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Abstract

Singular values and maximum rank minors of generalized inverses are studied. Proportionality of max-
imum rank minors is explained in terms of space equivalence. The Moore-Penrose inverse A’ is charac-
terized as the {1}-inverse of A with minimal volume.
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1 Introduction

Throughout this paper A is an m x n real matrix of rank r, a fact denoted by A € R]"*". The singular
values of A are denoted {o;(A4) : ¢ = 1,---,r}. The vector in R™" obtained by reading the columns of A
one by one is denoted vec A .

m

For k =1,---,r, the k-th compound of A, denoted Cy(A), is the (k

are the £k x k& minors of A, i.e. the determinants of its & x k submatrices ordered lexicographically. The
r x r minors of A (i.e. the elements of C.(A4)) are called its maximum rank minors.

We denote by @, the set of increasing sequences of k elements from {1,2,---,n}. Given index sets
I'c{l,---,m}and J C {1,---,n} we denote by A; the corresponding submatrix of A. The submatrix
of columns in J is denoted A, ;.

) X (2) matrix whose elements

Definition 1 For £k =1,...,r, the k~volume of A is defined as the Frobenius norm of the k-th compound
matrix Cj(A),

volpy A = 3 |det Ay ;|2 (1.1a)
Ier,m ) JGQR:,'N
or equivalently,

volp A = J Z (HJE(A)) (1.1b)

TeQy,» \iel

the square root of the k-th symmetric function! of {c}(A), --,02(A)}.

We use the convention

volp A := 0, fork=0ork >rankA. (1.2)

It helps to think of the k—volume of A as the (ordinary) Euclidean norm of vec Cy(A). In particular, for
k =1, the 1-volume of A = (a;;) is its Frobenius norm

VO].I(A) = Z |O‘4'j|2 = VtrATA (13)
V i

and for r = rank A, the r—volume of A is

vol, A = Z |det Ars|? (1.4a)
IEQ?‘,m s JEQT,H

B 1:[ oi(A) . (1.4b)

The r—volume vol, A is sometimes called just the volume of A, as in [3], and denoted by vol A.
It should be noted that the k—volume of A is not the volume of its k-th compound. Indeed, for
k=1,---,r =rank A, the rank of C}(A) is (;;) Its volume (i.e. its (Z)—volume) is given in terms of the

r—volume of 4 as

r—1
vol , .\ Ci(A) = (volf.A)(k_l) k=1, 7. (1.5)
(%)

'The k-volume was defined in [6] as the product of the k largest singular values of A. Definition (1.1) is more natural.
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1 :
e, 1) times, and the result

The left side is a product of the singular values of A, each appearing exactly (

follows from (1.4b).
The study of generalized inverses reveals instances where corresponding maximum rank minors of two
matrices A, B are proportional, i.e.
det Aj; = adet By (1.6)
for some a # 0. For example, the corresponding maximum rank minors of AT and AT satisfy
1
1 — T
det (Al) - det (a7),

1J V012 J

(1.7)

see [3, Lemma 3.2]. Proportionality of maximum rank minors is an essential feature in the study of
generalized inverses for matrices over integral domains, see [1]. We explain this proportionality in § 2,
through the conecpt of state equivalence. Singular values of generalized inverses are studied in § 3. The
Moore-Penrose inverse is characterized as the {1}-inverse of minimal volume in § 4.

In § 2 we have occasion to use Pliicker coordinates, a concept from multilinear algebra, see e.g. [8],
[9]. The Pliicker coordinates of an r—dimensional subspace L C R™ are the components of the
exterior product x; A xa A --- A x, where {x1,Xa,---,X,} is any basis of L . The Pliicker coordinates of

. Thus there is a one-to-one

n
(+)
(7 )
correspondence between r—dimensional subspaces L in R™ and 1-dimensional subspaces in R*" 7, see e.g.
(10, Theorem 4.9].
For example, given A € R"*" | the Pliicker coordinates of 2(A), the range of A, are the components
of vec Cy.(A), i.e. the maximum rank minors of A.

L are determined up to a scalar multiple, i.e. they span a line in R

2 Space equivalent matrices

The following definition describes matrices representing linear transformations between the same subspaces.

