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{0, 38,46, 125,217, 280, 287}

{0, 1,93,132, 218, 286, 353},

{0,5,66,121,266,270,324},

{0, 10, 43, 162,198, 300, 348},

{0,6,96, 146,219, 302, 318},

{0, 23,82,100,189, 297, 346},

{0,32,113,158,227, 321, 349},

{0,19,46, 147,262,271, 341}

{0,40,47,151,223, 254, 328},

{0, 22,60, 170, 234, 309, 329},

{0,41,98,106,242,267,351},

{0,14,56, 141,185, 238,350},

{0, 11,35, 87,255, 326, 343},

{0, 26,63, 143, 205, 339, 342},

{0, 13,15, 133,263, 293,314}

5 {0,3,52,68,94,125,168,176},
{0,5,41,75,95,139, 154, 158},
{0,7,13,60, 93,118, 164,174},
{0,9,11,39,87,142, 159,171},
{0, 14,37, 38,99,126, 144,166}

6 {0,12,23,86,104,156,209,213)},
{0, 8, 10,50, 93,108, 181,203},
{0,17,44,47,111,143, 189, 202},
{0,7,55,79,120,139,176, 207},
{0,14,39,90,116,151,196,205],
{0, 3,6,34,135, 168, 184,204}

14
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Improved Construction of Nonlinear Resilient S-Boxes

Kishan Chand Gupta and Palash Sarkar

Abstraci—We provide two new consiruction methods for nonlinear re.
silient functions, The first method is a simple modification of a construc-
tion due to Zhang and Zheng and constructs n-input, mn-output resilient
S-boxes with degree d > m. We prove by an application of the Griesmer
bound for linear error-correcting codes that the modified Zhang-Zheng
construction is superior to the previous method of Cheon in Crypto 2001.
Our secand construction uses a sharpened version of the Maiorana-McFar-
land technique to construct nonlinear resilient functions. The nonlinearity

obtained by our second construction is better than previously known con-
struction methods.

Index Terms—Algebraic degree, Griesmer bound, nonlinearity, re-
siliency, S-box, stream cipher.

I. INTRODUCTION

An {n,m) S-box (or veciorial function) is a map f : {0,1}" —
{0,1}™. By an (n,m,t) S-box (or (n,m,t)-resilient function) we
mean t-resilient (n, m )} S-box. An (n, 1, t)-resilient S-box is a resilient
Boolean function. The cryptographic properties (like resiliency, noniin-
carity, algebraic degree) of Boolean functions necessary for siream ci-
pher applications have already been extensively studied. The resiliency
property of S-box was introduced by Chor er al. [7] and Bennett ez al.
[1). However, to be used in stream ciphers, several other properties of
the S-box, such as nonlinearity and algebraic degree, are also very im-
portant. Stinson and Massey [23] considered nonlinear resilient func-
tions but only to disprove a conjecture.

Camion and Canteaut [2] described a genmeral method of con-
structing a new resilient function by composing a resilient function
and a bijection. A similar method for constructing resilient function
from {0,1}" — {0,1}™ was described by Zhang and Zheng {25].
After that, serious cfforts to construct a nonlinear S-box with high
nonlinearity and high algebraic degree has been made [13], {121, [17],
[6] (see Section II-D).

The current state of art in resilient S-box design can be classified into
the following two approaches.

1) Construction of (n,m, t)-resilient functions with very high non-
linearity.

2) Construction of (n, m, t)-resilient functions with degree d > m
and high nonlineanty.

The first problem has been studied in [25], [13), [12], [17]. The cur-
rently best known results are obtained using the construction described
in [17], though in certain cases, for a small number of variables, the
search techmque of [12) yields better results. The second problem
has been less studied. To the best of our knowledge, the only known
construction which provides functions of the second type is due to
Cheon [6].

In this correspondence, we first prove that the correlation immunity
of a resilient function is preserved under composition with an arbitrary
Boolean function. This property is useful for possible application of

Manuscript received January 6, 2004; revised September 8, 2004. The mate-
rial of this correspondence was presented in part at the Conference on Advances
in Cryptology-Asiacrypt 2002, Queenstown, New Zcaland, December 2002.

The authors are with the Applied Statistics Unit, Indian Statistical Institute,
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ac.in).

Comimunicated by T. Johansson, Associate Editor for Complexity and
Cryptography.
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resilient S-boxes in designing secure stream ciphers. Our main contri-
bution consists of two different constructions for the previcusly men-
tioned two classes of problems. In both cases, our resuits provide sig-
nificant improvement over all previous methods.

The construction for the second problem is a simple modification of
the Zhang-Zheng method [25]. To get algebraic degree d > m, we
start with an [n,d -+ 1, ¢ + 1] code. Then we apply the Zhang—Zheng
construction 10 obtain a nonlinear S-box. Finally, we dropd + 1 — m
output columns to obtain an (n, iz, t)-resilient S-box (see Section IV).
This simple modification is powerful enough to improve upon the best
known construction with algebraic degree greater than m [6]. This
clearly indicates the power of the oniginal Zhang-Zheng construction.
Our contribution is to apply the Griesmer bound for linear error cor-
recting codes to prove that the modified Zhang-Zheng construction is
superior to the best known construction [6]. We know of no other work
where such a provable comparison of construction has been presented.

The Maiorana—McFarland technique is a well-known method
to construct nonlinear resilient functions. The idea is to use affine
functions on small number of variables to construct nonlinear resilient
functions on larger number of variables. We provide a construction
to generate functions of the first type using a sharpened version
of the Maiorana-McFarland method. For Boolean functions, the
Maiorana-McFarland technique to construct resilient functions was
mtroduced by Camion et al. [3]. Nonlinearity calculation for the con-
struction was first performed by Seberry, Zhang, and Zheng [21]. This
technique was later sharpened by Chee ef al. [5] and Sarkar-Maitra
[20]. For S-boxes, this technique has been used by [12]) and [17],
though [12] uses essentially a heunstic search technique. Here, we
develop and sharpen the technique of affine function concatenation
to construct nonlinear restlient S-boxes. This leads to significant
improvement in nonlinearity over that obtained in [17]. Thus, we
obtain better results than [17] which currently provides the best known
nonlinearity results for most choices of input parameters rn, m, ¢.

In arecent work [10], the applicability of resilient S-boxes to stream
cipher has been discussed. The work [10] also describes an efficient
representation and software implementation method for resilient
Maiorana-McFarland S-boxes. It is shown that such S-boxes can be
implemented using very little memory and the output can be obtained
using very few operations.

