Journal of Statistical Computation & Simulation
Vol. 74, No. 6, June 2004, pp. 445460

ROBUST DISCRIMINANT ANALYSIS USING
WEIGHTED LIKELIHOOD ESTIMATORS

AYANENDRANATH BASU**, SMARAJIT BOSE™! and SUMITRA PURKAYASTHA"™

® Applied Statistics Unit and ®Theoretical Statistics and Mathematics Unit, Indian Statistical Institute,
203 Barrackpore Trunk Road, Kolkata 700 108, India

(Received 8 August 2002; In final form 23 July 2003)

The procedures in traditional discriminant analysis suffer from serious lack of robustness under model
misspecifications. Weighted likelihood estimators based on certain minimum divergence criteria have recently
been shown (Markatou et al, 1998) to retain first order efficiency under the model while having attractive
robustness properties away from it. In this paper, these estimators have been used to develop classifiers which are
robust alternatives to Fisher’s discriminant analysis. Results of an extensive simulation study and some real data
sets are presented to illustrate the usefulness of the proposed methods.
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1 INTRODUCTION

Many optimal classical methods are derived under exact parametric models with no provision
for any departure from the assumed model. Very often, however, the assumptions necessary
for these methods are at most approximations to reality, and asymptotically efficient methods
like the maximum likelihood can be severely affected under even moderate perturbations of
the underlying model. Nonparamefric methods, on the other hand, may exhibit significant
loss in efficiency compared to optimal parametric methods, when the model is correct.
Since in real life a small proportion of data contaminations are routine occurrences, it
seems essential to construct estimators having full efficiency under the model and strong
robustness properties away from it. In this paper we look at a procedure based on density
based minimum divergence methods and investigate its applicability for the purpose of robust
discriminant analysis.

Several authors have tried to address the issue of robustness in discriminant analysis. Such
studies can broadly be classified into two types. In one of these, robustness of linear and
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quadratic discriminant rules for departure from standard assumptions, e.g., normality, has
been explored. In Lachenbruch et al. (1973), robustness of the linear and quadratic discrimi-
nant functions were studied when the observations came from one of the following distribu-
tions: lognormal, logit normal, and inverse hyperbolic sine normal. See also Krzanowski
(1977), Balakrishnan and Kocherlakota (1985), and Nakamishi and Sato (1985).

In the other type, attempts have been made to obtain robust alternatives to linear and quad-
ratic discriminant rules, such as the methods obtained by replacing usual estimates of para-
meters by robust ones. In Randles et al. (1978a), rank cutoffs were used to develop robust
discriminant rules. This idea was further employed in Randles et al. (1978b) where two meth-
ods of constructing robust linear and quadratic discriminant functions were introduced. One
of these attempted at generalizing Fisher’s linear discriminant procedure by assigning less
weight to those observations which are far away from the overlapping regions of the two
populations. The other method substituted M-estimates of the means and the covariance
matrices into the usual expressions for the linear and quadratic discriminant functions,
These methods were compared with Fisher’s linear discriminant procedure when the popula-
tion distributions are heavy-tailed or contaminated. In Broffitt ef al. (1980), methods for trim-
ming and Huberizing were used for the purpose of estimating the mean vectors and the
covariance matrices, and for using them in quadratic discriminant functions. These modified
discriminant rules were studied when the underlying observations come from either lognor-
mal or inverse hyperbolic sine normal distribution. Wakaki (1994) studied discriminant
analysis under elliptical populations. In particular, he obtained and employed optimal
M-estimators and equivariant estimators for this purpose. In Hawkins and MclLachlan
(1997), ahigh-breakdown criterion for linear discriminant analysis was developed by producing
estimates that are immune to serious distortion by a minority of outliers, regardless of severity.

None of the works cited above achieves the dual goals of optimality under the model and
robustness under model misspecifications. This is what we aim at in this paper, using the
weighted likelihood estimators of Markatou et al. (1998). The rest of the paper is organized
as follows. In Section 2 we present a review of density based minimum divergence estima-
tion. In Section 3 we introduce the weighted likelihood estimators, which are applied in the
context of discriminant analysis in Section 4. Results of an extensive simulation study are
presented in Section 5. We have also employed our method on some real data sets in this
section, Finally, discussions and concluding remarks are given in Section 6.

We emphasize that in a functional sense, our method is also a plug-in method which
replaces the uniformly minimum variance unbiased estimators (UMVUEs) of the parameters
in the Bayes quadratic discrimination rule with the corresponding weighted likelihood esti-
mators. However it is different from other plug-in approaches in the sense that it does this
with an estimator which is asymptotically fully efficient while being strongly resistant to out-
liers at the same time. Thus under the true normal model it achieves the same asymptotic
misclassification rates as the optimal estimators. On the other hand, the method smoothly
downweights the observations incompatible with the model assumptions. In Section 5 we
will demonstrate — at least to the extent our numerical examples are concerned — that the pre-
sence of large outliers in the training data has little impact on the future classification pattern.

