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Abstract. Let H; be a finite dimensional complex Hilbert space of dimension d;
associated with a finite level quantum system A, fori = 1,2, ... , k. A subspace § C
H =Haay.a, = Hi ® Hz ®:-- @ H, is said to be completely entangled if it has no
non-zero product vector of the form u, @ uz ® - - - ® uy with u; in H; for each i. Using
the methods of elementary linear algebra and the intersection theorem for projective
varieties in basic algebraic geometry we prove that

r?agdim5=d1dg...dk-— (d+:-+di)+ k-1,
€

where & is the collection of all completely entangled subspaces.
When H, = H, and & = 2 an explicit orthonormal basis of a maximal completely

entangled subspace of H, ® H; s given.
We also introduce a more delicate notion of a perfectly entangled subspace for a
multipartite quantum system, construct an example using the theory of stabilizer quantum

codes and pose a problem.
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1. Completely entangled subspaces

Let H; be a complex finite dimensional Hilbert space of dimension d; associated with a
finite level quantum system A; foreachi = 1,2, ..., k. A state p of the combined system

A1A; ... Ay in the Hilbert space
M= 0H @ &M a.D

is said to be separable if it can be expressed as

g = prpn R pi2® - Q Piks (1.2)

f=]

where p;; is a state of A; for each j, p; > 0 for each i and )/, p; = 1 for some
finite m. A state which is not separable is said to be entangled. Entangled states play an
important role in quantum teleportation and communication [3]. The following theorem

due to Horodecki and Horodecki [2] suggests a method of constructing entangled states.
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Theorem 1.1 [2). Ler p be a separable state in H. Then the range of p is spanned by q
set of product vectors.

For the sake of readers’ convenience and completeness we furnish a quick proof.

Proof. Let p be of the form (1.2). By spectrally resolving each p;; into one-dimensional
projections we can rewrite (1.2) as

n
p= ZQ’!‘I“E] Quiz ® -+ @ uik ) (i) @ uiz @ - - - @ uikl, (1.3)
i=1

where u;; is a unit vector in H; for each i, j and ¢; > O foreach i with } 7_;q; = 1. We
shall prove the theorem by showing that each of the product vectors u;; @ #;2® - - - Qu i is,
indeed, in the range of p. Without loss of generality, consider the case | = 1. Write (1.3) as

P=qilu @u2® - Quup){(u Qui2®...Quul|+T, (1.4)

where g, > 0 and T is a non-negative operator. Suppose ¥ # 0 is a vector in K such that
Ty =0and {u); @ u12 @ --- @ uu|y) # 0. Then p[yf) is a non-zero multiple of the
product vector u1] @ u12 @ - - Quuand u;; @ u12 ® - -- @ uyx € R(p), the range of
p. Now suppose that the null space N(T') of T is contained in {11 Qu2 ® --- ® wih.
Then R(T) D {u11 ®u12 ® - - - ® uyx} and therefore there exists a vector yr # 0 such that

Tlg)=u Quiz®--- Quu).

Note that p|y) # 0, for otherwise, the positivity of p, T and g in (i.4) would imply
T|¥) = 0. Thas (1.4) implies

el =(q1{un @u12@ - Quikl|¥y+ 1) [u1 Quin @ - ® uk).

COROLLARY

If a subspace S C H) ® Ha ® - - - ® Hy, does not contain any non-zero product vector of
theformui @u; @ - - @ uy where u; € H; for each i, then any state with support in S is
entangled.

Proof. Immediate. O

DEFINITION 1.2

A non-zero subspace § C H is said to be completely entangled if S contains no non-zero
product vector of the form uy ® uy ® - - - ® u;, with u; € H; for each i.

Denote by £ the collection of all completely entangled subspaces of H. Our goal is to
determine maxg.g dim S.

PROPOSITION 1.3

There exists S € £ satisfying

dim S=didy... dy —d+do+ - +d)+k—1.



Finite level quantum systems 367

Proof. LetN = dy+dy+: - -+dx —k+ 1. Without loss of generality, assume that H; = C%
for each i, with the standard scalar product. Choose and fix a set {A1, A2,... ,Ax} C C
of cardinality N. Define the column vectors

1
A
A2 -
wij = i W1 <i<N, 1<j<k (1.5)
|2
and consider the subspace
S={un @up® --Quy, 1<i<N}cH (1.6)

We claim that S has no non-zero product vector. Indeed, let

01 @n®---@u €S, v eH,.