The correspondence is organized as follows. Section II provides
basic definitions, notations, theory needed, and a quick review of
recent construction. In Section III, we prove the composition the-
orem. Section IV provides a modified Zhang-Zheng construction and
some theorems to prove its advantage over the Cheon construction.
Section V provides some definitions and theory needed in that section.
It also provides a construction by which we get an (n, m, t)-resilient
S-box with nonlinearity greater than the nonlinearity obtained in [17]
which has been known to be the best so far. In Section VI, we compare
the modified Zhang-Zhang construction with the Cheon construction,
and also compare Construction-1 of Section V with the Pasalic and
Maitra construction {17]). Section VII concludes this correspondence.

II. PRELIMINARIES

This section consists of four parts. We cover preliminaries on
Boolean functions and S-boxes in Sections I[-A and B, respectively.
In Section lI-C, we mention the coding theory results that we require.
In Section II-D, we summarize the previous construction results.

A. Boolean Functions

Let F; = GF (2). We consider the domain of a Boolean function to
be the vector space (F3, &) over F2, where & is used to denote the ad-
dition operator over both F 2 and the vector space F . The inner product
of two vectors u, v € F3 will be denoted by (u, v). The weight of an
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n-bit vector u is the number of ones in v and will be denoteg by wt
The (Hamming) distance between two vectars @ = (i, 5., )
andy = (y1,¥2....,¥n) Is the number of places where they dil;f'e ;th
is denoted by d(x. y). The Walsh transform of an m-variap|e Boo|

function ¢ is an integer-valued function ¥ : {0, Iym 4 [~2~ -
defined by (see [14, p. 414)) a

W)= 3 (~1)aBim,

wEF M

(l

The Walsh transform is called the spectrum of g. The inverge Walg
tcansform 1s given by

- ﬂ{‘”:-l_ X fan Y — 1) uu
(—1) o D Walw) (=1, 0

wEF;“

An m-variable function is called correlation immune of order ¢ Q)
if Wo(u) = 0 forall uw with 1 < wt(u) < t[22], [24). By,
the function is balanced if and only if 1,(0) = 0. A balanceq t.d
function is called t-resi!iem:l For even n, an n-variable functiop fi
calied bent if We{n) = £22, forall u € F§ (see [19]). This Class f
functions is important in both cryptography and coding theory.

A parameter of fundamental importance in cryptography is the pop
linearity of a function (see [14]). This is defined to be the distance fioy
the set of all affine functions. It is more convenient to define it in tery
of the spectrum of a Boolean function. The nonlinearity nl{ ) of
n-variable Boolean function f is defined as

_en=1 L1 __ ..
nl(f) =2 3 Jaax Wy (u)l.

For even n, bent functions achieve the maximum possible nonlineari.

A Boolean function g can be uniquely represented by a multivariae
pelynomial over F 2. The degree of the polynomial is called the alge
braic degree or simply the degree of g.

B. S-Boxes

An (n.m} S-box (or vectorial function) is a map

f:{0.1}" = {0,1}™

Let f: {0.1}" — {0,1}™ be an S-box and g : {0.1}™ — {0.1}t
an m-variable Boolean function. The composition of g and f, denoted
by g © f, is an n-variable Boolean function defined by (g o f)(z) =
g{f(2)). An (n,m) S-box f is said to be ¢t-CI, if g o f is t-Clfu
every nonconstant m-vaniable linear function g (see [25]). Further. i
f is balanced then f is called t-resilient. (The function f is said to®
balanced if g o f is balanced for every nonconstant m -variable line&
function g). By an (n,m,t) S-box we mcan ¢-resilient (».m) S-bot
Let f be an (n, m) S-box. The nonlinearity of f, dencted by nl{f).5
defined to be

nl(f)

= min{nl(g o f): g is a nonconstant m-variable linear funct

Similarly, the algebraic degree of f, denoted by deg(f). 1S defined 1
be

deg(f)

= min{deg(g o f): g is a nonconstant n:-variable linear func

; ; . . : ible
We will be interested in (n.m) S-boxes with maximum P055;b
nonlincarity. If # = n, the S-boxes achieving the maximum pos

. X-
nonlinearity are called maximally nonlinear [9). If » is odd. ther m&

-}
[] - b - N — l . ?k - ‘-ren 'l‘
imally nonlinear S-boxes have nonlinearity 2" ~' — 273 . Foré&¥%,

‘)"—'l_‘.:!?:;

it is possible to construct (n, 1) S-boxes with nonlineanty = o
though it is an open question whether this value is the max
possible. “ "

An (1, m) S-box with nonlinearity 2° ' = 2%~ is called 31:‘;“"‘:_
nonlinear S-box. Nyberg [15] has shown that perfect nonlned

ion)-

tion)-
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tions exist if and only if n iseven and n > 2m. Forodd n > 2m, itis
possible to construct S-boxes with nonlinearity 2°~' — 2 2t

If we fix an enumeration of the set {0, 1}", then an (n, m) S-box f is
uniquely defined by 2 2" x m matrix My. Given a sequence of S-boxes

i PRERE fx: where f; is an (n;, m) S-box, we define the concatenation
of fr,.--, fi tobe the matrix

If 2" + ---+ 2" = 2" for some n, then the matrix M uniguely
defines an (n, m) S-box f. In this case, we say f is the concatenation
of fi,..., fx.

C. Coding Theory Resuits

We will use some standard coding theory results and terminology
all of which can be found in {14]). An [n, k, d] binary linear code is a
subset of Fa which is a vector space of dimension k over F2 having
minimum distance d. We here mention the Griesmer bound (see [14, p.
546]). For an [n, k, d] linear code, let N(k, d) = length of the shortest
binary linear code of dimension k& and minimum distance d.

The Griesmer bound states (see [14, p. 547])

H

We say that the parameters =, k, d satisfy the Griesmer bound with
equality if

d

2 |

There is a general construction (sce {14, p. 550]) which gives a large

class of codes meeting the Griesmer bound with equality. Given d and

k,define s = [x%7 | and

k—1
N(k,d) > )

1=0

(3)

=Y

1=0

p
d= 32k—vl _ 221{;—1
=1
where k > uy > --+ > up, 2 1. Given d and %, there is an

n=s(2*~1) - i(?’“‘1i - 1),k,d]

=1

code meeting the Griesmer bound with equality if

(see [14, p. 5521). This condition is satisfied for most values of d and k.

D. Some Recent Constructions

Here we summarize the previous construction results.

