pd)) = o{l).
1>k
Hence
I P{d;| 4x) = of1). o (18)
le Ry
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3.3.2. Moderate dependence. Lot 0 < f< 1. We denoto by Ry, the
moderata dependence range, the set of I's for which (11) does not hold and

w < fur. For ls Ry, p* <f< |, 80 Lemma 3 applies and we have for 7
small a constrant ¢ such that

P(d;| Ax) < exp(—cgt(w)) < exp(—cg¥ur)).

Hence

N T

< exp(—cgH(ur)) +a! )| exp(—cd'()gH)de
< Jur, JIGU) < Jurfplue))
= o(l) (14)

by Lemma 7 below.

Lomma 7: Let ¢ be nonnegalive and nonincreasing near 0 and such that
Viglt) is nond ing near 0. Suppose () >0 as 1 50. Let d> 0.
Then

W=W/d) = { exp(—dg)GHEdL = of1)

(& Jp (> Ji i)

uniformly in 0 <r 70870,
Proof :  Choose and fix 0, 0 < 0 < 1 and let

Te={:t<rnaiP ) <b, k=012,..,n
where
ay = GXtIrgi(r), by = 6-'a
and n is such that
2, < 7/g%r) < ba
Fix k for the moment and write a = ay, b = b;. Since ¢ is continuous,
po=pr =supft : 1 ¢ T}

belongs to Ty if T is nonempty. Also

b > ).
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Now
W(Tx) =TI exp( —dg¥{1))$(e)-"dt
k
< | erton iy
°+
—b [ edaudy
Vu
be—ad/v
= Tad
< (Bd) 1M,
Hencs

W< T Wy
k=0

< (0d) (nt1) e 540,
The lemma now follows, since

Jog ¢4(r)
< Tog(ig)” D
3.3.3. High depend. It remains to consider ! in the high dependence
range Rg, i.e., the set of I's for whioh (11) does not hold and
S € w < up.

Using Lemmas 4 and 6(G),
“%I” P(d;| 4x) € “ZRn 4(2m) " BN )1 — g fua)) A
X oxp(—@Hur)(1 —w/u)/8)
< 4(27')‘”'!5. (fx(l— k)~ Pexp(—f*a(i—k)/8)

= 42)1f-la V8 3 KV ioxp(—fah/s). .. (18)
>0

3.4. Coup de grace. To got the final result we combine (8), (10), (13),
(14) and (15), make 7 — 0 and finally f — 1 to obtain
Pr 2 (1+0(1) 27 o(7)(1—4(2m)~ 218D )
for any « > 0, where

P, = 3 hVtexp(—ah/8). e (18)

Al-G
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Numerical computations ahow that

a-1(1—4(2m)~g-1AP )
has ita maximum of -0807 near a = 7:10. This completes the proof.

Remark : An analogous analysis can be carried out for behavior of
the sample patha near co where we consider the last crossing time and a corres-
ponding definition of upper class boundaries. The analogue to Theorem 1
is immediate, with the ssme constants, using the so called time-inversion :
if Xy is a standard Brownian motion process, so is Y, defined by

. rex,,‘ >0
Y, =
1 a =0

For details see Sen (1981).
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