Definition 2 Two m x n matrices A, B are called space equivalent if

R(A) = R(B), (2.1a)
and R(AT) = R(BT). (2.1b)

Let L, M be subspaces of R", with dimensions ¢, m respectively, and let { < m. We denote by
cos{ L, M} the product of the cosines of the ¢ principal angles between L and M, see e.g. [6]. In particular,
cos{L, M} =1 if and only if L C M. The following version of the Cauchy-Schwarz inequality was proved
in [6, Theorem 5], for full column-rank matrices A, B € RJ**",

vol (BTA) = vol Avol B cos{R(A), R(B)} (2.2)

We extend this result to matrices of arbitrary rank in Theorem 1 below. First we need

Lemma 1 Let S € R"™*™ | A e R™*" . Then

T

vol,, (SA) = |det S|vol A . (2.3)



Proof: If S is singular, then both sides of (2.3) are zero. Let S be nonsingular. Then rank (SA) = m,
and

voly, (SA) = vol(SA) = > det?(SA).y
JEQm g/
= > det? Sdet’A,;
JEQ'm.n
= |det S|vol A.
Od
Theorem 1 Let A, B € R]"" . Then
vol, (BTA) = vol,Avol, B cos{R(A), R(B)} (2.4a)
vol, (ABT) = vol.Avol, B cos{R(A”), R(B")} . (2.4b)

Proof of (2.4a): If rank BT A < r then there is an x € R" such that Az # 0 and B? Az = 0. Therefore one
of the principal angles between R(A) and R(B) is 5, and (2.4a) gives 0 = 0.
Assume rank BT A = r, and let all volumes below be r—volumes. Let A = C4 R4 and B = CpRp

be full rank factorizations of A and B. Then

BTA = (CgRp)" (C4Ry)
= RE (CECaRA)
is a full rank factorization if rank BT A = r . Its volume is

vol (BTA) = volRpvol (C’g Ca RA) , by [3, Lemma 2.2] ,

= volRp |det (C}'{ CA)‘ vol R4, by Lemma 1

= volRgvol Ry (volCgvolCy4 cos{R(C4),R(Cg)}) , by [6, Theorem 5]

(volC'g volR ) (volCpvolRg) cos{R(A), R(B)} , since R(C4)= R(A), R(Cg) = R(B)
= volAvolB cos{R(A), R(B)} .

The proof of (2.4b) is similar. O

Example 1 If P is idempotent then its eigenvalues are 1, 0 and its nonzero singular values are all > 1.

Thus volP > 1. More precisely,
1

cos{R(P),R(I — P)*+}’
where R(P) is the range of P, and R(I — P) is its null-space. This follows from (2.4a) with A = P, B = PT
so that BTA = P? = P.
Therefore volP = 1 if and only if P = PT, i.e. P is an orthogonal projector. m|

volP =




The vectors vec Cr(A) and vec Cr(B) give the Pliicker coordinates of the subspaces R(A) and R(B)

m mn
respectively. The (ordinary) angle between these vectors, in the space R( " ) (T ), has cosine equal to
cos{R(A), R(B)}. Statements (2.4a) and (2.4b) are Cauchy-Schwarz inequalities for the vectors vec C,(A)
and vec C,.(B). As expected, equality holds if their components (i.e. the maximum rank minors of A, B)
are proportional, see (2.6) below.

Theorem 2 Let A, B € R]"*". Then the following are equivalent:
(a) A and B are space equivalent.
(b) There are matrices X, Y € R"™™ such that

A = BXB (2.5a)
B = AYA (2.5b)

(c) vol, (BTA) = vol, (./-1 BT) = volAvolB.
(d) The r—compounds of A, B satisfy

Cr(A) = aC,(B), forsomea#0. (2.6)

Proof: (b) = (a) is obvious. To prove (a) => (b), we use R(4A) = R(B) = A = BB'A and
R(AT) = R(BT) = A = AB'B to show that A = BB'A = BBYAB'B, proving (2.5a) for
X = BYABT. (2.5b) is similarly proved.