Then
k
[Jwileij) =0, 1<i<N. (1.7)
j=t
i
E; = {il{vjlu;;) =0} C {1,2,...,N}, (1.8)

then (1.7) implies that
1,2,..., N}=U_|E;

and therefore

k
N <) #E;.
j=I1

By the definition of N it follows that for some j, #E; > d;. Suppose #E, > d,. From
(1.8) we have

(vipluijp) =0 for i=i1,i2,...,idio,

where i) <ip < -+ < g o From (1.5) and the property of van der Monde determinants
it follows that v, = 0, a contradiction. Clearly, dim § > didy...dp —(dy+- -+ dp)+
k-1. 0

PROPOSITION 1.4

Let S C 'H be a subspace of dimensiond\dy . .. dy — (dy + - - - +di) + k. Then § contains
a non-zero product vector.
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Proof. 1dentify H; with C9i foreach j = 1,2,... , k. For any non-zero element v in a
complex vector-space V denote by [v] the equivalence class of v in the projective space
P(V). Consider the map

T : P(CH) x P(C®) x - x P(C*) » P(CY @C2 @ --- @ CH)
given by
T([u1), [u2), ... (o)) = [u1 @ - @ uyl.

The map T is algebraic and hence its range R(T') is acomplex projective variety of dimen-
sion ) ;_;(di — 1). By hypothesis, P(S) is a projective variety of dimension didz ... di —
(dy+---+di)+ k-1 Thus

dimP(S) + dim R(T) =didz...dy — 1
= dimP(C" @ C2 ®--- ® C%).
Hence by Theorem 6, p. 76 in {4] we have
P(SYNR(T) # 8.
In other words, § contains a product vector. 0

Theorem 1.5. Let £ be the collection of all completely entangled subspaces of M) ®
Hy® - ® Hy. Then

rgxagdim5=d|d2...dk—(d1 +dy+ - -+de)+ k-1
€

Proof. Immediate from Propositions 1.3 and 1.4, O

2. An explicit orthonormal basis for a completely entangled subspace of maximal
dimension in C* @ C"

Let{|x},x =0,1,2,...,n — 1} be a labelled orthonormal basis in the Hilbert space C".
Choose and fix a set

E={A.2A2 ... Ama) CC
of cardinality 2n — 1 and consider the subspace
S = [uM ®u;..|,,l <i<2n-— I}J',

where

n—1

Uy = me), reC.

x=0

By the proof of Proposition 1.3 and Theorem 1.5 it follows that S is a maximal completely
entangled subspace of dimension n2 —2n + 1. We shall now present an explicit orthonormal
basis for S.
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First, observe that S is orthogonal to a set of symmetric vectors and therefore S contains
the antisymemetric tensor product space C* A C* which has the orthonormal basis

Bo=[|:rl)-%§w, 05x<y5n-—1]. 2.1

Thus, in order to construct an orthonormal basis of S, it is sufficient to search for symmetric

tensors lying in S and constituting an orthonormal set. Any symmetric tensor in S can be
expressed as

D flx ey, 22)
O<x<n—|
O<y=n-I

where f(x,y) = f(y,x) and

> fEyT =0, 15si<m-1,
0<x<n-|
Osysn-1

which reduces to

Y fxj-x=0 YOsj<2m-2. 2.3)
0<x<n—1
O<j-x<n-1

Define K; to be the subspace of all symmetric tensors of the form (2.2) where the coefficient

function f is symmetric, has its supportinthe set {(x, j —x),0<x <n-1,0< j~x <

n — 1} and satisfies (2.3). Simple algebra shows that Ko = Ky = K3,_3 = K242 = O and
S=HAH®O"K;.

We shall now present an orthonormal basis B; for K;,2 < j < 2n — 4. This falls into
four cases.

Casel. 2 < j<n-—1, jeven

Bj = | e U/Zz)j_lumj—m)+u~mmn-~j|i i)]l
TTNVIGFD | & 22

(i/)-1 _
U [ Y MLy —m) +1j —mm)), 1S p S

ﬁ m=0 h-l}.

Case2. 2<j<n-—1, jodd.

B

l U“'”/z . .
B; = Y iUt (imj — m) +1j — mm)),

V1+i m=0

j....l
1 < & e
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Case3d. n< j<2n—4, jeven.

1 ((2n-2-/)/2)-1
B; = Y. (i—n+m

N@n=2-2n—-1-j)
+ln—-m-NI)+n—m—-1j—-n4+m+1))

—@2n-2- ;)’%%)]]

I (@n~2-))/9)~1
J{ —————
e s Y

+iln—m~-Dn-m—-1j—n+m+1)),

m=0

e4i1rmp/(2n-—2-—j)(|j -n + m

2n_2_—j
<P E e ,
l<p<x 5 l]

Case4. n < j <2n-—4, jodd
(2n—1-j)/2)-1

].
Bj = ———

+(j-n+m+lIn-m-1)+in—-m—-1j—n+m+1)),

et#:':tfrz‘lJ/(Zn—l -5

The set By U U?’_‘__?‘ B;, where By is given by (2.1) and the remaining B;’s are given by
the four cases above constitute an orthonormal basis for the maximal completely entangled

subspace §.

