On the maximal dimension of a completely entangled subspace for finite level quantum systems

K R PARTHASARATHY

Indian Statistical Institute, Delhi Centre, 7, S.J.S. Sansanwal Marg, New Delhi 110 016, India E-mail: krp@isid.ac.in

MS received 19 March 2004; revised 16 August 2004

Abstract. Let \mathcal{H}_i be a finite dimensional complex Hilbert space of dimension d_i associated with a finite level quantum system A_i for $i=1,2,\ldots,k$. A subspace $S\subset\mathcal{H}=\mathcal{H}_{A_1A_2\ldots A_k}=\mathcal{H}_1\otimes\mathcal{H}_2\otimes\cdots\otimes\mathcal{H}_k$ is said to be completely entangled if it has no non-zero product vector of the form $u_1\otimes u_2\otimes\cdots\otimes u_k$ with u_i in \mathcal{H}_i for each i. Using the methods of elementary linear algebra and the intersection theorem for projective varieties in basic algebraic geometry we prove that

$$\max_{S \in \mathcal{E}} \dim S = d_1 d_2 \dots d_k - (d_1 + \dots + d_k) + k - 1,$$

where \mathcal{E} is the collection of all completely entangled subspaces.

When $\mathcal{H}_1 = \mathcal{H}_2$ and k = 2 an explicit orthonormal basis of a maximal completely entangled subspace of $\mathcal{H}_1 \otimes \mathcal{H}_2$ is given.

We also introduce a more delicate notion of a perfectly entangled subspace for a multipartite quantum system, construct an example using the theory of stabilizer quantum codes and pose a problem.

Keywords. Finite level quantum systems; separable states; entangled states; completely entangled subspaces; perfectly entangled subspace; stabilizer quantum code.

1. Completely entangled subspaces

Let \mathcal{H}_i be a complex finite dimensional Hilbert space of dimension d_i associated with a finite level quantum system A_i for each i = 1, 2, ..., k. A state ρ of the combined system $A_1 A_2 ... A_k$ in the Hilbert space

$$\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_k \tag{1.1}$$

is said to be separable if it can be expressed as

$$\rho = \sum_{i=1}^{m} p_i \rho_{i1} \otimes \rho_{i2} \otimes \cdots \otimes \rho_{ik}, \qquad (1.2)$$

where ρ_{ij} is a state of A_j for each j, $p_i > 0$ for each i and $\sum_{i=1}^{m} p_i = 1$ for some finite m. A state which is not separable is said to be *entangled*. Entangled states play an important role in quantum teleportation and communication [3]. The following theorem due to Horodecki and Horodecki [2] suggests a method of constructing entangled states.

Theorem 1.1 [2]. Let ρ be a separable state in \mathcal{H} . Then the range of ρ is spanned by a set of product vectors.

For the sake of readers' convenience and completeness we furnish a quick proof.

Proof. Let ρ be of the form (1.2). By spectrally resolving each ρ_{ij} into one-dimensional projections we can rewrite (1.2) as

$$\rho = \sum_{i=1}^{n} q_i |u_{i1} \otimes u_{i2} \otimes \cdots \otimes u_{ik}\rangle \langle u_{i1} \otimes u_{i2} \otimes \cdots \otimes u_{ik}|, \qquad (1.3)$$

where u_{ij} is a unit vector in \mathcal{H}_j for each i, j and $q_i > 0$ for each i with $\sum_{i=1}^n q_i = 1$. We shall prove the theorem by showing that each of the product vectors $u_{i1} \otimes u_{i2} \otimes \cdots \otimes u_{ik}$ is, indeed, in the range of ρ . Without loss of generality, consider the case i = 1. Write (1.3) as

$$\rho = q_1 | u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1k} \rangle \langle u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1k} | + T, \tag{1.4}$$

where $q_1 > 0$ and T is a non-negative operator. Suppose $\psi \neq 0$ is a vector in \mathcal{H} such that $T|\psi\rangle = 0$ and $\langle u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1k} | \psi \rangle \neq 0$. Then $\rho|\psi\rangle$ is a non-zero multiple of the product vector $u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1k}$ and $u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1k} \in R(\rho)$, the range of ρ . Now suppose that the null space N(T) of T is contained in $\{u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1k}\}^{\perp}$. Then $R(T) \supset \{u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1k}\}$ and therefore there exists a vector $\psi \neq 0$ such that

