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Abstract

A two species combined harvesting fishery model with selective harvesting by incorporating a discrete time delay (7) in
harvesting age and size of both the species have been considered. It has been observed that the otherwise asymptotically
stable system undergoes Hopf bifurcation for some value of 7> 7, giving rise to a small amplitude oscillation around the
non-zero equilibrium. Numerical analysis and computer simulation have been performed to investigate the global properties
of the system.
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1. Introduction

The problem of interspecific competition between two species which obey the law of logistic growth has
been considered by Gause (1935). But he did not study the effect of harvesting. Combined harvesting of two
ecologically independent fish populations, obeying the same dynamics of Gause, has been considered by Clark
(1976). Clark has also considered harvesting of a single species in a two fish ecologically competing population
model. Modifying Clark’s model, (Chaudhuri, 1986; Chaudhuri, 1988) has studied combined harvesting and
considered the perspectives of bioeconomics and dynamic optimization of a two species fishery.

Several investigations have been made to study the effect of time lag on the stability of Lotka—Volterra
population models (e.g., Wangersky and Cumingham, 1954; Goel et al., 1971; May, 1973; Beddington and
May, 1975; Mac Donald, 1976; Mac Donald, 1978, to mention a few). Most of the studies mentioned above are
based on linear stability analysis. To the author’s knowledge no attempt has been made to investigate the effect
of time delay in combined harvesting problems.

The problem of combined harvesting with time delay in a multi-species fishery is an important and practical
subject for study. Maintaining a certain time delay in harvesting by restricting to harvest fishes above a certain
age or size only (selective harvesting) can help in maintaining the fishery and prevent its extinction. It is
customary for the fishermen to throw small fish back into the water and keep the larger fish caught in the net for
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consumption. This selectivity can also be made by adjusting the mesh size of the net so that when nets are
placed in water, they capture all fish except those that are small enough to swim through the mesh. The concept
of adding a time lag in the harvesting term in each of the equations of a two species fishery model and then
investigating its dynamics to observe the role of time lag on the system came to us from the realistic
observation.

In Section 2, we have presented the combined harvesting two-species fishery model with discrete time delay
in harvesting terms followed by equilibria analysis in Section 3. In Section 4, we have performed the local
stability analysis of the system. We have carried out numerical analysis and computer simulation of the model in
Section 5.

2. The mathematical model

The combined harvesting of two competing fish species with discrete time delay 7 (in months) can be written
as

dx
E=r1x(l -x/K))—a,xy—q,Ex(t—7)

d
= = ray(1=/K) = a2 = Byt 7) (1)
where ry, r,, @, a,, K|, K, are positive rate constants. Here r,, r, denote the natural growth rates and X,
K, the environmental carrying capacity of the two species. The natural growth obeys the law of logistic growth.
In addition, the interaction terms «, xy and a, xy indicate that the two species compete for the use of the same
resource. E denotes the combined harvesting effort and ¢q,, g, are the catchability coefficients of the species.
Clark (1976) studied a model with the harvesting effect on x-species only. Chaudhuri (1986) also dealt with
the problem of the combined harvesting effect of the two competing fish species. In the present paper, we
modified the harvesting terms of Chaudhuri’s model by introducing a time delay in the rate equation. Thus the
idea of harvesting each fish species at a specific age is incorporated in this model.
We shall now investigate the dynamics of the delay system (1) by local stability analysis.

3. Equilibria

The possible steady states of (1) are

E,: (0,0)
K,
E:|—(r—qE).0
ry
K,
E;: (0, —(r;— g, E)
P!
E*:(%x,y) (2)
where

X=K [ K)(r;=qE) —ry(ri,~q,E)] /(a,a, K, K, — 1)
5’=K2[0‘2K1(r|“‘115) *ri(’E_Q2E)]/(alazK|K2_rlrz) (3)
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The existence and local stability properties of the equilibria in absence of any time delay have been
elaborately discussed by Chaudhuri (1986). We shall investigate the above properties with reference to our
system (1) with time lag. In the following section we shall perform only the local stability analysis of the
interior equilibrium E*.