3. Perfectly entangled subspaces

As in §1, let H; be a complex Hilbert space of dimension d; associated with a finite level
quantum system A; foreachi =1,2,...,k Forany subset E C {1,2,...,k} let

H(E) = iceHi,
d(E) =[],
i€E

so that the Hilbert space H = H({1,2, ..., k}) of the joint system A{A;...Ag can be
viewed as H(E) @ H(E'), E’ being the complement of E. For any operator X on H we
write

X(E) = TI"H(EI)X,

where the right-hand side denotes the relative trace of X taken over H(E’). Then X (E)
is an operator in H(E). If p is a state of the system AjA; ... Ay then p(E) describes the
marginal state of the subsystem A;, A;, ... A;, where E = {i}, i2, ..., i}
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DEFINITION 3.1

A non-zero subspace S C H is said to be perfectly entangled if forany E C (1,2, ... , k}
such that d(E) < d(E’) and any unit vector ¥ € S one has

Ig
E) = ——
(X (E) A5’
where I¢ denotes the identity operator in H(E).
For any state p, denote by S(p) the von Neumann entropy of p. If  is a pure state in
H then S((|¥){(¥D(E)) = S((I¥}{¥I)(E")). Thus perfect entanglement of a subspace S

is equivalent to the property that for every unit vector ¥ in S, the pure state [y) (] is
maximally entangled in every decomposition H(E) ® H(E"), i.e.,

SUYHED(E)) = S ¥ (ED) = log, d(E)

whenever d( E) < d(E’). In other words, the marginal states of |y} {y¥| in H(E) and H(E’)
have the maximum possible von Neumann entropy.

Denote by P the class of all perfectly entangled subspaces of H. It is an interest-
ing problem to construct examples of perfectly entangled subspaces and also compute
maxgep dim S.

Note that a perfectly entangled subspace S is also completely entangled. Indeed, if
S has a unit product vector ¥ = uy @ u2 @ --- ® w; where each u; is a unit vector
in H; then (|Y¥){¥|)(E) is also a pure product state with von Neumann entropy zero.
Perfect entanglement of S implies the stronger property that every unit vector ¢ in S is
indecomposable, i.e., ¥ cannot be factorized as Y} ® ¥, where ¥ € H(E), ¥2 € H(E')
for any proper subset £ C {1,2,... ,k}.

PROPOSITION 3.2

Let S C H be a subspace and let P denote the orthogonal projection on S. Then S is
perfectly entangled if and only if, for any proper subset E C {1,2,... ,k} withd(E) <
d(E’),

Tr PX

(PXP)(E) = i(E)

Ig

for all operators X on H.

Proof. Sufficiency is immediate. To prove necessity, assume that S is perfectly entangled.
Let X be any hermitian operator on . Then by spectral theorem and Definition 3.1 it
follows that (PX P)(E) = a(X){g where a(X) is a scalar. Equating the traces of both
sides we see that ¢(X) = d(E)~' Tr PX. If X is arbitrary, then X can be expressed as
X| + i X, where X and X, are hermitian and the required result is immediate. O

Using the method of constructing single error correcting 5 qudit stabilizer quantum codes
in the sense of Gottesman [1, 3] we shall now describe an example of a perfectly entangled
d-dimensional subspace in n®" where h is a d-dimensional Hilbert space. To this end we
identify h with L2(A) where A is an abelian group of cardinality d with group operation +
and nuli element 0. Then h®’ is identified with LZ(A5 ). For any X = (xq, x1, x2, X3, X4) in
A3 denote by |x) the indicator function of the singleton subset {x} in A% Then {|x}, x € A3}
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is an orthonormal basis for #®’. Choose and fix a non-degenerate symmetric bicharacter
{., .) for the group A satisfying the following:

a,b)| =1,{a,b) =(b,a),(a,b+c}) ={a,b)la,¢c) Va,b,cecA

and a = 0 if and only if {a, x) = I for all x € A. Define

4

x, y) =[Jxis 3i)s x, y e A°.
i=0

(Note that {x, y) denotes the bicharacter evaluated at x, y whereas (x|y) denotes the scalar
productin H = L%(AS).) With these notations we introduce the unitary Wey! operators
Ua, Vb in H satisfying

Ualx) = la+x), Vb/x) = (b, x) [x), x € A°.
Then we have the Weyl commutation relations:
UaUb = Uasb, VaVb = Vatb, VolUa = (a2, b)Ua Wy

for all a,b € A>. The family (d=3/2U, Vp,a,b € A3} is an orthonormal basis for the
Hilbert space of all operators on H with the scalar product (X[|Y) = Tr X tY between two
operators X, Y.