$$T|\psi\rangle=|u_{11}\otimes u_{12}\otimes\cdots\otimes u_{1k}\rangle.$$

Note that $\rho|\psi\rangle \neq 0$, for otherwise, the positivity of ρ , T and q_1 in (1.4) would imply $T|\psi\rangle = 0$. Thus (1.4) implies

$$\rho|\psi\rangle = (q_1\langle u_{11}\otimes u_{12}\otimes\cdots\otimes u_{1k}|\psi\rangle + 1)|u_{11}\otimes u_{12}\otimes\cdots\otimes u_{1k}\rangle.$$

COROLLARY

If a subspace $S \subset \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_k$ does not contain any non-zero product vector of the form $u_1 \otimes u_2 \otimes \cdots \otimes u_k$ where $u_i \in \mathcal{H}_i$ for each i, then any state with support in S is entangled.

DEFINITION 1.2

A non-zero subspace $S \subset \mathcal{H}$ is said to be *completely entangled* if S contains no non-zero product vector of the form $u_1 \otimes u_2 \otimes \cdots \otimes u_k$ with $u_i \in \mathcal{H}_i$ for each i.

Denote by \mathcal{E} the collection of all completely entangled subspaces of \mathcal{H} . Our goal is to determine $\max_{S \in \mathcal{E}} \dim S$.

PROPOSITION 1.3

There exists $S \in \mathcal{E}$ satisfying

dim
$$S = d_1 d_2 \dots d_k - (d_1 + d_2 + \dots + d_k) + k - 1$$
.

Proof. Let $N = d_1 + d_2 + \cdots + d_k - k + 1$. Without loss of generality, assume that $\mathcal{H}_i = \mathbb{C}^{d_i}$ for each i, with the standard scalar product. Choose and fix a set $\{\lambda_1, \lambda_2, \dots, \lambda_N\} \subset \mathbb{C}$ of cardinality N. Define the column vectors

$$u_{ij} = \begin{bmatrix} 1 \\ \lambda_i \\ \lambda_i^2 \\ \vdots \\ \lambda_i^{d_j - 1} \end{bmatrix}, 1 \le i \le N, 1 \le j \le k$$

$$(1.5)$$

and consider the subspace

$$S = \{u_{i1} \otimes u_{i2} \otimes \cdots \otimes u_{ik}, \quad 1 \leq i \leq N\}^{\perp} \subset \mathcal{H}. \tag{1.6}$$

We claim that S has no non-zero product vector. Indeed, let

$$0 \neq v_1 \otimes v_2 \otimes \cdots \otimes v_k \in S, \quad v_i \in \mathcal{H}_i.$$

Then

$$\prod_{j=1}^{k} \langle v_j | u_{ij} \rangle = 0, \quad 1 \le i \le N.$$
(1.7)

If

$$E_j = \{i | \langle v_j | u_{ij} \rangle = 0\} \subset \{1, 2, \dots, N\}, \tag{1.8}$$

then (1.7) implies that

$$\{1, 2, \ldots, N\} = \bigcup_{j=1}^k E_j$$

and therefore

$$N \leq \sum_{i=1}^k \# E_j.$$

By the definition of N it follows that for some j, $\#E_j \ge d_j$. Suppose $\#E_{j_0} \ge d_{j_0}$. From (1.8) we have

$$\langle v_{j_0}|u_{ij_0}\rangle=0\quad\text{for}\quad i=i_1,i_2,\cdots,i_{d_{j_0}},$$

where $i_1 < i_2 < \cdots < i_{d_{j_0}}$. From (1.5) and the property of van der Monde determinants it follows that $v_{j_0} = 0$, a contradiction. Clearly, dim $S \ge d_1 d_2 \dots d_k - (d_1 + \dots + d_k) + k - 1$.