2 MINIMUM DISPARITY ESTIMATION

To understand the nature and application of the weighted likelihood estimators (Markatou
et al., 1998) a description of the minimum disparity estimation process is necessary.
The works of Beran (1977), Simpson (1987; 1989) and Lindsay (1994), among others,
have demonstrated that the conflicting ideas of efficiency at the model and robustness
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under model misspecification can be at least partially reconciled by the methods derived from
some density based divergences, such as the Hellinger distance. This has opened up a new
direction in minimum divergence estimation, leading to the discovery of several other proper-
ties of the minimum Hellinger distance estimator and other robust minimum divergence pro-
cedures. The class of disparities (Lindsay, 1994) is a broad class of density based divergences
including the Hellinger distance.

2.1 The Hellinger Distance and the Class of Disparities

Let ||| represent the L, norm, and let G and F be two probability distributions having den-
sities g and f with respect to an appropriate measure (e.g. Lebesgue measure for absolutely
continuous distributions). Throughout this paper we will denote the distributions with the
upper case letters like G, F and Fj, and their densities by the corresponding lower case letters
such as g, fand fy. The squared Hellinger distance between densities g and f'is defined as

HD(g, f) = llg"? = f17|1%.

For a parametric family of distributions {Fp: § € @}, the minimum Hellinger distance func-
tional 7{G) at a distribution G may be defined as

HD(g, frg)) = g—gg HD(g, f5),

provided such a T(G) exists. When a random sample of size # is available from a distribution
modeled by a parametric family, one gets the corresponding minimum Hellinger distance
estimator (MHDE) of the unknown parameter by minimizing the Hellinger distance between
a nonparametric density estimate (say g,) of the true density and fp. Results of Beran (1977),
Stather (1981), Tamura and Boos (1986), and Simpson (1987; 1989) have demonstrated the
efficiency and attractive robustness properties of the MHDE in a variety of settings.

Cressie and Read (1984) proposed a flexible class of density based divergences called
power divergences which they employed for goodness-of-fit testing. The power divergence
I* between densities g and f (indexed by the parameter 1) may be expressed as

] & [N ) — g
I‘(g,f)_” [ )4]4-—1:1_]@ leR.

MA+ 1) | \f(x)

Lindsay (1994) considered a more general class of divergences called disparities which
includes the 74 family. Let C be a thrice differentiable convex function on [ — 1, 00) with
C(0) = 0. The disparity p. defined by C between densities g and f is given by

Pl ) = jc:(a(x))fm d, a

where 8(x) = g(x)/f(x) — 1 and is called the Pearson residual. The properties of the function
C(-) guarantee that the disparity p is nonnegative unless g = f. When there is no scope for
confusion we will write p for p.. The power divergence family corresponds to the C function

@+ —@+1) é
S TS, @)

C:(d) =
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When A = 0, the divergence is obtained as the limiting case as 4 — 0, and is called the like-
lihood disparity (LD), which corresponds to C(d) = (¢ + 1) log(d + 1) — J; notice that one
gets a form of the Kullback-Leibler divergence in this case.

Given a parametric model Fp, 6 € @, a random sample of size # from the true distribution,
and the corresponding density estimate 2,, the minimum disparity estimator # of 8 based on
the disparity in (1) is defined by the relation

pC@mﬁé) = Iggg Pc@mﬁ?)-

We will denote the corresponding functional by T,(-). Notice that when 2 = 0 in the power
divergence family, T, corresponds to the maximum likelihood functional.

2.2 The Estimating Equation and the Residual Adjustment Function

We will let &’(-) and a”(-) represent the first two derivatives of a function a(-) with respect to
its argument. Under differentiability of the model, the minimization of the disparity measure
P2z, fo) corresponds to solving an estimating equation of the form

Y, G i) = JIC'(a(x))(é(x) +1) — CEE)IVE) dx = 0, 3

where d(x) = g.(x)/fo(x) — 1, and V represents gradient with respect to . Letting
C'(6)(0 + 1) — C(8) = A(J), the estimating equation has the form

j AGCYVfix) dx = 0. @

The disparity can be standardized and scaled, without changing its estimating properties, so
that the C(-) function satisfies C'(0) = 0, C"(0) = 1. Thus the variant of the Hellinger distance
between two densities g and f'that we consider is HD(g, /) = 2[(g"/2(x) — f/?(x))? dx. Under
the above conditions the function A(') satisfies 4(0) = 0 and 4'(0) = 1.