4, Local stability analysis
We now investigate asymptotic stability of the equilibrium of the system (1). Let &(7)=x(r)—%,

7(+) = y(r) — 3 are the perturbed variables. After removing non-linear terms, we obtain the linear variational
system, by using equilibria conditions, as

%z(*rli‘/l‘fl +qE)§—a,¥n—q,EE(1—17)

dn

E=(_rz}/Kz+QZE)7?‘*°525’§‘%E77(?_7) (4)
The associated characteristic equation A(A, 7) = 0 with eigenvalue A can be written as

AM+alta,+(bA+b)e +ce =0 (5)
where

a=rx/K\+r,5/K,-(q,+¢,)E
a,=(rx/K, - qE)(r;3/K,— ¢ E) — a,a,Xy

by=(q, +4q,)E

b, = [ql(’"z}/Kz _‘hE) ""h("l}/lﬂ - ‘]lE)]E

¢;=q,4; E* (6)
Firstly, we consider the case when 7= 0, then the Eq. (3) reduces to

AA0) =M+ (a,+b)A+(a,+b,+¢;)=0 (7)

It can be shown that the roots of (7) have negative real parts and the system is locally stable if
rir, > a0, K K,. (We shall not deal with the case r,r, < a,a, K K, as this will give to rise to saddle point
instability (Chaudhuri, 1986) and we are investigating the effect of time lag on a stable system.) Now we rewrite

Eq. (5) as

A(A ) =P(A) +Qi(A)e "+ 0y(A)e =0 (8)
where

P=AN+aAr+a,

0,=bA+b,

2,=c, ' (9)
and we define

0(A) = Qi(A) +0,(1) (10)

Lemma 1. There exists a unique pair of w,, 7, with w,, 7,20, w,7, < 27 such that Miw,, 7,) =0 if the
sufficient condition E <y holds.
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Proof. Firstly, we have A(0, 7)+# 0.
Now consider |P(iw)l* —|0(iw)|* for @ € R, we have

IP(iw)* —10(iw)]* = 0* + k0 +k, (11)
where

k,=al—2a,- b’ (12)
and

ky=d— (b, +¢,) (13)

where a,, a,, b,, b,, ¢, are defined in (6).
Now, k, > 0 if 2¢,4, E* + 2r, %q,/K, + r, 59,/K)E — (r,3/K, — r,5/K,)* <0, i.e. if

E<y (14)

where

= ((_”15“11/1{1 ""'25"12/Kz) "'1/(";3‘11/](1 +r2§q2/K2)2+2q,q2(r13/K| _rzi’/Kz)z)

X(29,4,) "
Again, (14) is a sufficient condition for &, < 0.
Let
IP(io)* - QG@) =v>+kv+k,=0 (15)

has a unique positive root

vo=4(—k +{ -4k )>0 (16)

Consequently, lP(lm)I2 IQ(lm)I2 =0, wERIf w= +w,, wy= ,/_> 0.
Therefore, | P(i w)|* — |Q(iw)|* = 0 implies that there is a unique 7o = 0 such that w,r, < 27 and

A(iwy, 75) =P(iwy) + 0,(iwy)e™ 0™ + Q, (1w, )e 2 @070 =0 (17)

Moreover, it is to be noted that the critical value of 7, can be calculated from w, after computing v, from
Eq. (16).

From condition (14) and lemma (1) we see that
Aliw,7)=0, w€R, 720

if o= tw,, 7=T,=7y+2mn/wy,, n=0,1,2,... where w,> 0 and 7, > 0 as is defined in lemma (1). O

Lemma 2.

A(iw,, 7,)

Rel|iaw, 7

(QiGwp)e '™ +2Q,(iwg)e”2¢™)| >0, n=1,2, ... (18)
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Proof. Now,
BZ(i wg,, T,)

aA

= iwo{—Ziwo ta + lblei%?" - rn(él(iwo)ei‘”O’" * 262(1wo)euZi%r")}Ql(i‘”o)e_iw“T"

iwg (Q](iwo)e-iwurn+2Q2(iw0)e—2iwor")

+2i wo{—inO +a, + bl — "'n(él(iwo)eim"f“ F zéz(i‘”o)ezi%r")}Qz(iwo)e—zi%f"
= (2wg +iwoa,)(—P + 0,e72) +iwyb,(— P + Qye 200 )eiwems — iw,r,(10,1* + 410,%)
-2 ‘”oTn(Qleiwrﬂ" + éle_m"r")Qz
= —2w8(—w§ + az) + wlal— i(w(z, + az)a,wo - iwurﬂ(IQllz + 4|Q2|2)
+(2wd + iwga,)c,y(cos2wyT, — isin2w,T,)
+[wiab, +20ir,b,c,~ iwo{(—wd +a,)b, +27,b,¢,}} (cos w,r, + isin w,7,)
~[20ir,b,¢, +iwy(b,c, + 2b,¢,7,)| (cos wyr, — isin w,T,)
So,
EJZ(in, 7,)