PROPOSITION 1.4

Let $S \subset \mathcal{H}$ be a subspace of dimension $d_1d_2 \dots d_k - (d_1 + \dots + d_k) + k$. Then S contains a non-zero product vector.

Proof. Identify \mathcal{H}_j with \mathbb{C}^{d_j} for each $j=1,2,\ldots,k$. For any non-zero element v in a complex vector space \mathcal{V} denote by [v] the equivalence class of v in the projective space $\mathbb{P}(\mathcal{V})$. Consider the map

$$T: \mathbb{P}(\mathbb{C}^{d_1}) \times \mathbb{P}(\mathbb{C}^{d_2}) \times \cdots \times \mathbb{P}(\mathbb{C}^{d_k}) \to \mathbb{P}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \cdots \otimes \mathbb{C}^{d_k})$$

given by

$$T([u_1], [u_2], \ldots, [u_k]) = [u_1 \otimes \cdots \otimes u_k].$$

The map T is algebraic and hence its range R(T) is a complex projective variety of dimension $\sum_{i=1}^{k} (d_i - 1)$. By hypothesis, $\mathbb{P}(S)$ is a projective variety of dimension $d_1 d_2 \dots d_k - (d_1 + \dots + d_k) + k - 1$. Thus

$$\dim \mathbb{P}(S) + \dim R(T) = d_1 d_2 \dots d_k - 1$$
$$= \dim \mathbb{P}(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2} \otimes \dots \otimes \mathbb{C}^{d_k}).$$

Hence by Theorem 6, p. 76 in [4] we have

$$\mathbb{P}(S) \cap R(T) \neq \emptyset$$
.

In other words, S contains a product vector.

Theorem 1.5. Let \mathcal{E} be the collection of all completely entangled subspaces of $\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_k$. Then

$$\max_{S \in \mathcal{E}} \dim S = d_1 d_2 \dots d_k - (d_1 + d_2 + \dots + d_k) + k - 1.$$

Proof. Immediate from Propositions 1.3 and 1.4.

2. An explicit orthonormal basis for a completely entangled subspace of maximal dimension in $\mathbb{C}^n \otimes \mathbb{C}^n$

Let $\{|x\rangle, x = 0, 1, 2, ..., n - 1\}$ be a labelled orthonormal basis in the Hilbert space \mathbb{C}^n . Choose and fix a set

$$E = {\lambda_1, \lambda_2, \ldots, \lambda_{2n-1}} \subset \mathbb{C}$$

of cardinality 2n - 1 and consider the subspace

$$S = \{u_{\lambda_i} \otimes u_{\lambda_i}, 1 \le i \le 2n - 1\}^{\perp},$$

where

$$u_{\lambda} = \sum_{x=0}^{n-1} \lambda^{x} |x\rangle, \quad \lambda \in \mathbb{C}.$$

By the proof of Proposition 1.3 and Theorem 1.5 it follows that S is a maximal completely entangled subspace of dimension $n^2 - 2n + 1$. We shall now present an explicit orthonormal basis for S.

First, observe that S is orthogonal to a set of symmetric vectors and therefore S contains the antisymmetric tensor product space $\mathbb{C}^n \wedge \mathbb{C}^n$ which has the orthonormal basis

$$B_0 = \left\{ \frac{|xy\rangle - |yx\rangle}{\sqrt{2}}, \quad 0 \le x < y \le n - 1 \right\}. \tag{2.1}$$

Thus, in order to construct an orthonormal basis of S, it is sufficient to search for symmetric tensors lying in S and constituting an orthonormal set. Any symmetric tensor in S can be expressed as

$$\sum_{\substack{0 \le x \le n-1\\0 \le y \le n-1}} f(x, y)|xy\rangle, \tag{2.2}$$

where f(x, y) = f(y, x) and

$$\sum_{\substack{0 \le x \le n-1 \\ 0 \le y \le n-1}} f(x, y) \lambda_i^{x+y} = 0, \quad 1 \le i \le 2n-1,$$

which reduces to

$$\sum_{\substack{0 \le x \le n-1 \\ 0 \le j-x \le n-1}} f(x, j-x) = 0 \quad \forall \ 0 \le j \le 2n-2.$$
 (2.3)