This standardized function 4(J) is called the residual adjustment function (RAF) of the
disparity pc. As the estimating equations of the different disparities differ only in the form
of the RAF, it is clear that the RAF plays a crucial role in determining their efficiency
and robustness propertiecs. The RAF of the Hellinger distance is given by A(5) =
2(+/6 + 1 — 1). The straight line A(8) = §, which represents the RAF of the likelihood dis-
parity, touches all other RAF curves tangentially at the origin. Thus all RAF curves are iden-
tical up to the first order around & = 0. Consequently, the influence function of all the
minimum disparity estimators coincide with that of the maximum likelihood estimator
(MLE). However, unlike the MLE, the RAF of many of the other disparities have a heavily
dampened response to large positive & and quickly becorne flat as § — co. Large probabi-
listic outliers manifest themselves through large positive values of 8; hence RAFs satisfying
A(d) < 6, for ¢ large and positive, do substantially better than maximum likelihood in down-
weighting large outliers. The quantity 4, = 4(0) measures the curvature of the RAF at the
origin, with large negative values leading to greater robustness. On the other hand, 4> =0
leads to second order efficiency of the estimator (Lindsay, 1994). The forms of the residual
adjustment functions of the LD, HD, and the PCS (Pearson’s chi-square or /') are given in
Figure 1. For the PCS, 4, is positive, so that the RAF curves in the wrong direction and
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FIGURE 1 The residual adjustment functions of the LD, HD and the PCS,

magnifies the effect of large outliers. The HD exhibits a strong outlier downweighting char-
acter. See Lindsay (1994), Basu and Lindsay (1994), and Basu et al. (1997) for more details
on minimum disparity estimation.

3 WEIGHTED LIKELIHOOD ESTIMATION

The minimum disparity estimating equations are usually non-linear in the parameters and
iterative procedures are required to solve them. However, in some cases the estimating equa-
tions can be readily solved by an iterative reweighting technique that is similar to the itera-
tively reweighted least squares method used in robust regression. In the process the
estimating equation is expressed as a robust weighted likelihood score equation. To motivate
this technique, we first illustrate this through a discrete model.

3.1 Discrete Models

Without loss of generality, let the support of the true distribution be {0, 1, 2,...}. The rela-
tive frequency d,(x) of the value x in the sample X}, . . ., X, can be used as our nonparametric
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density estimate. Let d(x) = d,(x)/fa(x) — 1; notice that d,(x) = 0&=d(x) = —1. Since
Y Vfa(x) = 0, the minimum disparity estimating Eq. (4) can be expressed as

o0
D AEE) + DVfex) =0, (5)
x=0

under standard regularity conditions. When A4(—1) = —1, the index of summation in the left

hand side of the above can be reduced to {x | ds(x) > 0}, or, equivalently, {x | é(x) > —1}.
In this case the estimating Eq. (5) can be written as

A(6)) + 1 _ A(0(x)) + 1 dp(x)
dgﬂ————a@ @0 + Do) = dn(;)}o 5 F 1 Tt V)
= D wi)d@us(x) =0,
dp(x)>0

where w(x) = (A(0(x)) + 1)/(6(x) + 1), and up(x) = Vlog fo(x) is the maximum likelihood
score function. Rewriting the sum over the sampie observation index i rather than over x,
the estimating equation becomes

%Zl W) = 0, ©)

a weighted version of the maximum likelihood score equation. This can be solved iteratively
as follows: (i) begin with some initial estimate of # and form the weights w(X;); (ii) assuming
the weights to be fixed, solve the weighted likelihood equation to get a new estimate of 6;
(iii) repeat steps (i) and (ii) with the current iterate and continue till convergence.

Under the model, asymptotically one expects 4(8) to be close to § so that the weights are
all close to 1 and the equation behaves like the ordinary maximum likelihood score equation.
On the other hand, when large outliers are present in the data, the weights w(x) are expected
to be substantially smaller than 1 for such observations in case of a robust disparity such as
the Hellinger distance.