1) Zhang and Zheng [25]: This is the paper to provide an elegant
general construction of nonlinear resilient S-boxes. The same
idea was also present in Camion and Canteaut [2). The main
result proved is as follows [25, Corollary 6]. If there exists a
linear (n, m, t)-resilient function, then there exists a nonlinear
(n, m, t)-resilient function with algebraic degree (m — 1) and
nonlinearity > (27! - 2"7%),

341

2) Kurosawa, Satch, and Yamamoto [13, Theorem 18); For any
even [ such thatl > 2m, if there exists an (n — I, m, t)-resilient
function, then there exists an (n, m, t)-resilient function, whose
nonlinearity is at least 2" % — 2"~ %1,

Johansson and Pasalic [12]: They use a linear error-correcting
code to build a matrix A of small affine functions. Resiliency
and nonlinearity is ensured by using nonintersecting codes along
with the matrix A. The actual nonintersecting codes used were
obtained by a heuristic search technique. It becomes difficuit to
carry out this search techmque for n > 12.

Pasalic and Maitra [17]: Pasalic and Maitra use the matrix A
of the method 3) along with highly nonlinear functions for their
construction, The nonlineanty obtained 1s higher than the pre-
vious methods, except in certain cases, where the search tech-
nique of 3) yields better resuits.

Cheon (6, Theorem 51: Cheon uses linearized polynomial to con-
struct nonlinear resilient function. The nonlinearity calculation
is based on Hasse—Wetl bound for higher genus curves. The main
result is as follows. If there exists an [n, m, ] linear code then
for any nonnegative integer D thereexistsan (n+D<+1,m, t -
1)-resilient function with algebraic degree D and nonlinearity at
least

3)

4)

3)

(2“*” ~ 2" [\/27?071'] + 2"‘"1) .

To date, this is the only construction which provides {n, m, t)
nonlinear resilient S-boxes with degree greater than m.

1. A COMPOSITION THEOREM FOR S-BOXES

We consider the composition of an (n, m.) S-box and an m-variable

Boolean function. The following result describes the Walsh transform
of the composition.

Theorem1: Letf:{0,1}" — {0,1}" andg: {0,1}™ — {0, 1}.
Then for any w € F3

1

——

7 2 W)W (w)

vEF;“

Wi en(w) =

wherel, = {v,x) and (I, ¢ f)(z) = (v, f(2)).
Proof: By (2), we have

1

-

1)l —
(= L

2 Wolw)(-1)=,

wEFY
Hence,

(- 1)(a°f){=‘| =(-1) ol F(21

L ofte
=5m 2, W=D
veEFY

1 X
vEFD

By (1), we have

Wer(w) = ) (—1)fNnStes
xeF;

=57 o 3 W)
+€FJ vEFP

X (_1)(3-.:01'\(1\':9(%#‘\
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5 Z (=1)reN(=1dtw.)
z€F3

> W)Wi,o(w).

vE F;“

1

— ——
Zrn

J

Corotlary I: Let f: {0,1}" — {0,1}™ be a balanced S-box. Let
g be an m-variable Boolean function. Then (g o f) is balanced if and
only if g is balanced.
Proof: Since f is balanced, W os,(w) = 0 for all nonzero
v € F3'. Thus,

W os (0) = 5 W,()2" = W, (0). 0

Remark: It is possible for (g o f) to be balanced even when either
only f is unbalanced or both f and ¢ are unbalanced. We present ex-
amples for these cases. Let f = {0,1}° — {0,1}? be an unbalanced
S-box and f,, f2 are component functions,

a) Let fi(x),w2,23) = 21 D 22 D122 D x 123 D z 12223 and
fz(a}'hfch 5‘:3) = 2 D x1%; D 2223 D 123 B vix223 and
g(zxy, 27) = z,D22. Here f is unbalanced but g is balanced. Ob-
serve (g o f)(z1,22,%3) = fi(®,22,23) © fo(x1,22,23) =
1 P z2a3 1s balanced.

b) Let fi(z),23,23) = z3 @x122 D) 223 and fo(x), 22, 23) =
2D x3 D122 Pa2zy Brixers and g(x), x2) = x1x2. Here
both f and g are unbalanced. Observe (g ¢ f)(z1,22,23) =

fi(z1, x2, x3) fa(z1, 2, 23) = x3, which is balanced.
Theorem | and Corollary 1 provide the following theorem.

Theorem 2: Let f be a t-resilient S-box and g be any arbitrary
Boolean function then (g o f) is t-Cl. Further, (g o f) is t-resilient
if and only if g is balanced.

Theorem 2 shows that correlation immunity of an (n, m, t)-resilient
S-box 1s preserved under composition with an arbitrary m-variable
Boolean function. This is an important security property for the use
of resilient S-boxes in stream cipher design.

IV. CONSTRUCTION OF {(n,m, {)-RESILIENT S-BOX
WITH DEGREE > m

In this section, we modify an elegant construction by Zhang and
Zheng [25] to obtain high degree nonlinear resilient S-boxes. The
Zhang-Zheng construction shows that highly nonlinear resilient func-
tions can be constructed from linear resilient functions by applying
highly nonlinear permutations in the transforming process. We take
permutation to be an inverse function and then drop (d + 1 — m)

columns from the output. The following result is well known (see, for
example, [25]).

Theorem 3: Let C be a [n,m,t + 1] binary linear code. Then we
can construct an linear (n, m, ¢)-resilient function.

Modified Zhang-Zheng (MZZ) Construction
1. Input: Number of output columns = m, degree = d > m, and
resiliency = t.

2. Output: An (n, m, t)-resilient function with degree d and nonlin-
ean't}r 2"'-1 - 2“-[i_1-|,

Procedure
1. Choose an [n, d + 1,t + 1] code to obtain a linear (n, d + 1, #).
resilient function f.
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2. Define g = G o f, where G : {0, E}i*‘ — {0,1)9+! i
and deg(G) = d,nl(G) = 2¢ — 2L, Then

) > 74 (2~ o) s ey
and deg(g) = d.

"’ bijﬁﬂlinn

3. Drop (d + 1 — m) columns from the output of g to gy

an (n,m,t)-resilient function with degree d and nonlipese
on—t _ on-[442] nCary

In Step 2, we choose the function G to be the inverse functjgy
GF(27F’) (with respect to a fixed irreducible polynomial). They e
nonlinearity of GG is 94 9 <] and 1s given in [16)]. There are
bijections by which we get the same value of nl(G) but deg(G) =
is achieved only for & obtained from the inverse map over GF (2%
(see [4]). The factthat ¢ = Gro f is t-resilient if f is f-resilient is givy
in 2 more general form in [2] and also appears in [23].