Define \mathcal{K}_j to be the subspace of all symmetric tensors of the form (2.2) where the coefficient function f is symmetric, has its support in the set $\{(x, j-x), 0 \le x \le n-1, 0 \le j-x \le n-1\}$ and satisfies (2.3). Simple algebra shows that $\mathcal{K}_0 = \mathcal{K}_1 = \mathcal{K}_{2n-3} = \mathcal{K}_{2n-2} = 0$ and

$$S = \mathcal{H} \wedge \mathcal{H} \oplus \bigoplus_{j=2}^{2n-4} \mathcal{K}_j.$$

We shall now present an orthonormal basis B_j for K_j , $2 \le j \le 2n - 4$. This falls into four cases.

Case 1. $2 \le j \le n-1$, j even.

$$B_{j} = \left\{ \frac{1}{\sqrt{j(j+1)}} \left[\sum_{m=0}^{(j/2)-1} (|mj-m) + |j-mm|) - j \left| \frac{j}{2} \frac{j}{2} \right| \right] \right\}$$

$$\cup \left\{ \frac{1}{\sqrt{j}} \sum_{m=0}^{(j/2)-1} e^{4i\pi mp/j} (|mj-m| + |j-mm|), \quad 1 \le p \le \frac{j}{2} - 1 \right\}.$$

Case 2. $2 \le j \le n-1$, j odd.

$$B_{j} = \left\{ \frac{1}{\sqrt{j+1}} \sum_{m=0}^{(j-1)/2} e^{4i\pi mp/(j+1)} (|mj-m\rangle + |j-mm\rangle), \\ 1 \le p \le \frac{j-1}{2} \right\}.$$

Case 3. $n \le j \le 2n - 4$, j even.

$$B_{j} = \left\{ \frac{1}{\sqrt{(2n-2-j)(2n-1-j)}} \left[\sum_{m=0}^{((2n-2-j)/2)-1} (|j-n+m+1|) -(2n-2-j) \left| \frac{j}{2} \frac{j}{2} \right| \right] \right\}$$

$$-(2n-2-j) \left| \frac{j}{2} \frac{j}{2} \right| \right\}$$

$$\cup \left\{ \frac{1}{\sqrt{2n-2-j}} \sum_{m=0}^{((2n-2-j)/2)-1} e^{4i\pi mp/(2n-2-j)} (|j-n+m+1|) + 1 - m - 1 \right| |n-m-1| - n + m + 1 \right),$$

$$1 \le p \le \frac{2n-2-j}{2} - 1 \right\}.$$

Case 4. $n \le j \le 2n - 4$, j odd.

$$B_{j} = \left\{ \frac{1}{\sqrt{2n-1-j}} \sum_{m=0}^{((2n-1-j)/2)-1} e^{4i\pi mp/(2n-1-j)} + (|j-n+m+1|n-m-1) + |n-m-1|j-n+m+1\rangle \right\},$$

$$1 \le p \le \frac{2n-1-j}{2} - 1 \right\}.$$

The set $B_0 \cup \bigcup_{j=2}^{2n-4} B_j$, where B_0 is given by (2.1) and the remaining B_j 's are given by the four cases above constitute an orthonormal basis for the maximal completely entangled subspace S.

3. Perfectly entangled subspaces

As in §1, let \mathcal{H}_i be a complex Hilbert space of dimension d_i associated with a finite level quantum system A_i for each i = 1, 2, ..., k. For any subset $E \subset \{1, 2, ..., k\}$ let

$$\mathcal{H}(E) = \bigotimes_{i \in E} \mathcal{H}_i,$$

$$d(E) = \prod_{i \in E} d_i,$$

so that the Hilbert space $\mathcal{H} = \mathcal{H}(\{1, 2, ..., k\})$ of the joint system $A_1 A_2 ... A_k$ can be viewed as $\mathcal{H}(E) \otimes \mathcal{H}(E')$, E' being the complement of E. For any operator X on \mathcal{H} we write

$$X(E) = \operatorname{Tr}_{\mathcal{H}(E')} X$$
,

where the right-hand side denotes the relative trace of X taken over $\mathcal{H}(E')$. Then X(E) is an operator in $\mathcal{H}(E)$. If ρ is a state of the system $A_1A_2...A_k$ then $\rho(E)$ describes the marginal state of the subsystem $A_{i_1}A_{i_2}...A_{i_r}$ where $E = \{i_1, i_2, ..., i_r\}$.