While all A(-) functions will not automatically satisfy 4(—1) = —1 (which is a necessity
for applying the weighted likelihood technique as described above), one can consider simple
modifications to these functions to force them to have the appropriate form. For example, one
could choose A(d) = d for & < Q. This modification does not sacrifice the robustness proper-
ties of the corresponding weighted likelihood estimation method as it leaves the RAFs treat-
ment of large positive Pearson residuals intact, but otherwise takes it closer to the likelihood
equation since w(d) now equals 1 for 6 < 0. Apart from making the RAF conform to the
requirement A(—1) = —1, this modification also removes the intuitively confusing possibili-
ties of having negative weights or weights greater than 1. For the rest of the paper, our dis-
cussion of the weighted likelihood estimator will assume this modified form of the RAF.
Other reasonable modifications are also possible, however,

3.2 Extension to Continnous Models

For realized sample observations x;, x3,..., x, from a continuous distribution, a nonpara-
metric kernel density estimator g, is calculated as &,(y) = [ k(y, t, h) dF,(f), Fx(-) being
the empirical distribution function, and £ a smooth kernel function with bandwidth 7. We
apply the same smoothing to the model to get f3(x) = [ (v, ¢, &) dFy(?), a smoothed version
of the model density. Thus the bias introduced in the data through kernel smoothing is
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compensated by the same bias being introduced in the model. Under the model
&n(x) = f3'(x) pointwise for any fixed bandwidth &, so that the minimum disparity estimators
obtained by minimizing p(2,, /3') are consistent even when the bandwidths are held fixed as

functions of the sample size n (Basu and Lindsay, 1994). The Hellinger distance and the like-
lihood disparity now are

HD(G,, f§) = 2 j@,‘,’z(x) — P dx

1065 = [{2 1og(§:§ ) - o0 - 2] dx.

By differentiating p(g,fy), and letting d(x) = g,(x)/f(x) — 1, the estimating
equations are

[ (40 + DV () dx = 0,
A + 1)

= ‘l W)—(CS(JC) + D)V (x)dx =0,
£n(x)
= [woB SV @
implying that
[wewiog G0 a0 =0, %)

where w(x) = (4(6(x)) + 1)/(6(x) + 1) is the weight function, and G, is the cumulative dis-
tribution function corresponding to g,.

Equation (7) can also be solved iteratively by starting with some initial estimate and creat-
ing new weights w(x) at each step. However, since this requires numerically solving a series
of multiple integrals, this quickly becomes very time consuming as the dimension of X
increases. To avoid this problem, the estimating equations may be modified, in analogy
with the discrete case, by replacing the smoothing component from the rest of the equation,
except the weight part. In this case we get the estimating equation,

Jw(x)ug(x)dF o) = —Zw(x,)ue(x,) 0. ®)

t—-l

The estimating function is a sum over the observed data rather than an integral over the entire
range of the sample space. The estimator that solves this equation is called the weighted like-
lihood estimator (WLE). Once again, when the data come from the model, the weights will
asymptotically be close to 1, and for large a, (8) behaves like the likelihood equations under
the model, while downweighting observations with large Pearson residuals when a robust dis-
parity is used. Since the smoothing is removed from the score part, the WLEs are first order
efficient irrespective of the choice of the kemmel. However in the normal model it is sensible to
use the normal kernel as the normal family is closed under convolutions.

For the multivariate normal model N,(u, Z) if one chooses the multivariate normal kernel
with covariance matrix %I, where I = I, is the identity matrix, fa"'(x) is the multivariate
normal Np(u,  + h?I) density. One may also choose H = diag(h?,. .» h?) instead of A?J,
in case different smoothings are needed for different components. In thls case the covariance
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matrix of the convolution is Z + H. The estimating equations for the means {y;} and the
covariances {og} reduce to

n
EW:(xy-#j)=0, j= l,...,p,
i=1

D willsy — w)x — ) —oxl =0, jk=1,...,p
i=1

where x; is the jth component of the /ith sample observation, while w; = w(x;) is the weight of
the ith observation.

The weights, as a function of  for the LD, HD, and the PCS are plotted in Figure 2. Notice
that w{0) = 1 for all the disparities, and the weight function curves are all tangent to the
horizontal line at 4 =0. The LD leads to a constant weight of 1 independently of the
value of &, whereas for the HD the large 6 observations are strongly downweighted. See
Markatou et al. (1998) for the asymptotic optimality properties of the WLEs under the
model, and a more detailed discussion of weighted likelihood estimation method.
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FIGURE 2 The weight functions of the LD, HD and the PCS.
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4 ROBUST DISCRIMINANT ANALYSIS BASED ON
WEIGHTED LIKELIHOOD

Among the most widely used methods of discriminant analysis are the Bayes linear and quad-
ratic discriminant rules (based on the UMVUEs of the mean vectors and the covariance
matrices) where observations are assumed to belong to one of several normally distributed
populations with the same (different) dispersion matrices which leads to a linear (quadratic)
discrimination rule. In case of differing priors and costs, discrimination can be done on the
basis of the same principle although the formulae become slightly more complicated.