The modification to the Zhang—Zheng construction is really sj
If we want degree d, then we start with an [n,d + 1.f + 1] code
Then we apply the main step of the Zhang-Zheng construction to g
tain a nonlinear S-box. Finally, we drop d + 1 — m output colymy
to obtain an {n,m,t)-resilient S-box. Though simple, this modifig.
tion is powerful enough to imprave upon the best known constructiyg
with high algebraic degree (6]. This shows the power of the origing
Zhang-Zheng construction. Our contribution is t0 prove by an apgl.
cation of the Griesmer bound that the MZZ construction is superior
the best known construction of Cheon [6]. We know of no other work
where such provable comparisons of construction has been presented

Theorem4: Letn,m,d,t be such that the following two conditicas
hold.

1) Eithera)d < morb)d > m 2 log,(f+ 1).

2) The parameters n, d + 1, t + 1 meet the Griesmer bound wid
equality, Then it is not possible to construct an (2. m. t}-resilient
function f with degree < using Cheon’s method [6).

Proof: Recall the Cheon construction from Section II-D. Give
any (N, M, T+1} and a nonnegative integer D, the Cheon constructioo
produces an (N + D + 1, M, T')-resilient function with degree D.
Thus, if f is obtained by the Cheon construction we must have n =
N+D+4+1lm=Mt=T,andd = D.

This means that an [n — d — 1, m, t 4+ 1] code will be required by

the Cheon construction. Since the parameters n, d + 1,¢ + 1 satisfy
the Griesmar bound with equality, we have n = 3¢ [S].

=0 2
Claim: 1fayd < morb)d > m > log,(t + 1) then
n—-d—1< z

l't-i-l'l
_ 2t |
1=0

Proof of the Claim: Since n = 3¢ | &L | we have that

m -1 t+ 1
26

n—-—d-1< Z
m-ll»

=1

if and only if
d

&

L=

{41

t=0
t+1
[T]-‘*-HZ 5

%[5

If & < m, then the last mentioned condition is trivially true. S0 sthPf’jT'
d > m > log,(t + 1). Then the above inequality holds if and only’
L [t+1
>

2

I=m

Since m 2> log,(f + 1),
: "t +1

2. | %

=1t

This completes the proof of the claim.

]<d+1.

‘|=u‘—-m+1<¢!+1‘ for m > 1.
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Since
m—1
141
n-—d- 1< ; [T]

the parameters n — d — 1, m, ¢t + 1 violate the Griesmer bound and
hence an [n — d — 1,m,t + 1] code do not exist. Thus, the Cheon
method cannot be used to construct the function [, =

The following result 1s a consequence of Theorem 4 and the MZZ,
construction,

Theorem 5: Letn,m, d,t be such that the following two conditions

hold.

1) Eithera)d < morb)d > m > log,(t + 1).

2) An [n,d + 1,¢t + 1] code meeting the Griesmer bound with
equality exist. Then it is possible to construct an (n, m, t)-re-
silient function f with degree d by the MZZ method which
cannot be constructed using Cheon’s method [6}].

Remark: Asmentioned in [14, p. 550] there is a large class of codes
which meet the Griesmer bound with equality. Further, the condition
d > m 2> log,(f+ 1) is quite weak. Hence, there exists a large class of
(n,m, t)-resilient functions which can be constructed using the MZZ
construction but cannot be constructed using the Cheon (6] construc-
tion. See Section VI for some concrete examples.

Nonlinearity in the Cheon method is

(2P - 2" [mmj +2°)

(see item S of Section II-D) which is positive if D > N +1for N > 2,
So, for D < N, the Cheon method does not provide any nonlinearity.
Thus, the Cheon method may provide high algebraic degree but it does
not provide good nonlinearity. In fact, in the next theorem we prove that
nonlineanty obtained by the MZZ method is larger than nonlinearity
obtained by the Cheon method.

Theorem 6: Let f be an (n, m, t)-resilient function f of degree d
and nonlinearity n; constructed by the Cheon method. Suppose there
exists a linear [n, d + 1,% -+ 1] code. Then it is possible to construct an
(n, m, t)-resilient function g with degree d and nonlinearity no using
the MZZ method. Further, ns > n,.

Proof: Since an [n, d+1, t+1] code exists, the MZZ construction
can be applied to obtain an (n, m, t)-resilient function ¢ with degree d
and noolinearity nl(g) = np = 2"~ - on={2*1, 1t remains to show
that n2 > n;, which we show now. Recall that

?'31 - Zﬂ—'l e zﬂ—d-—ll. "2"'J + 2ﬁ—d—2'
Hence,
Ny — my 2 __-211—-“—;—[ 4 2nv-d—l l_\/2_n_l - 2n—d—‘2.

Thus, we have ny > n) if
_2_(.__1- 2 i 2"‘("'*1‘[1/2_’:] _ o—d+2 > 0.

The last condition holds if and only if

1 1
l\/“)nJ 2 2d+| (;ET + —2d+ﬂ) :

2

Song > mi if VE® -1 > 2 + 271 ke if 2% > 2F + L.
Again, the last condition holds for 1 < d < n — 3. Hence, nz 2 ny
for1 < d < n — 3. The maximum possible degree of an S-box is
n—1.Ford = n -1 and d = n — 2, the Cheon construction requires
[0, m, 1+ 1) and [1, m, t + 1] codes, respectively. Clearly, such codes
do not exist. Hence, n, > n; holds for all 4.
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Lemma I: Let f be an (n, m, t)-resilient function f of degree d >
m constructed by the Cheon method and m > log,(t + 1). Then the
parameters n, d + 1, ¢ 4+ 1 satisfy the Griesmer bound.

Proof: Since f has been obtained from the Cheon method, there
exists an [n — d — 1,m, t + 1] code. Hence, the parameters n —d — 1,
m, and £ 4 1 satisfy the Griesmar bound. Sincen—d—=1,m,and ¢ + 1
satisfy the Griesmar bound , we have

1.e, we have

m-1
t4+1
> d ————
n > +1+Z|' 5 ]
1=0
As m > log,(t + 1) we have [2L] = 1 fori > m. Hence,

d m-~1
nz(d+1)-(d-—m+1)+2[%-l-]+2 [5-'2*—1-]

iz=m

This shows

and consequently

Thus, the parameters n, d + 1, ¢ + 1 satisfy the Griesmer bound. [

Remark: Since the parameters n, d + 1, and ¢ + 1 satisfy the
Griesmer bound, in most cases it is possible to obtainan [», d+ 1, ¢+ 1}
code (see [14, p. 550]) and apply Theorem 6. In fact, we do not know
of any case where a function can be constructed using the Checn
method but not by the MZZ method. Theorems 5 and 6 prove the clear
advantage of the MZZ method over the Cheon construction. Thus,
the MZZ method is the currently known best method to construct
{n, m, t}-resilient function with degree d > m.