DEFINITION 3.1

A non-zero subspace $S \subset \mathcal{H}$ is said to be *perfectly entangled* if for any $E \subset \{1, 2, ..., k\}$ such that $d(E) \leq d(E')$ and any unit vector $\psi \in S$ one has

$$(|\psi\rangle\langle\psi|)\;(E)=\frac{I_E}{d(E)},$$

where I_E denotes the identity operator in $\mathcal{H}(E)$.

For any state ρ , denote by $S(\rho)$ the von Neumann entropy of ρ . If ψ is a pure state in \mathcal{H} then $S((|\psi\rangle\langle\psi|)(E)) = S((|\psi\rangle\langle\psi|)(E'))$. Thus perfect entanglement of a subspace \mathcal{S} is equivalent to the property that for every unit vector ψ in \mathcal{S} , the pure state $|\psi\rangle\langle\psi|$ is maximally entangled in every decomposition $\mathcal{H}(E) \otimes \mathcal{H}(E')$, i.e.,

$$S((|\psi\rangle\langle\psi|)(E)) = S((|\psi\rangle\langle\psi|)(E')) = \log_2 d(E)$$

whenever $d(E) \leq d(E')$. In other words, the marginal states of $|\psi\rangle\langle\psi|$ in $\mathcal{H}(E)$ and $\mathcal{H}(E')$ have the maximum possible von Neumann entropy.

Denote by \mathcal{P} the class of all perfectly entangled subspaces of \mathcal{H} . It is an interesting problem to construct examples of perfectly entangled subspaces and also compute $\max_{\mathcal{S} \in \mathcal{P}} \dim \mathcal{S}$.

Note that a perfectly entangled subspace S is also completely entangled. Indeed, if S has a unit product vector $\psi = u_1 \otimes u_2 \otimes \cdots \otimes u_k$ where each u_i is a unit vector in \mathcal{H}_i then $(|\psi\rangle\langle\psi|)(E)$ is also a pure product state with von Neumann entropy zero. Perfect entanglement of S implies the stronger property that every unit vector ψ in S is indecomposable, i.e., ψ cannot be factorized as $\psi_1 \otimes \psi_2$ where $\psi_1 \in \mathcal{H}(E)$, $\psi_2 \in \mathcal{H}(E')$ for any proper subset $E \subset \{1, 2, \ldots, k\}$.

PROPOSITION 3.2

Let $S \subset \mathcal{H}$ be a subspace and let P denote the orthogonal projection on S. Then S is perfectly entangled if and only if, for any proper subset $E \subset \{1, 2, ..., k\}$ with $d(E) \leq d(E')$,

$$(PXP)(E) = \frac{\operatorname{Tr} PX}{d(E)} I_E$$

for all operators X on \mathcal{H} .

Proof. Sufficiency is immediate. To prove necessity, assume that S is perfectly entangled. Let X be any hermitian operator on \mathcal{H} . Then by spectral theorem and Definition 3.1 it follows that $(PXP)(E) = \alpha(X)I_E$ where $\alpha(X)$ is a scalar. Equating the traces of both sides we see that $\alpha(X) = d(E)^{-1}$ Tr PX. If X is arbitrary, then X can be expressed as $X_1 + iX_2$ where X_1 and X_2 are hermitian and the required result is immediate. \square