Though the above procedures are optimal when the observations come from pure normal
distributions, the lack of robustness of the estimators involved may lead to poor performance
in practice. In this paper we have considered discriminating between the two populations
using the Bayes quadratic classification procedure where the WLEs based on the Hellinger
distance are used in place of the UMVUEs. We will call this method Classification Using
Robust Estimates (CURE).

One could, in principle, apply the CURE method in the context of linear discrimination as
well. However, the computation of separate covariance matrices generally does not pose a
major computing obstacle in weighted likelihood estimation. More importantly, since our
purpose is to find robust estimators, we chose to keep parametric assumptions to a minimum,
and concentrated only on the quadratic version.

An important problem in this context is the selection of appropriate values of the smooth-
ing parameters. Our computing experience is that smaller values of 4 lead to greater robust-
ness. As the value of & increases, the density estimate becomes smoother, and eventually the
smoothing part becomes the dominant component in both £, and fJ, and the weights tend
to 1. Thus larger values of 7 pushes the WLE to be closer to the MLE, and from the robust-
ness point of view this is undesirable. On the other band, very small values of  yield very
noisy density estimates which in turn may result in badly behaved objective functions, and
our root solving algorithm could be unstable in such situations, We must therefore strike
an appropriate balance in the choice of 4. In general it appears that the smoothing parameter
should be related to the scale of the data and be chosen as a constant multiple of a robust
scale estimate. As a starting point for calculating the WLEs we have determined the
coordinate-wise values of the smoothing parameter in the following manner. Let x; be the
jth component of ith sample observation x; based on a sample of size n. Let

hj =05 x median,-lx!-,- - median,-x,-jl.

Once can then either use & = diag(#}, .. ., &%) or H = kI, where h = min; h;. We have used
the former in all our simulations and examples.

5 SIMULATIONS

In this section, we present the results of a set of simulations that illustrate the performance of
the CURE method relative to the traditional Bayes linear and quadratic discriminant analysis
rules based on the UMVUEs of the parameter estimates (these will be denoted by ‘Bayes
LDA’ and ‘Bayes QDA’ in the following discussion). Along the lines of the Monte Carlo
study carried out by Randles er al. (1978b), we concentrate on the two population case
where the dimension of the measurement vector is two. Some of the scenarios that were con-
sidered in Randles et al. (1978b) are repeated here so that comparisons can be made between
the results that were reported in that paper and our results. All the weighted likelihood



454 A, BASU et al,

estimators determined in this section use the Hellinger RAF together with the modification
suggested at the end of Section 3.1. We will denote the two populations as the X and Y popu-
lations, or as 7., or m, respectively.

Since our aim is to devise robust methods which perform well under model conditions, we
first considered bivariate normal populations with different means but same dispersion matrices
where traditional linear discriminant analysis is expected to perform the best, In the second
scenario the same experiment was repeated with different dispersion matrices for different
populations where traditional quadratic discriminant analysis is supposed to fare well. The rele-
vant parameters for the scenarios 1 and 2 (as well as all the other scenarios considered in our
simulation exercise) are given in Table I. For the entire simulation experiment, the dispersion
matrices for the two populations (for the two target populations in scenarios 11-22) are the
same in odd-numbered scenarios while they are different in the even-numbered ones.
Correlation coefficients for all populations for all scenarios were taken to be 0.5.

Scenarios 3 and 4 deal with similar experiments with Cauchy distributions. Since moments of
the Cauchy distributions are not well-defined, we have followed the procedure given in
Randles et al. (1978b). Scenarios 5 and 6 deal with classification between normal and Cauchy
populations.

TABLE I Simulation Design.