V. A CONSTRUCTION TO OBTAIN HIGH NONLINEARITY

In this section, we concentrate on obtaining (n,m, t)-resilient
S-boxes with high nonhnearity only. We present a construction
method which improves the nonlinearity obtainable by the previously
known methods. We start by mentioning the following resuit which is
restatement of Lemma 7 n [12].

Theorem 7: Let C be a [u,m,t + 1) code. Then it is possible to
construct (2™ — 1) x m matrix D with entries from C, such that

{C:[Di_l @’”@Cm-Di,m - | .<_: t < 2™ — 1} =C\{(07-“10)}

1Cm) = F;n

Let D be the matrix in Theorem 7. For (1 < ¢ < 2™ -~ 1) and
(1 < j < m),define a u-variable linear function

for each nonzero vector {c;, ...

Li,j{mlnl “a ey mu) é (Dl-.j-r (.']?11. . “b‘TH})*

Given the code C, we definea (2™ — 1) x m matrix L{C') whose entries
are u-variable linear functions by defining the ¢, jthentry of L{C') to be
Li i{x1,....x,). We have the following result which follows directly
from Theorem 7.



Proposition 1: Let ¢ € F7" be a nonzero row vector. Then all the
entries of the column vector L(C)c” are distinct.

For positive integers k, ! with k < 1, we define L(C, k,1) to be the
submatrix of L({C) consisting of the rows & to l. Thus, L(C,1,2™ —
1) = L(C). Let G(31, - .., yp) be a (p,m) S-box whose component
fanctions are Gi, ..., Gm. We define G L{C, k,1) tobean (I — k +

1) X m matrix whose 7, jth entry is
Gj(yl-p“*&yp) D Lk-}-i-l.j(f-l, «se smtl]

forl<i<l—-k+landl <j<mUl—-%k+1=2" forsome
r. then G ® L{C, k, 1) defines an S-box F : {0,1}"+?™* — {0,1}™
in the following manner:

Fj(zlt“*!zﬂyh”wyp: xh“wxu)
= Gj(¥14. .2 ¥p) ® Litiz1.5(T140 0 0 Tu)

wherel € 3 < m,1 << 2, F,...,Fn are the component
functions of F' and 2z, - - - z, is the binary representation of ¢ — 1. By
F = GO L(C, k, I) we will mean the above representation of the S-box
F. Note that the function F' is £-resilient, since each L; ;(z,..., %)
is nondegenerate on at least (£ 4 1) variables and hence ¢-resilient.

In the matrix M = G(y1,...,¥p) & L(C,k,1) we say that the
row L;. of L(C) is repeated 27 times. Let G(y1,-..,yp) and
H(yr,...,¥¢) be (p,m) and (g,m) S-boxes, respectively, and
M, =G L(C,k, 1), M; = H & L(C, k,1). Then we say that the
row L; . of L(C), {k < ¢ < I) is repeated a total of 27 + 27 times
in the matrix (M, M.]".

Proposition 1 has also been used by {17] in the construction of re-
silient S-boxes. However, we improve upon the construction of [17] by
utilizing the following two ideas.

1) Weuseall the 2™ =1 rows of the matrix L(C).In contrast, [17]
uses at most 2™~ rows of L(C).
2) We allow a row of L(C) to be repeated 2™ or 2" + 2% or
271 4272 4 273 times as required. On the other hand, the number
of times a row of L(C') can be repeated in [17] is of the form 2.
It turns out that a proper utilization of the above two techniques re-
sults in significant improvement in nonlinearity. We will require (r, m)
S-boxes with very high nonlinearity. For this, we propose touse the best
known results which we summarize in the following definition.

Definition 1: Let G be an (r, m) S-box satisfying the following.
1) If r < m, G is a constant S-box.
2) Ifm < r < 2m, G is a maximally nonlinear S-box [9].
3) Ifr > 2m and r is even, G is a perfect nonlinear S-box [16].
4) If r > 2m and r is odd, G is concatenation of two perfect
nonlinear S-boxes (see Section II-B).
Then we say that & is a PROPER S-box.

The following result summarizes the best known results on the non-
linearity of PROPER S-boxes.

Propasition 2: Let (G be an (r, m) PROPER S-box. Then

) ¥r < m,nl(G) = 0.

2) ¥m < r < 2m, thennl(G) = 27! — 2°F if r is odd and
nl(@) > 27! — 2% if 7 is even.

3 Xr > 2m, then nl(G) = 2"=1 — 2%~! if r is even and
nl(G) = 27! -~ 2% if r is odd.

Now we are in a position to describe a new construction of resilient
S-boxes. The construction has two parts. In Part A, we compute the
number of rows of L{C) to be used and the number of times each
row is to be repeated. The output of Part A is a list of the form
list < ((n1, R1),(n2, Rg),...,(ni, Rc)) which signifies that »;
rows of L(C’) are to be repeated R; times each. Part A also computes a
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variable called effect which determines the nonlinearity of e Sho,
(see Theorem 8). In Part B of the consbruction, we choose PROPRy
functions based on list and describe the actual constructign
S-box.

Construction-1
1. Input: Positive integers (», m) and ¢.
2. Output: A nonlinear (n.m., t)-resilient S-box F.

Part A
1. Obtain minimum u such that [‘tl-. m.t - l] code C exists.
2. Case: n — u < 0, then function cannot be constructed using thiy
method. Hence stop.
3.Caseen—u 20
@A0< n—u<mlist=((2""%.1)) and effect = 1.
bym < n—u<2m-—1list = (2™~ 1. 2" v —mHly
and effect = 2n~v—m+!,
(©)n —u=2m~—1;list = ({2"71.2™)) and effect =
ol 7 ]+1
@2m < n—u < 3m.
(i)n—u=2m+ 2e;meven; 0 < e < 73
list = {(1.2m+2etl) (2™ — 2,2™%%%)) and
effect = 2¢+1+ %
(in—u=2m+2e+1, meven;0 < e <
o0 S e < % — 2: dist = <(2‘ 2HI+?¢‘.+1
+22¢:+l + 22:)! (9™ —.3: om+2c+1 <4 22¢:+I)) and
effect = 22¢+! 4 22 4 ¢+ 1+ T
oc = 7 — Lilist = ((2™=1.2%™)) and effect = 2™,
(i) R~u=2m+2e+1;modd; 0<e< | 2|~ 1;
list = ((1.2™+3e%2) (2™ o 2, 2m+3<H1)) and

m+=2243
.