Using the method of constructing single error correcting 5 qudit stabilizer quantum codes in the sense of Gottesman [1, 3] we shall now describe an example of a perfectly entangled d-dimensional subspace in h^{\otimes^5} where h is a d-dimensional Hilbert space. To this end we identify h with $L^2(A)$ where A is an abelian group of cardinality d with group operation + and null element 0. Then h^{\otimes^5} is identified with $L^2(A^5)$. For any $\mathbf{x} = (x_0, x_1, x_2, x_3, x_4)$ in A^5 denote by $|\mathbf{x}\rangle$ the indicator function of the singleton subset $\{\mathbf{x}\}$ in A^5 . Then $\{|\mathbf{x}\rangle, \mathbf{x} \in A^5\}$

is an orthonormal basis for h^{\otimes^5} . Choose and fix a non-degenerate symmetric bicharacter (., .) for the group A satisfying the following:

$$|\langle a,b\rangle|=1, \langle a,b\rangle=\langle b,a\rangle, \langle a,b+c\rangle=\langle a,b\rangle\langle a,c\rangle \quad \forall a,b,c\in A$$

and a = 0 if and only if (a, x) = 1 for all $x \in A$. Define

$$\langle \mathbf{x}, \mathbf{y} \rangle = \prod_{i=0}^{4} \langle x_i, y_i \rangle, \mathbf{x}, \mathbf{y} \in A^5.$$

(Note that $\langle \mathbf{x}, \mathbf{y} \rangle$ denotes the bicharacter evaluated at \mathbf{x} , \mathbf{y} whereas $\langle \mathbf{x} | \mathbf{y} \rangle$ denotes the scalar product in $\mathcal{H} = L^2(A^5)$.) With these notations we introduce the unitary Weyl operators $U_{\mathbf{a}}$, $V_{\mathbf{b}}$ in \mathcal{H} satisfying

$$U_{\mathbf{a}}|\mathbf{x}\rangle = |\mathbf{a} + \mathbf{x}\rangle, \ V_{\mathbf{b}}|\mathbf{x}\rangle = \langle \mathbf{b}, \mathbf{x}\rangle \ |\mathbf{x}\rangle, \ \mathbf{x} \in A^{5}.$$

Then we have the Weyl commutation relations:

$$U_{\mathbf{a}}U_{\mathbf{b}} = U_{\mathbf{a}+\mathbf{b}}, \ V_{\mathbf{a}}V_{\mathbf{b}} = V_{\mathbf{a}+\mathbf{b}}, \ V_{\mathbf{b}}U_{\mathbf{a}} = \langle \mathbf{a}, \mathbf{b} \rangle U_{\mathbf{a}}V_{\mathbf{b}}$$

for all $\mathbf{a}, \mathbf{b} \in A^5$. The family $\{d^{-5/2}U_{\mathbf{a}}V_{\mathbf{b}}, \mathbf{a}, \mathbf{b} \in A^5\}$ is an orthonormal basis for the Hilbert space of all operators on \mathcal{H} with the scalar product $\langle X|Y\rangle = \operatorname{Tr} X^{\dagger}Y$ between two operators X, Y.

Introduce the cyclic permutation σ in A^5 defined by

$$\sigma((x_0, x_1, x_2, x_3, x_4)) = (x_4, x_0, x_1, x_2, x_3). \tag{3.1}$$

Then σ is an automorphism of the product group A^5 and

$$\sigma^{-1}((x_0,x_1,x_2,x_3,x_4))=(x_1,x_2,x_3,x_4,x_0).$$

Define

$$\tau(\mathbf{x}) = \sigma^2(\mathbf{x}) + \sigma^{-2}(\mathbf{x}). \tag{3.2}$$

Let $C \subset A^5$ be the subgroup defined by

$$C = \{\mathbf{x} | x_0 + x_1 + x_2 + x_3 + x_4 = 0\}.$$

Define

$$W_{\mathbf{x}} = \langle \mathbf{x}, \sigma^2(\mathbf{x}) \rangle U_{\mathbf{x}} V_{\tau(\mathbf{x})}, \quad \mathbf{x} \in A^5.$$
 (3.3)

Then the correspondence $x \to W_X$ is a unitary representation of the subgroup C in \mathcal{H} . Define the operator P_C by

$$P_C = d^{-4} \sum_{\mathbf{x} \in C} W_{\mathbf{x}}. (3.4)$$

Then P_C is a projection satisfying Tr $P_C = d$. The range of P_C is an example of a stabilizer quantum code in the sense of Gottesman. From the methods of [1] it is also known that P_C is a single error correcting quantum code. The range $R(P_C)$ of C is given by

$$R(P_C) = \{|\psi\rangle|W_{\mathbf{x}}|\psi\rangle = |\psi\rangle \text{ for all } \mathbf{x} \in C\}.$$

Our goal is to establish that $R(P_C)$ is perfectly entangled in $L^2(A)^{\otimes^5}$. To this end we prove a couple of lemmas.