(a) = (c) from (2.4a) and (2.4b), and (c¢) = (d) by the Cauchy—Schwarz inequality for vec C,(A) and
vec C(B). To prove (d) = (a) we note that the matrix C,(A) is of rank 1, and of the form 2y’ where
x and y are the Pliicker coordinates of the subspaces R(A) and R(A”), respectively. From (d) it follows
that C.(B) = axy”’, proving that R(A) and R(B) have the same Pliicker coordinates and therefore
R(A) = R(B). Similarly R(AT) = R(BT). O

Example 2 The matrices A" and AT are space equivalent. Therefore
det (AT)U = « det (AT) .

for all indices IJ of r x r submatrices. Adding the squares of these expressions we get

vol? AT = a?vol® AT

and ] .
o = ——, since vol AT = vol A and vol AT = ;
vol® A vol A
proving (1.7).
3 Singular values of generalized inverses
Let A € R]"*" have the singular value decomposition (SVD)
(20
A_U(OO)V (3.1)



where U, V' are orthogonal, and ¥ is a diagonal matrix, with the singular values of A

o1(A) 2 02(A) > --- > 0,.(A) . (3.2)
The general {1}-inverse of A4 is
el X T .
G=YV ( v oz ) 0 (3.3)

where X, Y, Z are arbitrary submatrices of appropriate sizes. In particular,

Z = Y X X gives the general {1,2} inverses, i.e. the solutions of AXA=A, XAX =X ,

X = O gives the general {1,3}inverses (the solutions of AXA = A, (AX)' = AX),

Y = O gives the general {1,4}inverses (the solutions of AXA = A, (XA)" = X A),

finally, the Moore—Penrose inverse is (3.3) with X =0, Y =0 and Z = O.

We show next that each singular value of the Moore—Penrose inverse A' is dominated by a corresponding
singular value of any {1}-inverse of A.

Theorem 3 Let G be a {1}-inverse of A with singular values
51(G) > 03(G) > -+ > 0,(C) (3.4)
where s = rank G (> rank A). Then
0:(G) > oi(AT), i=1,...,7. (3.5)
Proof: Dropping U, V' we write
3, 1 AT
e = (3 7) (% )

B ( 524+ XX7 ?)

? ?
where 7 denotes a submatrix not needed in this proof. Then for i =1,...,r,
a}(G) = x(GGT)
> A (272 + XXT) , (e.g. [5, Chapter 11, Theorem 11))
> N (2_2) , (e.g. [5, Chapter 11, Theorem 9])
- )
proving the theorem. O

Corollary 1 If G is a {2}-inverse of A of rank ¢ (< rank A), then
oi(A) > o3(GT), i=1,...,q. (3.6)

Proof: The statement that G is a {2}-inverse of A is equivalent to the statement that A is a {1}-inverse

of G. Then (3.6) follows from (3.5) by reversing the roles of A and G. |

Note: For a {1,2}-inverse the inequalities (3.6) are equivalent to (3.5), and give no further information.
If G is a {1,3}-inverse of A, the inequalities (3.5) can be reversed in the following sense.



Theorem 4 Let A € R"*" and let G be a {1, 3}-inverse of A, with singular values

01(G) = 02(G) = -+ 2 05(A), where s = min{m,n} .

Then

O'?Z(G) = O'?i(AT) 2 C’n—r+i(G) ;B =Lsnip (3-7)
In particular, if m = n and » = n — 1, then

0i(G) 2 oi(AT) > aia(G), i=1,---,r. (3.8)
Proof: With X = O in (3.3), the matrix GGT becomes
22 1
o
oo - (3 1)

and the results follow from Poincare’s Separation Theorem, see [5, Chapter 11, Theorem 12]. O

4 Minimal volume characterization of the Moore—Penrose inverse

It was shown in [7] that the Moore Penrose inverse A' is of minimal rvolume among all {1,2} inverses
of A, and it is the unique minimizer, i.e. this property characterizes the Moore-Penrose inverse. The
Moore-Penrose inverse was also shown in [4] to be the unique minimizer among all {1,3}-inverses of a
class of functions including the unitarily invariant matrix norms.

From Theorem 3 we conclude that for each & = 1,---,r, the Moore-Penrose inverse A’ is of minimal
k—volume among all {1}-inverses G of A,

vol,G > volb Al . k=1,...,r. (4.1)
Moreover, this property is a characterization of AT, as indicated in the following results.