(iVIin—u=2m+2e;modd; 0 < e < [%J;h’st =
(2™ — 2,2mF2¢ 4 g2e+1) (1,22¢%2)) and effect =

of ty

mo_
2

15

g2e+] 4 o BEFIL
(V)n —u=3m —1; modd; list = {(2™~'.2"" )} and
effect = 2™

(eyn —u 2> 3m.
Drn—-—u=3m+2e+1;e > 0;list =
((2m~1,22m+2e42)) and effect = 2m+<+).

(ii) n = u = 3m + 2¢; (m even; e 2 3) or (m odd;
0 S e < L%J): list = ((2‘22m+2r + 2m+2.:-
omtemly (2™ — 3,222 4 2mFH)) and
effect = 2m+e 4. 2¢H1+7

Gii)n —u=3m+2e;meven; 0 < e 5 list=
((2!:1 . 2= 22m+2£ + 2m+2¢+1)‘ (]‘ 2nt+"2r+2}) and
effect = 2+ 4 2 Hi+ %

iVyn—uv=3m+2e;modd:e > | Z]:list =

{(2::1 = 22m+2¢ + 2m+25+!)‘ (1‘2m+2c+2)} and
effect = 2m+e 4 2¢+ 75+

Part B
1. If list = ((2°,27));
e Obtain L(C.1,2*) from L(C) by selecting first 2* rows &
L(C).
¢ Let G be an (r.m) PROPER S-box.
e Define F = G L(C.1,2%).
o This covers cases 3.(a),(b),(c).(d)(ii) second item, (d)(¥)
and e(i) of Part A.
2. Case: 3(d)(i) of Part A
olet Gy and Gy be (i + 2¢ + 1.n) and (m + 2e. m)
PROPER S-boxes.
e Define F, = G, & L(C.1.1). iy = G2 & L((’,
o F is the concatenation of F, and F,.
3. Case: 3(d)(ii) first itemof Part Aand ¢ = ()

9 oM 1‘],

-y =-—
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o Lot Gy and G2 be (m + 1, m) and (1, m) PROPER
S-boxes.
e Define Fi = Gi @ L(C), F2 = G2 @ L(C), F3 =
L(C,1,2).
o F is the concatenation of Fy, F> and F3.
Case: 3(dXi1) first item of Part A and e # 0
o Let Gy, G2 and G3 be (m + 2e + 1,m), (2¢ + 1,m) and
(2¢,m) PROPER S-boxes.
oDefine F =G, O L(CL,F2 =G, 8 L(C), I3 =
G3 b L(C, 1! 2)'
o F is the concatenation of Fy, F2 and F;.
Case: 3(d)(iii) of Part-A
eLletGy and G2 be (m + 2e 4 2,m) and (m + 2e + 1, m)
PROPER S-boxes.
o Define Fi = G, & L(C,1,1), F5 = G2 L(C,2,2™ - 1).
o I is the concatenation of /) and Fs.
Case: 3(d)(iv) of Part A
e Let G1, G2 and Gz be (m + 2e,m), (2e 4 2, m) and
(2e + 1, m) PROPER S-boxes.
eDefine F; =G, @ L(C,1,2™ - 2), F» = G2 & L(C,2™,
-1,2" = 1), F5 =G3 @ L(C,1,2™ = 2).
o F' is the concatenation of I}, F5 and F3.
Case: 3(e)(i1) of Part A
e Let Gy, G2 and G5 be (2m + 2e,m), (m + 2¢,m) and
(m + 2¢ — 1,m) PROPER S-boxes.
e Define F, = G, @ L(C), F; = G2 & L(C},
F;} == Ga P L(C, 1., 2).
o F' is the concatenation of I, F» and F3.
Case: 3(e)(inn) and 3(e)(iv) of Part A
e Let Gy, G2 and G3 be (2m 4+ 2e,m), (m 4+ 2¢ + 2,m)
and (m + 2e + 1, m) PROPER 5-boxes.
eDefine F} =G L(C,1,2" -2, F =G, & L(C,2"—~
1.2™ ~ 1), F3 = Gy & L{(C,1,2™ - 2).
o F' is the concatenation of F1, Fy and Fj.

Theorem 8: Construction-I provides a nonlinear {n, m, t)-resilient
S-box with nonlinearity = (2"~ — 2"~ x effect), where effect is
as computed in Part A,

Proof: There are several things to be proved.

a) The output function F is an (n, m) S-box. b) F is t-resilient. ¢)
nl(f) = (2"~ — 27" x effect).

Proof of a); The output of Part A is a

list = {(n1, R1),(n2, R2),..., (ng, Ri)).

Part B ensures that for 1 < i < k, n: rows of L(C) are repeated R,
times each. It is easy to verify that in each case of Part A we have

&
E mR,- = Qn—u
=1

Since each row L; . of L(C) defines a (u, m) S-box, ultimately I 1s

an (n, m) S-box.
Proof of b): Each row L; « of L(C) defines a t-resilient (v, m)

S-box. F is formed by concatenating the rows of L{C') one or more

times. Hence, F is t-resilient.

Proof of ¢): The nonlinearity cafculation is similar for all the cases.
As an example, we perform the calculation for Case 3(e)(i1). In this

case, Part A computes

list =
((2,221'“-]-2:* + 2m+2¢ + 2m+2=-—l)’ (gm b s 3, 22m+2¢ + 2m+2:))
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Let Rl s 22m+2c + 2m+2= + 2m+2e—1 and Ra - 22m+2c +2m+2¢
Rows Ly . and L3 . of L{() are repeated R, times each and each of
the rows L3« to Lzm_1 » 15 repeated R. times each. Part B uses three
PROPER functions G,, G2, and G3 to construct S-boxes F,, F, and
F3, respectively. F is the concatenation of Fy, ¥, and F3. We have to
show that if v is a nonconstant m -variable linear function and A is an
n-variable linear function, then d(vo F, X) > (2" ™! —2"~! x effect).
We write A as

MPrse o sUn—ur L= s T ) S X (W15 e -y Un—u ) DA2(T1,. .., 24).

Letv(z1,...,2m) = {(€1,---,¢m),(21,-.., 2m)) fOr some nonzero
vector ¢ = (€y,...,¢m) € F3'. The Boolean function v o F is a
concatenation of Boolean functions v ¢ ¥y, v o F3, and v o F3. For
1<:1<2

voFi =(reGi)® (L(C)")
and
voF3s =(voGs)® (L(C,1,2)c").