Lemma 3.3. For any $\mathbf{a}, \mathbf{b} \in A^5$ the following holds:

$$\langle \mathbf{a}|P_C|\mathbf{b}\rangle = \begin{cases} 0, & \text{if } \sum_{i=0}^4 (a_i - b_i) \neq 0, \\ d^{-4}\langle \mathbf{a}, \sigma^2(\mathbf{a})\rangle \langle \overline{\mathbf{b}, \sigma^2(\mathbf{b})}\rangle, & \text{otherwise.} \end{cases}$$

Proof. We have from (3.1)–(3.4) that

$$\langle \mathbf{a}|P_C|\mathbf{b}\rangle = d^{-4} \sum_{x_0+x_1+x_2+x_3+x_4=0} \langle \mathbf{x}, \sigma^2(\mathbf{x})\rangle \langle \tau(\mathbf{x}), \mathbf{b}\rangle \langle \mathbf{a}|\mathbf{x}+\mathbf{b}\rangle$$

which vanishes if $\sum_{i=0}^{4} (a_i - b_i) \neq 0$. Now assume that $\sum_{i=0}^{4} (a_i - b_i) = 0$. Then

$$\langle \mathbf{a} | P_C | \mathbf{b} \rangle = d^{-4} \langle \mathbf{a} - \mathbf{b}, \sigma^2 (\mathbf{a} - \mathbf{b}) \rangle \langle \sigma^2 (\mathbf{a} - \mathbf{b}), \mathbf{b} \rangle \langle \mathbf{a} - \mathbf{b}, \sigma^2 (\mathbf{b}) \rangle$$
$$= d^{-4} \langle \mathbf{a}, \sigma^2 (\mathbf{a}) \rangle \langle \overline{\mathbf{b}, \sigma^2 (\mathbf{b})} \rangle.$$

Lemma 3.4. Consider the tensor product Hilbert space

$$L^{2}(A)^{\otimes^{5}} = \mathcal{H}_{0} \otimes \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3} \otimes \mathcal{H}_{4},$$

where \mathcal{H}_i is the *i*-th copy of $L^2(A)$. Then for any $(\{i, j\}) \subset \{0, 1, 2, 3, 4\}$ and $\mathbf{a}, \mathbf{b} \in A^5$ the operator $(P_C|\mathbf{a})\langle \mathbf{b}|P_C)$ $(\{i, j\})$ is a scalar multiple of the identity in $\mathcal{H}_i \otimes \mathcal{H}_j$.

Proof. By Lemma 3.2 and the definition of relative trace we have, for any $x_0, x_1, y_0, y_1 \in A$,

$$\langle x_{0}, x_{1} | (P_{C} | \mathbf{a}) \langle \mathbf{b} | P_{C}) (\{0, 1\}) | y_{0}, y_{1} \rangle$$

$$= \sum_{x_{2}, x_{3}, x_{4} \in A} \langle x_{0}, x_{1}, x_{2}, x_{3}, x_{4} | P_{C} | \mathbf{a} \rangle \langle \mathbf{b} | P_{C} | y_{0}, y_{1}, x_{2}, x_{3}, x_{4} \rangle$$

$$= d^{-8} \sum_{\substack{x_{2} + x_{3} + x_{4} = \sum a_{i} - x_{0} - x_{1} \\ x_{2} + x_{3} + x_{4} = \sum b_{i} - y_{0} - y_{1}} \langle \mathbf{x}, \sigma^{2}(\mathbf{x}) \rangle \langle \overline{\mathbf{a}}, \sigma^{2}(\overline{\mathbf{a}}) \rangle \langle \mathbf{b}, \sigma^{2}(\mathbf{b}) \rangle$$

$$\times \langle \overline{y_{0}, y_{1}, x_{2}, x_{3}, x_{4}, \sigma^{2}(y_{0}, y_{1}, x_{2}, x_{3}, x_{4})} \rangle.$$