X-population ¥-population

No. Ty Uy u; g a; Ty By Hz a; a2

1 Normal 0 0 1 1 Normal 1 1 1 1

2 Normal 0 0 1 1 Normal 1.78 1.78 2 3

3 Canchy 0 0 1 1 Cauchy 1 1 1 1

4 Cauchy 0 0 1 1 Cauchy 1.78 1.78 2 3

5 Normal 0 0 1 1 Cauchy 1 1 1 1

6 Nomnal 0 0 1 1 Cauchy 1.78 1.78 2 3

7 ts 0 0 1 1 ts 1 1 1 1

8 Is 0 0 1 1 ts 1.78 1.78 2 3

9 Normal 0 0 1 1 ts 1 1 1 1

10 Normal 0 0 1 1 & 1.78 1.78 2 3

11 Normal 0 0 2 1 Normal 201 0 2 1
Normal 0 0 20 10

12 Normal 0 0 2 1 Normal 3.19 0 4 3
Normal 0 0 20 10

13 Normal 0 0 2 1 Normal 2.01 0 2 1
Cauchy 0 0 1 1

14 Nommal 0 0 2 1 Normal 319 0 4 3
Cauchy 0 0 1 1

15 Normal 0 0 2 1 Normal 2.01 0 2 1
Normal 2.01 0 2 1

16 Normal 0 0 2 1 Normal 3.19 ¢ 4 3
Normal 319 0 2 1

17 Normal 0 0 2 1 Nommal 2.01 0 2 1
Normal 2.01 0 20 10

18 Normal 0 0 2 1 Normal 3.19 0 4 3
Normal 3.19 0 40 30

19 Nommnal 0 0 2 1 Normal 2.01 0 2 1

Normal 0 0 20 10 Normal 2.01 0 20 10

20 Normal 0 0 2 1 Normal 3.19 0 4 3

Normal 0 0 20 10 Normal 3.19 0 40 30

21 Normal 0 0 2 1 Normal 2.01 0 2 l

Normal 2.01 0 20 10 Normal 0 0 20 10

22 Normal 0 0 2 1 Normal 3.19 0 4 3

Normal 3.19 0 40 30 Normal 0 ¢ 20 10
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Scenarios 7-10 deal with similar experiments with bivariate z-distributions instead of
Cauchy distributions while scenarios 11-22 deal with contaminated normal distributions
where one or both of the populations are contaminated. In each of these scenarios 11-22,
for the X population (and in some cases the Y population as well) an original normal distri-
bution (the target populations whose parameters are printed on top) has been contaminated by
another normal or Cauchy distribution (whose parameters are printed on the bottom) where
the contamination proportion is 0.1.

Scenarios 1--6 in our paper are identical to the scenarios 1-6 considered in Randles et al.
(1978b) while our scenarios 19-22 are identical to scenarios 9-12 in their simulations. The
correlation coefficients between the two measurements for both the original and the contami-
nating components were taken to be 0.5 for the contaminated scenarios.

The training sample sizes were 30 for each population in all scenarios. The test sets con-
sisted of another 50 independent cases from each population. In situations where contaminated
normal populations were considered (scenarios 11-22), the second component is considered
the contaminant and the cases in the test sets were generated from the first components
only, which are our target populations. Each experiment has been repeated 100 times.
The average percentages of misclassified cases for each population have been reported in
Table II. None of the standard errors (of the estimated percentage of misclassifications)
exceeded 4.4 (2.8 ignoring the quadratic rules) while a typical value would be 1.1.

Since we know the actual values of all the parameters in our simulation experiments, the
optimal Bayes classifier — linear or quadratic depending on the situation — could also be
derived in these examples for comparison (we use the distribution and parameters of the tar-
get population for calculating the optimal classifier for the contaminated cases). The average
number of misclassified cases for that optimal rule has been reported in columns 2 and 3 of

TABLE II Empirical Percentages of Misclassified Cases for Each Population. Typical Value of the Standard
Error: 1.1. Maximum Value of the Standard Error: 4.4.

Bayes
Optimal Bayes LDA Bayes QDA (w/o outliers) CURE

Scenario Pop.! Pop.2 Pop.l Pop.2 Pop.l Pop.2 Pop.l Pop.2 Pop.l Pop2

1 29 29 30 28 31 29 - 3 30
2 7 22 17 32 11 22 - 12 21
3 28 25 41 39 51 41 - 32 33
4 21 22 26 44 25 53 - 24 19
5 27 22 23 40 11 61 - 27 31
6 28 22 24 41 11 62 - 27 3
7 30 32 25 39 32 43 - 32 37
8 21 25 19 40 17 18 - 19 26
9 26 15 3 15 27 21 - 23 21
10 34 28 40 41 34 43 - 36 29
11 29 27 35 27 62 13 29 29 30 29
12 8 22 21 33 37 23 10 22 11 23
i3 29 29 3 28 37 26 30 29 3 29
14 8 22 19 KX 18 21 4 22 14 21
15 29 27 27 31 28 31 29 29 29 3
16 8 22 15 35 9 23 10 22 10 23
17 29 27 3 29 62 13 29 29 29 29
18 8 22 29 i3 75 14 10 22 11 21
19 23 21 27 25 35 k3| 23 23 24 23
20 8 22 18 43 7 57 10 22 1 21
21 29 28 M 35 43 43 30 30 31 3o
22 7 17 29 26 53 13 8 17 9 17

Nore: Pop. means population.
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Table I1. CURE achieved error rates which are dramatically close to the ones obtained by the
optimal rule in almost all the scenarios.