Theorem 5 Let A € R™*™, and let k be any integer in {1,---,7}. Then the Moore Penrose inverse A'
is the unique {1}-inverse of A with minimal k—volume.

Proof: We prove this result directly, by solving the k—volume minimization problem, showing it to have
the Moore—Penrose inverse as the unique solution.

The easiest case is k = 1. The claim is that A" is the unique solution X = (z;;) of the minimization
problem
(P.1) minimize § vol{X such that AXA = A,

where by (1.3) ) ) .
voly (z;;) = Z |zs;|° = tr X* X .
i

We use the Lagrangian function
1 g T
LX) 5= §trX X —trA"(AXA - A) (4.2)

where A = ()\;;) is a matrix Lagrange multiplier. The Lagrangian can be written, using the “vec”
notation, as

L(X:AY = %(VGCX)T(VBCX) — (vecA)" (AT®A) vec X



and its derivative with respect to vec X is
(Vx L(X, )" = (vee X)T = (vec A)T (AT & 4)
see e.g. []. The necessary condition for optimality is that the derivative vanishes,
(vec X)¥ — (vec A)T (AT ® A) = vecO
or equivalently, X = ATAAT. (4.3)

This condition is also sufficient, since (P.1) is a problem of minimizing a convex function subject to linear
constraints. Indeed, the Moore Penrose inverse A' is the unique {1}-inverse of A satisfying (4.3) for some
A (see e.g. [2]). Therefore AT is the unique solution of (P.1).

An alternative (simpler) way to show this is by writing (3.3) as

B ¥i X T Nt O N 0O X Tt ;
GU(Y Z)V U(O O)V LUl v 7 |V = A+ (-4 . @9

We conclude that
vol2 G = vol? AT + vol2 (G — AT), whenever AGA = A (4.5)

proving that A' is the unique minimal norm {1}-inverse of A.
For any 1 < k < r the problem analogous to (P.1) is

(P.k) minimize %VO]E,_ such that AXA = A.
We note that AXA = A implies
Cr(A)CR(X)Ck(A) = Ci(4) . (4.6)
Taking (4.6) as the constraint in (P.k), we get the Lagrangian
1 2 T
L(X,A) = 3 Z |det X17]° — trCrp(A)' (Cx(A)Cr(X)Cr(A) — Cr(A)) .

IEQk,n + JEQk,m
It follows, in analogy with the case £ = 1, that a necessary and sufficient condition for optimality of X is
Cr(X) = Cp(AT)Ch(A)Cr(AT) . (4.7)

Moreover, Af is the unique {1}-inverse satisfying (4.7), and is therefore the unique solution of (P.k). O
Note: The rank s of a {1}-inverse G may be greater than r, in which case the volumes

VOITJrl(G)v VOl'T+2(G)1 T 1V015(G)

are positive. However, the corresponding volumes of A' are zero, by Definition (1.2), so the inequalities
(4.1) still hold.

The optimality characterization (4.1) has an interesting geometric interpretation. Consider first the
case k = 1. Simplifying the identity (4.5) we get an equivalent condition

tr (ANT(G — A") = 0, whenever AGA= A, (4.8)

i.e. Al is orthogonal to all matrices G — Af, where G ranges over {1}-inverses of A, and the inner product
< X,Y > := tr XTY is used. This makes sense since:
the set A{1} = {X : AXA = A} of {1}-inverses of A is an affine set in R"*",



the set A{1} — AT = {X : AXA = O} is a subspace in R**™, and
Al is the minimal norm element of A{1},

therefore A is orthogonal to the subspace A{1} — AT.
For k > 1, the result analogous to (4.5) is

voli G = voli Cy(@)
= vol3CL(AT) + vol? (G — AT), from (4.4)
= volf AT + vol? (G — AT) (4.9)

and the equivalent orthogonality condition (analogous to (4.8)) is
(vec Ci(AN)T (vee Ci(G) — vec C(Ah)) = 0, (4.10)

forall K =1,...,r and {1}-inverses G of A. The geometric interpretation is again that the set Cy(A){1}

n m
x
of {1}-inverses of Ci(A) is an affine set in R( R ) ( 5 ), and the vector vec Cj(A") is orthogonal to the

subspace Ci(A){1} — C1.(AT).
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