Reliw, P

(0(iwg)e™ o™ + 2Q,(iwy)e” 2ievn)

= 20j(—wi+a,) + wial + 2wic, cos2wyT, + wya,c, sin2w,7,
+(2 wibc, + wéalbl) COs w,T, + “’o{bl( wh + az) +2b, cz’r"} sin w7, = 2wl7,b, ¢, cos w,T,
—wy( b c, + 2b,c,7,) sin w,7,
= —wj( 20§ +2a,— a}) + wycy(2w c0s 2wy, + a, sin2w,7,) + wia,b, cos wyT,
+ wo(by(~ ©f +a,) = bc, ) sin w,r,
= ~wj(—2ef+2a,—a}) + wyc, p, cos(2w,T, — 6,)
+ wy b, p;y cos(w,t, — 8,) > wi(2wi — 2a, + a;)
= w3(20] = 2a; + af — b} +b3) = wo kT — 4k, +b3)>0
where
pi= 4w +af
p%=a]2w§+(—-w§+az—cz)2

tan 6, = a,/2w, and tan 6, = (— 0l + a, — ¢,) /a,.

Hence the lemma. OLemma 3. [fE<y and w,, 7,, n=0, 1, 2, ... be defined as in lemma 1, then for
each 7,, there exists a neighbourhood 1, CR of 7, and a continuously differentiable function A :1, — C such
that
D Afr)=iw,

(i) A(A(7), T)=0, 7€,

(i) Re[ o) l ) =540

ar
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Table 1

Different values of £ and v with corresponding maximum and minimum values of x and y

E T X-maximum x-minimum y-maximum y-minimum
0 - 48.21 25 37.89 20

1 0 25 23.38 20 18.95

1 23 25 21.99 20 18.46

| 24.499%4 25 21.87 20.13 18.15

1 25 27.99 19.42 23.54 12.53

The values of the other parameters of the system (1) are as follows: r; =0.1, K, =71, a, =0.0009, g, =0.05, r, =0.08, K, = 80,
a, = 0.0009, g, = 0.04. The initial values of x and y are chosen as x =25 and y= 20.

Proof. It is clear from lemma 1, that dA(iw,, 7,)/A#0, n=0,1,2,.... From the implicit function theorem
there exist a neighbourhood I, and a continuously differentiable function A, which satisfies the condition (i)
and (ii) of lemma 3.

Now, differentiating the condition (ii), we have

dA(iwg, 7,) A,
dA aT

Therefore, it follows from lemma 1 and lemma 2 that

(7, 1 iy, 1), N
Re( or ) - Re (34(iwy, 7,) /) {lwo A (Qi(iwg)e ™™ +20,(iwy Je un)}
1 ) GZ(in, 7,)

= Re|iw
(84(iwy, 7,) /)’ © A

s ionl(in)e—iwon — 9 wDQQ(i wo)e'“‘”ﬂ”’" =)

{Qiiwg)e™ " +20,(iwg)e "} | > 0

a
Next we state the following theorem due to Cooke and van den Driessche (1986) as modified by Boese
(Kuang, 1993).

(ny"‘”“) g O TR L By e nr D (T e OISITP [HNNPR Lty | i Tive
} } .;"‘_,_r—'_"
o
f
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(0,‘1"\‘“”) 100 fo0 200 hoe s

Fig. L. In the absence of any fishing effort ( £ = (), both species coexist.
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Theorem 1. If P(A) and Q(A) are analytic functions in ReA > 0 and satisfy the following conditions (Here * -’
denotes complex conjugate)