Similarly in the contaminated scenarios, if one could apply the traditional discriminant
rules — linear or quadratic, depending on the situation — ignoring the ‘outliers’, i.e., by remov-
ing the observations coming from the contaminating component, better results would be
expected. These resuits appear in columns 8 and 9 of Table II for each of the contaminated
scenarios. Again the results obtained by CURE are extremely close to these results, although
the latter are based on the full data including the contaminated values.

From the results given in Table II, it appears that if there is no violation of the model
assumptions, the proposed robust methods perform almost equally well compared to the tra-
ditional discriminant analysis. However, if the model assumptions are violated the robust
methods perform much better compared to the non-robust discriminant analysis, particularly
for the contaminated examples.

As mentioned earlier, in some cases we are able to make a comparison between these
methods and the methods based on rank-cut-offs and Huber-type M-estimates proposed by
Randles et al. (1978b). The results involving these methods that are reported in Table IH
have been taken directly from their paper. The methods that we propose are quite competitive
with the ones suggested by Randles et al. (1978b). Since the samples are different, the dif-
ference in the results are within acceptable limits in terms of their respective standard errors,
In the contaminated normal examples, it appears that our proposed methods performed
remarkably better. However, from further investigations we suspect that the test samples con-
sidered by Randles et al. (1978b) were probably also generated from the contaminated dis-
tributions. When we did the same, the differences reduced slightly. Since we fail to appreciate
the logic behind such experiments where test observations are also generated from contami-
nated distribution, those results are not reported here.

5.1 Analysis of Real Data

We now employ our method on two well-tested datasets. The first is from the field of speech
recognition. This dataset consists of 10 classes of 2 dimensional measurement vectors. This
was created by Peterson and Barney (1952) by a spectographic analysis of vowels in words
formed by ‘h’, followed by a vowel and then followed by a ‘d’. There were 67 people who
spoke the words and the first two formant frequencies of 10 vowels were split into two sets,

TABLE Il Empirical Percentages of Misclassified Cases for Each Population from
Randles ez al. (1978b). The Scenario Numbers Correspond to the Scenarios Defined in

Table 1.
L RLH ROH
Scenario Pop. 1 Pap. 2 Pop. 1 Pop. 2 Fop. 1 Pop. 2
1 29 29 29 29 29 30
2 17 33 27 28 19 17
3 37 37 26 26 30 30
4 26 49 25 26 25 22
5 26 44 27 29 29 31
6 15 44 25 26 21 15
19 40 35 33 29 34 3
20 23 44 30 31 22 19
21 40 39 33 31 34 32
22 41 37 30 31 22 19

Note: Pop. means population,
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TABLE IV Misclassification Error Rates

(%) for the Vowel Data,

Method Training Test
Bayes LDA 28.40 26.13
Bayes QDA 21.60 21.02
CURE 21.60 18.62

resulting in a training set consisting of 338 cases and a test set consisting of 333 cases.
The additional point was a mistake introduced at some stage before it was used as a bench-
mark dataset. For comparison purposes, we did not remove that point. The formants are the
two lowest resonant frequencies of a speaker’s vocal tract.

Bose (2003) has tested several nonparametric methods on this dataset, It is evident from
Table IV that traditional LDA and QDA do not achieve very low misclassification rates.
CURE appears to improve the performance substantially and its misclassification error
rates are quite competitive with those achieved by the nonparametric methods in Bose
(2003).

The second real dataset was taken from the UCI machine-learning repository. This dataset
is called the Wisconsin Diagnostic Breast Cancer dataset which was donated by W. Nick
Street (Mangasarian et al, 1995). Features were computed from a digitized image of a
fine needle aspirate (FNA) of a breast mass. They describe characteristics of the cell nuclei
present in the image. Using several measurements of each cell nucleus, the objective is to
predict whether it is malignant or benign. The contributors reported that the best predictive
accuracy was obtained using one separating plane in the 3-D space of the three variables
denoted by ‘Worst Area’, “Worst Smoothness’ and ‘Mean Texture’. We have used these
three variables for our classification problem as well. There were 569 observations which
were divided randomly to yield a training set with 288 observations and a test set containing
281 observations.

The results given in Table V indicate that traditional discriminant analysis performed
quite well in this dataset. The joint distribution of the measurements for the two classes
do appear fairly close to multivariate normal distributions with well separated means. It
is interesting to see that CURE could actually improve the performance of traditional dis-
criminant analysis even further in this case. Besides, another interesting aspect of its perfor-
mangce in this example is that it misclassified fewer (3.4%) of the malignant cases in the test
set compared to either traditional discriminant analysis; QDA, the better of the traditional
methods in this respect, misclassified 6.8% of the malignant cases in the test set. The robust
estimates in this case modified the class-boundary obtained by the ML estimates in a direc-
tion that helped in higher identification of the malignant cases while gaining in overall mis-
classification error rates as well. Thus robust estimates turned out to be quite useful in this

example.