Using Proposition 1, we know that all the entries of the column
vector L{(C)c¥ are distinct u-variable linear functions. Let
L(C)eT = [p1,.. ., 2m—1]T. The function v o F is a concatenation
of the x;’s and their complements, Further, u, and ;22 are repeated K,
times and ua,...,uom . are repeated Ho times in the construction
of vo P.Uf A& {u1,...,2m -1} then d{ A2, s} = 2%~ for each
1 €<i< 2™ —~1andhence d(v o F, A} = 2"~%(2*"!) = 2!
Now suppose A2 = u; for some i € {1,...,2™ ~ 1}. In this case,
d(v o F, ) will be less than 2" " and the actual value is determined
by the repetition factors B; and R,. There are two cases to consider.

Case 1: o = p; or po. Without loss of generality, we assume
A2 = 1, the other case being similar. Since A2 = pu,, we have
d(dz,pi) = 247 for 2 < i € 2™ ~ 1. The function p2 is re-
peated R; times and each of the functions a3, ..., ftlom—) is repeated
R times. So the total contribution of go, 13, ..., gam—1 tod(voF, A)
is 2*~1(R; + (2™ — 3) R2). We naw have to compute the contribution
of 1 to d(v o F, )). The function g, is repeated in v o F; by XORing
with v o G;. Hence, the contribution of w1 to d(F, A) is equal to

2%(nl{v o G1) + nl(v 0 G2) + nl(v 0 G3))
= 2*(nl(G}) + nl(G2) + nl(G3))

since nl(v o G:) = nl(Gi). Bach G; is a PROPER function whose
nonlinearity is given by Proposition 2.
Hence,

dvo F,A) =2""" (R1 + (2™ — 3)Rs + 2(nN(G)

+ nl(G2) + nl{Gs)))

=2"71(2" 7" — (R, — 2(nl(G,)
+ nl(G2) + nl(G3))))

z2l’l-"'-1 - 21.1—1
x (Ry = 2(nl{G1) + nl(G2) + nl(Gs))).
From the given conditions, it is easy to verify that
effect = Ry — 2(nl(G,) + nl{G3) + nl(Gs))

and so

d(vo F, )= (2" ~ 2“7 x effect).
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TABLE 1
COMPARISON OF NONLINEARITY OBTAINED BY MZZ CONSTRUCTION TO THAT ORTAINED BY CHEON [6]

Function 10,3,1,8) | fl"B;,;éL;_)—F, 2,10 524,_5,22[’@?
Cheon [6, Theorem 5 8 216 . 29 | 249 -2V 4 2
MZZ | P | 999 233 _ 216

(24,7,3,12) | (28,6,4,14)

910 ntl
| 2B =2k 22T —2

TABLE 11
COMPARISON OF CONSTRUCTION-I NONLINEARITY WITH THE NONLINEARITY OF [17]

Nonlinearity of [17] r

Construction-I nonlinearity

ah—1 _ ortu-m-1)J2 _ 3 x on-3m—2 (]
2m<n—-u<3Im—3,meven | 2*t = o(riumtl)/2 n-1 - o(n+u—m=-1)/2 _ gn—2m §2;
- 2 Sl mp— J = Y v
Mm<n-—u<am=-3,modd | 271 — 2(ntu-m%)72 gn—T _olniu-m}j77  (3)
n-u=3m-3 | 2° 1 —2l¥mi) - 4 (wtm—T) " (4)
- n-— fi -mMm 2“'-1_._. 2(ﬂ+ﬂ"'m)/ (_ + ﬁ!) (5)
n-u2dmmodd | 2 | _olntu-m)/2  gn-d  gintummi/2(L i i) (6)
TABLE Il
COMPARISON OF CONSTRUCTION-1 NONLINEARITY WITH [17) FOR m = 4 AND RESILIENCY = 1,2,3
n =13 ~ n =14 n=17 _ n=19
=2 | @®-25),F - 025 | (2©-20), (215 ¥2N) [ (28 - 219), (2% — £2™)
n =15 n=16 n=19 n =21
721, %) | ¥ -2),(2F - 5270 | @7 -21), (27 — 32°7)
n=16 n=17 n = 20 n=22
_EIU} {21'5 s 2“), {21'5 . T_J._:Zrl) (21'9 —- 2['235 (21'9 — %212] [ (22'1 _ 213)’(2'11 — %21'3)

Case 2: Az = pi forsomei € {3,...,2™ — 1}. In this case, we
proceed as in the previous case to obtain

dlvo F,))=2""" (2R + (2™ ~ 4)R2) + 2*(nl(G1) + nl(G?2))
=21 (2R + (2™ ~= 4)R2) + 2(nl(G1) + nl(G2))
=2"" (2" — Ry + 2(nl(G)) + nl(G2)))
=2""" = 2'7H(Ry — 2(nl(G1) + nl(G2)))
> 277t — 2* 71 o effect
since
effect=R; —2(nl(G))+nl{G2)+nl(G3))>R: —2(nl{G1 )+ nl{G2)).
By Cases I and 2, it follows that
nl(vo F) =2"~1 - 2¥~! x effect.
Hence, nl(F) = 2"~1 — 2*~! x effect.

V1. RESULTS AND COMPARISONS

Here we compare the construction methods described in this corre-
spondence to the known construction methods.

A. Degree Comparison Based on MZZ Construction

We present examples to show the advantage of the MZZ method over
the Cheon method. The Cheon method cannot construct (=, m, t)-re-

silient functon of degree d > m > 2 if the following two conditions
hold:

'q

2) The parameters n, d + 1, t + 1 satisfy Griesmer bound with
equality.

We next present some examples of »n, m, 4, and ¢ satisfying condi-
tion (1) and (2) such that the MZZ method can be used to construct an
(n, m, £)-resilient function with degree d.

p——
—p—

a)t =1,2<m < dn
[d + 2, d + 1, 2] code exists.

d + 2. It is easy to check that a

b) ¢ 2,2 < m < d,(n.d}y = (6.2).{7.3).(8.4).(9.5.
(10.6).(11,7). In each case, an [n. d + 1.t + 1] code exisis,

&)t =23,2<m<d(nd = (7.2).(8.3). (11.6). (12,3
(13, 8). In each case, an [2.d + 1.t + 1] code exists.

In a)—c), an (n.m,t)-resilient function with degree 4 can be con-
structed using the MZZ method, but cannot be constructed using the
Cheon method (see Theorem 5). Now we present some examples wien
both the MZZ and Cheon methods construct (. m. ¢)-resilient fum
tions with degree d and compare their nonlinearity using Theorem 6.
An (n.m, d.t) S-box is an (n.m.t)-resilient S-box with degree d.
We see in Table I that in each case the nonlinearity obtained by the
MZZ method is far superior to that obtained by the Cheon method.