The right-hand side vanishes if $\sum (a_i - b_i) \neq x_0 + x_1 - y_0 - y_1$. Now suppose that $\sum (a_i - b_i) = x_0 + x_1 - y_0 - y_1$. Then the right-hand side is equal to

$$d^{-8}\langle \overline{\mathbf{a}, \sigma^{2}(\mathbf{a})} \rangle \langle \mathbf{b}, \sigma^{2}(\mathbf{b}) \rangle \left\langle \sum a_{i} - x_{0} - x_{1}, x_{0} + x_{1} - y_{0} - y_{1} \right\rangle$$

$$\times \sum_{x_{2}, x_{4} \in A} \langle x_{2}, y_{1} - x_{1} \rangle \langle x_{4}, y_{0} - x_{0} \rangle$$

$$= \begin{cases} 0, & \text{if } x_{0} \neq y_{0} \text{ or } x_{1} \neq y_{1}, \\ d^{-6}\langle \overline{\mathbf{a}, \sigma^{2}(\mathbf{a})} \rangle \langle \mathbf{b}, \sigma^{2}(\mathbf{b}) \rangle, & \text{otherwise.} \end{cases}$$

This proves the lemma when i = 0, j = 1. A similar (but tedious) algebra shows that the lemma holds when i = 0, j = 2.

The cyclic permutation σ of the basis $\{|\mathbf{x}\rangle, \mathbf{x} \in A^5\}$ induces a unitary operator U_{σ} in A^5 . Since σ leaves C invariant it follows that $U_{\sigma}P_{C} = P_{C}U_{\sigma}$ and therefore

$$U_{\sigma} P_C |\mathbf{a}\rangle \langle \mathbf{b}| P_C U_{\sigma}^{-1} = P_C |\sigma(\mathbf{a})\rangle \langle \sigma(\mathbf{b})| P_C$$

which, in turn, implies that

$$\langle x_1, x_2 | (P_C | \mathbf{a}) \langle \mathbf{b} | P_C) (\{1, 2\}) | y_1, y_2 \rangle$$

$$= \langle x_1, x_2 | P_C | \sigma^{-1}(\mathbf{a}) \rangle \langle \sigma^{-1}(\mathbf{b}) | P_C) (\{0, 1\}) | y_1, y_2 \rangle.$$

By what has been already proved the lemma follows for i = 1, j = 2. A similar covariance argument proves the lemma for all pairs $\{i, j\}$.

Theorem 3.5. The range of P_C is a perfectly entangled subspace of $L^2(A)^{\otimes 5}$ and dim $P_C = \#A$.

Proof. Immediate from Lemma 3.3 and the fact that every operator in $L^2(A^{\otimes^5})$ is a linear combination of operators of the form $|a\rangle\langle b|$ as a, b vary in A^5 .

Note added in Proof. The example in §2 has been recently generalized and simplified considerably by B V Rajarama Bhat. See arXiv: quant-ph/0409032 VI 6 Sep. 2004.

Acknowledgement

The author would like to thank A J Parameswaran and V Pati for their help in explaining to him the role of basic algebraic geometry in the proof of Proposition 1.4.

References

- [1] Arvind V and Parthasarathy K R, A family of quantum stabilizer codes based on the Weyl commutation relations over a finite field, in: A tribute to C.S. Seshadri, perspectives in geometry and representation theory (eds) V Lakshmibai *et al* (India: Hindustan Book Agency) (2003) pp. 133-153
- [2] Horodecki M and Horodecki R, Separability of mixed states: necessary and sufficient conditions, *Phys. Lett.* A223(1-2) (1996) 1-8
- [3] Nielsen M A and Chuang I L, Quantum computation and quantum information (Cambridge: Cambridge University Press) (1999)
- [4] Shafarevich I R, Basic Algebraic Geometry I, Second edition (Berlin: Springer Verlag) (translated from Russian) (1994)