TABLE V Misclassification Error Rates
(%) for the Breast Cancer Data.

Method Training Test
Bayes LDA 5.21 5.69
Bayes QDA 417 3.56

CURE 3.82 2.85
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6 CONCLUSIONS AND FURTHER ANALYSES

Our numerical studies in this paper have shown, at least as far as the evidence of our experi-
ments is concerned, that the CURE rule provides an attractive alternative for classification
procedures, being close to the optimal under the normal model, and being substantially better
than classical rules under model violations.

These studies have been a preliminary consideration of the properties and performance of
the proposed methods. In practice, further variations in the form of the classifier may be
experimented with, for example, classification based on a selected subset of variables. It is
also worthwhile to mention that while we have, for illustration, concentrated on the WLEs
based on the Hellinger distance, several other choices are possible. For example, we expect
that those based on the negative exponential disparity (Lindsay, 1994), or robustified Iikeli-
hood disparity (Chakraborty et al., 2003) will work well. The latter disparity, in particular,
uses an RAF which matches that of the likelihood disparity for reasonable values of J but
becomes flat after a certain threshold, downweighting large outliers. The advantage of the
WLE based on the robustified likelihood disparity is that when the data gives a good fit to
the model the WLE is likely to be exactly equal to the MLE.

Before trying to construct a classification rule, it should first be checked whether there is
sufficient separation of the populations (by MANOVA for population mean vectors or a 2- or
3-D graphical display), otherwise trying to classify observations between these populations
would be totally useless. It would be interesting to see how the Hellinger classifier performs
in cases even further away from normality than the ones that have been considered here, for
which efficient classification procedures have not yet been discovered.

One natural concern is the amount of computing effort necessary to generate the WLEs of
the parameters. We emphasize that the estimating equation of the WLE represents a sum of
the data points and not a multiple integral over the entire support of the model density (as one
gets for the minimum disparity estimators). The kernel smoothing has to be applied to the
data only once during the iterative procedure and not repeated for each iteration. For the nor-
mal model-normal kernel case, the smoothed model density is itself 2 normal density so that
model smoothing does not generate any additional complications. In the end, computation of
the WLE turns out to be a fairly simple and routine task. On the other hand the computation
of the actual minimum disparity estimator itself remains a difficult problem, particularly
when the dimension of the data vector is high. Thus though in principle we can also use
the minimum disparity estimators for the classification problem, it is a much less attractive
option from a practical point of view.

In this paper we have used the approach of model smoothing because the normal family is
closed under such smoothing, and one can avoid having to choose the smoothing parameter
relative to sample size for the asymptotics to hold. One could perform the same task without
smoothing the model, but in that case the smoothing parameters have to be properly selected
as functions of n so that the density estimate g, converges to the true unknown density appro-
priately as n — oo,

Finally we mention some possible future work which we hope to undertake in this direc-
tion as a sequel paper. In the present paper we have used a plug-in approach, but have not
explicitly used the actual fitted weights of the observations obtained via the root solving pro-
cedure. In the future we propose to exploit the actual weights for the purpose of classification.
In terms of the basic idea, it will proceed in the following manner: (a) estimate the WLEs of
the contending populations based on the training samples using some robust disparity; (b) for
any future test observation, place the observation successively in each of these populations,
and calculate the weight w(d) for this observation in each of these populations based on its
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WLESs, and (¢) classify the observation in that population which generates the largest weight
w(9) for that observation. Idea-wise it seems to be a good procedure to us, but it remains to
be seen how it works with actual data in practice.

We make the further point that to keep our discussion simple and close to the situations
handled optimally by the Fisher’s linear and quadratic discriminant rules, we have focused
our attention on the version of the method which should intuitively perform the best when
the majority of the data are well modeled by a normal distribution. That it does so is quite
clear from the simulation results which show that the performance of the method under a con-
taminated normal mixture is almost as good as the optimal method when the outlying com-
ponent is discarded (scenarios 11-22 in Tab. II); the method also performs substantially
better than all the other competing methods considered here in these cases. In addition the
competitiveness of the method in most of the cases where the distributions are not mixtures
of normals is also quite striking — demonstrating that this simple normal based formulation is
able to handle many kinds of model misspecifications. However, a logical followup of this
work which can extend the scope of misspecified models that can be suitably treated by
our approach could be to model the unknown distributions as multivariate z-distributions,
in the spirit of McLachlan and Peel (1998; 2000), and Peel and McLachlan (2000). We
hope to consider this also in a sequel paper.
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