(i) P(A) and Q(A) have no common imaginary root;
(ii) P(—iy)= P(iy), Q(—iy) = Qliy) for real y;
(iii) P(O)+ Q(0) + 0;
(iv) lim sup{|Q(A) / P(A):|]Al = o, ReA = O} < I;
(v) F(y)=|P(iy)* —|Q(iv\’ for real y has at most a finite number of real zeros.
Then the following statements are true:
(a) If F(y) = 0 has no positive roots, then no stability switch may occur.
{(b) If F(y) = 0 has at least one positive root and each of them is simple, then as T increases, a finite number
of stability switches may occur, and eventually the considered equation becomes unstable.
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Fig. 2. When E = 1, 7= 0, both species are extinct. (a} Time dependent solution of x, y. (b) Phase portrait in x-y plane.
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By applying lemma 1, lemma 3 and the above theorem, we finally conclude:

Theorem 2. Let 0 <E <y, then the equilibrium (%, y) is locally asymptotically stable if 0 <7< 7, and
unstable if 7> 1,, where 7, is defined in lemma 1.

Remark 1. As 7 passes through the value 7, the equilibrium (X, §) loses its stability and Hopf bifurcation
occurs with emergence of a small amplitude periodic oscillation.
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Fig. 3. With the same value of E(E = 1) but 7= 23 both species coexist with decaying oscillation, (a) Time dependent solution of x, y. (b)
Phase portrait in the x—y plane.
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5. Numerical analysis

The model (1) has been analysed numerically using fourth-order Runge—Kutta method modified to

incorporate time delay and then simulated on a micro computer (IBM compatible). The values of the parameters
were chosen as in Table 1.

In the absence of harvesting (E = 0), both the species are found to be coexisting as obtained from Fig. 1. As
effort of harvesting increases the equilibrium population of both the species tends to be extinct and finally
becomes completely extinct at E = 1 when there is no time delay (r = 0). This is exhibited in Fig. 2(a) and Fig.
2(b). Now applying some constraints in harvesting all fishes of all ages and sizes such as restricting to
harvesting fish of each species at or above certain age or size this state of extinction can be removed and the

24,4399 =1
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Fig. 4. With the same value of E(E = 1), the system bifurcates at r= 24.49994 to a stable limit cycle oscillation. (a) Time dependent
solution of x, y. (b) Trajectory in the x—y plane.
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Fig. 5. With the same E(E = 1) but 7 further raise to 7= 25, an unstable periodic solution ensures. (a) Time dependent solution of x, y. (b}
Phase portrait in the x—y plane.

fishery can be restored. This is exhibited in Fig. 3(a) and Fig. 3(b) where for E=1 and 7= 23 months, a
decaying oscillation is observed in the fish population. At 7= 24.49994 (E = 1), the computer simulation shows
the emergence of a small amplitude periodic solution (limit cycle) in Fig. 4(a) and Fig. 4(b) and 7=25 a
growing (unstable) periodic orbit is exhibited in Fig. 5(a) and Fig. 5(b).

The reality and utility of the time-delay model of a combined harvesting system are justified for prevention
of extinction of fishery. It is also observed from Figs. 3-5 that maximum population of one species correspond
to minimum population of the other showing thereby the effect of competition for the same resource. The
oscillation is due to selective harvesting whereas the yield of harvesting is alternatively rich in either of the
species.
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6. Discussion

In this paper we have studied a two-species combined harvesting fishery model with time delay in harvesting
of each of the species. Combined harvesting irrespective of age of the species has been considered by (Clark,
1976 and Chaudhuri, 1986; Chaudhuri, 1988).

On logical consideration random fishing of all ages of fishes is not advisable for the persistence of the
fishery. Catching of fishes above a certain age is recommended and is also, in fact, in practice so that the fishery
can thrive well. Investigation of fishery models with time delay in combined harvesting has not been dealt with
before as to the knowledge of the authors.

The present study shows that incorporation of discrete time lags in the harvesting terms drive the otherwise
stable system into Hopf bifurcation and emergence of small amplitude periodic solution around the non-zero
equilibrium point when the time lag 7 reaches a certain value (7,). It has been observed numerically on a
computer simulation that while an increase effort of harvesting drives the fishery to extinction, addition of time
lag in the form of selective harvesting can save the situation and help to maintain persistence, that is permanent
coexistence of both the species. The computer simulation also establishes the persistence of the selective
combined harvesting system (1) in a global sense for suitable values of 7. The model thus shows temporal
waxing and waning of both the species due to a combined effect of competition and harvesting but never any
phenomenon of extinction of any of the species for suitable 7. We have also worked out the length of the delay
associated with the effort required for Hopf bifurcation and persistence of the system.
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