B. Nonlinearity Comparison Based on Construction-1

We compare the nonlinearity obtained by Construction-I to the por-
linearity obtained in {17, Theorem 4]. The nonlinearity obtained in (17
is better than the nonlinearity obtained by other methods. Hence. wed®
not compare our method with the other methods. It is to be noted that i
certain cases the search technique of [12] provides better nonlinearty
than [17].

Qur first gbservation is that the nonlinearity obtained by Consu'l.li'
tion-I is at least as large the nonlinearity obtained in [17). The intvit*
reason is that we use all the rows of the matrix L(C') and hence the e
etition factor is less than that of [17). The detailed verification o_fﬂ"
superiority of Construction-1 over {17] is straightforward but tedious:
In Table II, we summarize the cases under which Construction- )’icw
higher nonlinearity than [17). We list the different cases of Part A cor
responding to the different rows of the table.

1) Case 3(d)(ii)first item; 2) Case 3(d)(iv); 3) Case 3(d)(i) and (&
3(d)(iid); 4) Case 3(d)(ii)first item; 5) Case 3(e)iii), m > 2 and ¥
3(e)(ii), m > 2; 6) Case 3(e)(iv), in > 1.

In Tables [II-V, we provide some concrete examples of ¢ases ‘"r:;
the nonlinearity obtained by Construction-I is better than that obta:®
by [17]. Each entry of Tables III-V is of the form (. b). where d B

S L ined bY
the nonlinearity obtained by [17] and b is the nonlineanty obtained
Construction-1.
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TABLE 1V

COMPARISON OF Coumucnou-l NONLINEARITY Wrm 7] F()R m = 5 AND RESILIENCY =

11 2}3

n—lﬁ 1
I (20 - 29), (2™ - E2%) r‘

n=19

| @ -27),Q% -2 [ 2

n =18 T n=19 -
NCAEPNEAEE “Tﬁ- 21%), (2% - 2T

TABLE V
COMPARISON OF CONSTRUCTION-[ NONLINEARITY WITH [} 7] FOR ™/ = 6 AND RESHIENCY = 1,2, 3
=10 n =21 n=22
I (2% - 2_,‘}), (27 - 2T 21T) | (@ = 2), (2™ - 21Ty | (29 —21%), (3% = {2“")
n=22 n=24 n = 25
| (271 =21, (27 = 215) (28 -5, % -2
n = 22 T n=24

T,

_21!) -*‘17(2 - Euuézz_%zm)—*

(27 =27), (27 = 2

TABLE VI
COMPARISION OF CONSTRUCTION-I NONLINEARITY OF (36, 8, ¢)-RESILIENT S-BOXES USING DIFFERENT METHODS
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The lincar codes used in Table III are [5,4,2], [7,4,3], and REFERENCES

8,4,4). The second, fourth, and sixth rows give the nonlinearity
f (n, m, t)-resilient functions corresponding to the codes [5, 4, 2],
7,4, 3], and [8, 4, 4], respectively, for different values of . The linear
‘odes used in Tabte I'V are (6, 5, 2], [9, 5, 3), and (10, 5,4].

The linear codes used in Table V are [7,6,2], [10,6,3], and
10, 6, 4]. Nonlinearity of (36, 8,¢) resilient S-box has been used as
very important examples in [12], [13], [17). Now we compare our
ronlinearity with results in Table V1. The results of [12] are not con-
structive, They show that a resilient S-box with such parameter exists.
Note that, except for resiliencies of order 1 and 3, our nonlinearity is
better than nonlinearity of [17]). It should also be noted that in all the
cases we provide construction with currently best known nonlinearity.

VII. CONCLUSION

In this correspondence, we considered the construction of nonlinear
resilient S-boxes. We proved that the correlation immunity of a re-
silient S-box is preserved under composition with an arbitrary Boolean
function. Our main contribution has been to obtain two construction
methods for nonlinear resilient S-boxes. The first construction is a
simple modification of an elegant construction due to Zhang and
Zheng [25]. This provides (n,7n,{)-resilient S-boxes with degree
d > m. We prove that the MZZ construction is supenor (o the only
previously known construction [6] which provided degree d > m. Our
second construction is based on concatenation of small affine func-
tions to build nonlinear resilient S-boxes. We sharpen the technique
to construct (n, m, t)-resilient S-boxes with the currently best known
nonlinearity.

Algebraic attacks {8] are a new type of attack on stream ciphers.
These attacks exploit the fact that even if a function may have high de-
gree, it may have a low degree multiple. In this correspondence, we
have not considered algebraic attacks. A possible future work 1s to
identify the possible subclass of functions which can resist algebraic
attacks.
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Abstract—The total squared correlation (TSC), maximum sq
correlation (MSC), sum capacity (C, ), and total asymptotic effic;
(TAE) of underioaded signature sets, as well asthe TSC and C,, . of::"
loaded signature sets are metrics that are optimized simultaneousty n“;
the real/complex field. In this present work, closed-form expressione an
derived for the MSC, C,,,,,,, and TAE of minimum-TSC binary SIgNatuy
sets. The expressions disprove the general equivalence of these Perfer.
mance metrics over the binary field and establish conditions on the NuMbgy
of signatures and signature length under which simultaneous optimizatiy
can or cannot be possible. The sum-capacity loss of the recently designeg
minimum-TSC binary sets is found to be rather negligible in COmMparisy
with minimum-TSC real/complex-valued (Welch-bound-equality) sets,

Index Terms—RBinary sequences, code-division multiple access (CDMy;
code division multiplexing, codes, signal design, spread-spectrum commg
nications, Weich bound.

I. INTRODUCTION AND BACKGROUND

In direct-sequence code-division-multiple-access (DS-CDMA) sys.
tems, individual user signals use distinct signatures (also known a
spreading codes) to access a common, in time and frequency, com-
munication channel. In conjunction with channel and receiver desig
specifics, the overall system performance is determined by the selection
of the user signature set. Signature set metrics of interest include the
total squared correlation (FSC) [1]-[6], maximum squared correlation
(MSC) [1], {2], sum capacity Ci, o [2], and total asymptotic efficiency
(TAE) [7], [8). We recall the definitions of these metrics below.

If

Sé[ﬂ 82 ... 81, 8;‘ECL, lé:l] = 3 & =12k wsun R

is an L x A’ matrix that represents a set of A" normalized (complex-
valued in general) user signatures of length (spreading gain) L. then

1) the TSC of § is the sum of the squared magnitudes of ali innet
products between signatures

v K
TSC(S) 233" [sl's; - 0

=1 =1
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