Introduce the cyclic permutation ¢ in A> defined by

o ((xg, X1, X2, x3, X4)) = (x4, X0, X1, X2, X3). 3.1
Then o is an automorphism of the product group A% and

o~ ((x0, x1, %2, x3, x4)) = (x1, X2, X3, X4, X0).
Define

1(x) = 02(x) + o 2 (x). (3.2)
Let C C A3 be the subgroup defined by

C = {x|x0+ x1 + x2 4+ x3 + x4 = 0}.
Define

Wy = (X, 02(X))UxVex)y, X € A, (3.3)

Then the correspondence x — Wy is a unitary representation of the subgroup C in H.
Define the operator Pc by

Pe=d* Z: Wy. (3.4)
xeC

Then Pc is a projection satisfying Tr Pc = d. The range of P¢ is an example of a
stabilizer quantum code in the sense of Gottesman. From the methods of [1] itis also known
that Pc is a single error correcting quantum code. The range R(P¢) of C is given by

R(Pc) = {{y)|Wxly) = ¢} forallx € C}.
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Our goal is to establish that R(Pc) is perfectly entangled in L2 (A)‘g’s. To this end we prove
a couple of lemmas.

Lemma 3.3. Forany a,b € A3 the following holds:
0, if Y% oai ~bi) #0,
(al Pclb) = . izl = b0 #
d~*{a, c%(a))(b, 02(b)), otherwise.
Proof. We have from (3.1)-(3.4) that

@Pc)y=d* 3 (x,6’®))r(x), b)(alx+b)
xo+x)+x3+x3+x4=0

which vanishes if Z};O(a,- — b;) # 0. Now assume that Z};u(a,- — b;) = 0. Then
(a| Pcib) = d~*(a — b, %(a — b)){o%(a — b), b}{a — b, o 2(b))
= d4(a, %(a)) (b, c2(b)).

Lemma 3.4. Consider the tensor product Hilbert space
LYA)® =Hy®@H1 ® H, ® H3 ® Ha,

where H; is the i-th copy of L?(A). Then for any ({i, j}) C {0,1,2,3,4} and a,b € A’
the operator (Pcla)(b|Pc) ({i, j}) is a scalar multiple of the identity in H; @ H;.

Proof. By Lemma 3.2 and the definition of relative trace we have, for any xg, x1, yo,
Y1 €A,

{xo0, x1{(Pc|a}{(b| Pc) ({0, 1D)1y0, y1}

= D (x0,%1,%2 13, x| Pcla)(bl Pclyo, y1, %2, %3, Xa)

X7,X3,X4€A

=d”* > (x, > (0)){a, o2(a))(b, a* (b))
xa+x3+xa=) . ai—xp—x|
x2+x3+a4=3 bi—yo-y

X (Y0, Y1, X2, X3, X4, 02(¥0, Y1, X2, X3, X4)).
The right-hand side vanishes if }_(a; — bi) # x0 + %1 — Yo — y1. Now suppose that
> (a; — b;) = x¢ + x} — yo — y1. Then the right-hand side is equal to
d%(a, o2@) (b, o2 ®) (Y i — 50 — 51,30 + 31 = 30 - 1)

X Y (%2, 31~ x1){x4, Yo — %o)

X3,X4€A

0, if xo # yo or xy # yi1,
| d%(a, o2(a)} (b, 5%(b)), otherwise.
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This proves the lemma when i = 0, j = 1. A similar (but tedious) algebra shows that
the lemma holds wheni =0, j = 2.

The cyclic permutation o of the basis {|x),X € A3} induces a unitary operator U, in
A3. Since o leaves C invariant it follows that Uy Pc = PcU, and therefore

Us Pcla){b|PcU; " = Pclo(a)){o (b)| Pc,
which, in turn, implies that
(x1, x2|(Pcla)(b| Pc) ({1, 2))Iy1, y2)
= (x1, x21Pclo ™' @) (o~ (b) Pc)({0, 1Dyt y2).

By what has been already proved the lemma follows for i = 1, j = 2. A similar
covariance argument proves the lemma for all pairs {i, j}. a

Theorem 3.5, The range of Pc is a perfectly entangled subspace of LZ(A)®5 and
dim Pc = #A.

Proof. Immediate from Lemma 3.3 and the fact that every operator in L2(A®s) is a linear
combination of operators of the form |a){b| as a, b vary in A, 0

Note added in Proof. The example in §2 has been recently generalized and simplified
considerably by B V Rajarama Bhat. See arXiv: quant-ph/0409032 VI 6 Sep. 2004.
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