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ABSTRACT

Given a hexagonal cellular network with specific demand vector and frequency sep-
aration constraints, we introduce the concept of a critical block of the network, that
leads us to an efficient channel assignment scheme for the whole network. A novel idea
of partitioning the critical block into several smalier sub-networks with homogeneous
demands has been introduced which provides an elegant way of assigning frequencies to

the critical block. This idea of partitioning is then extended for assigning frequencies
to the rest of the network. The proposed algorithm provides an optimal assignment for
all well-known benchmark instances including the most difficult two. It is shown to be

superior to the existing frequency assignment algorithms, reported so far, in terms of
both bandwidth requirement and computation time.

Keywords: Channel assignment problem, lower bound, bandwidth, frequency separation
constraints, k-band buffering.

1. Introduction

In a mobile cellular network, each cell of the network is assigned a set of chan-
nels to provide services to the individual calls of the cell. The Channel Assignment
Problem (CAP) deals with the task of assigning frequency channels to the cells
satisfying some frequency separation constraints to avoid channel interference and
using as small bandwidth as possible. We are considering here the static model of
the channel assignment problem, where the number of calls to each cell is known a
priori. For a network, the available radio spectrum is divided into non-overlapping
frequency bands. We assume that the frequency bands are of equal length and are
numbered as 0,1,2, - - - from the lower end. Each such frequency band is termed as
a channel. In this context, the terms channel assignment and frequency assignment
will be used interchangeably in our discussions. The highest numbered channel re-
quired in an assignment problem is termed as the required bandwidth. Three types
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of interference are generally taken into consideration in the form of constraints: i)
co-channel constraint, due to which the same channel is not allowed to be assigned
to certain pairs of cells simultaneously, ii) adjacent channel constraint, for which
adjacent channels are not allowed to be assigned in certain pairs of cells simultane-
ously, and iii) co-site constreint, which implies that any pair of channels assigned
to the same cell must be separated by a certain number [24].

In its most general form, the channel assignment problem is equivalent to the
generalized graph-coloring which is a well-known NP-complete problem [8]. The
cellular network is often modeled as a graph and the channel assignment problem
has been formulated as a graph coloring problem by several authors {10, 22, 26]. In
all these studies the graph used to model the cellular network ignores the geometry
of the network. Some authors {9, 15, 18, 20, 21] have, however, considered the geom-
etry of the network and solved the channel assignment problem optimally in some
cases. In [20], Sen, Roxborough and Medidi presented three channel assignment
algorithms taking the hexagonal cell structure into account. The first considered
only co-channel constraint and the remaining two considered both the co-channel
and adjacent channel constraints. Approximate algorithms using neural networks
[5, 12, 14, 23], simulated annealing {4, 17] and genetic algorithms [2, 16, 19], have
also been proposed to solve this problem.

In 2, 5, 11, 12, 13, 19, 22, 24, 25, 26] authors have used their assignment algo-
rithms on eight well-known benchmark instances for the given channel demands on
hexagonal cells. It is quite easy to derive the optimal solution for the six benchmark
instances other than problems 2 and 6, because in all these six cases the required
number of channels is primarily limited by the co-channel interference constraint.
Most difficult is, however, to get the optimal solution for the other two benchmark
instances - problems 2 and 6 [1, 2}. For instance, the optimal assignment for prob-
lem 6 needs 253 channels, whereas the assignment algorithm given in [19] requires
165 hours on an unloaded HP Apollo 9000/700 workstation, to produce only a non-
optimal solution with 268 channels. Later, however, the authors in [2] proposed
an algorithm which provided an optimal solution for both the problems 2 and 6
with a running time of 8 and 10 minutes respectively, on the same workstation.
Recently, an algorithm for CAP called FESR (Frequency Exhaustive Strategy with
Rearrangement) has been proposed in [25] which produces only non-optimal solu-
tions to the benchmark problems 2 and 6. A Randomized Saturation Degree (RSD)
heuristic reported in [1] also produces non-optimal solutions for both the problems 2
and 6. However, combining the RSD heuristic with a Local Search (LS) algorithm,
the authors in (1] were able to find an optimal solution for problem 2 but not for
problem 6. Most recently, the heuristic algorithm in [3} also produces non-optimal
results for problems 2 and 6 both.

In this paper, we first introduce the notion of a critical block of cellular network of
hexagonal structure with a 2-band buffering, where the interference does not extend
beyond two cells. Next, we present an algorithm for finding the critical block of
the cellular network, followed by the introduction of a novel idea of partitioning
the critical block into several smaller sub-networks with homogeneous demands,
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using integer programming. This partition makes the frequency assignment to the
critical block very simple. After assigning frequencies to the cells of the critical
plock, we extend the partitioning technique further to consider the assignment for
the remaining cells of the network. |

The proposed algorithm provides an optimal assignment for all eight well-known
benchmark instances including the most difficult two, i.e., problems 2 and 6. Using
our proposed assignment algorithm, we need, on an average, only a few seconds
for channel assignment of all the six benchmark instances other than problems 2
and 6, on an unloaded Sun Ultra 60 workstation. For the benchmark problems
2 and 6, however, our algorithm needs only 60 seconds and 72 seconds of running
time, respectively on the same workstation. These running times may be contrasted
with 8 minutes and 10 minutes, respectively on an unloaded HP Apollo 9000/700
workstation, as reported in [2].

The rest of the paper is organized as follows. Section 2 describes the basic model
and the preliminaries. Section 3 presents the algorithm for assigning channels to
a given distance-2 clique. In section 4, the notion of a critical block is introduced.
Section 5 describes the algorithm for assigning frequency channels to the entire
cellular network. Simulation results and its comparison with other well-known CAP
algorithms are discussed in section 6. Concluding remarks are included in section
1.

2. Preliminaries

Here, we first present the general model for Channel Assignment Problem (CAP)
for any arbitrary cellular network. Next, considering the regular geometry of the
cellular network, we describe a notational framework for the concepts developed
later.

2.1. General Model of CAP

We use here the same model as described in (10, 21, 22|, which consists of the
following components:

1. The number of distinct cells, say n, with cell numbers as 0,1,...,.n — 1.

2. A demand vector W = (w;) (0 < i < n — 1) where w; represents the number
of channels required for cell i.

3. A frequency separation matrix C = (ci;) where c¢;; represents the frequency
separation requirement between a call in cell 7 and a call in cell (0 < 4,5 <
n—1),

4. A frequency assignment matrix ¢ = (¢;;), where ¢;; represents the frequency
assigned to call j in cell ¢ (0 < i < n~1,0 < j < w; —1). The assigned
frequencies ¢i;’s are assumed to be evenly spaced, and can be represented by
integers > 0.

9. A set of frequency separation constraints specified by the frequency separation
matrix : |¢g — j1| > ¢y for all ¢, 4, k, 1 (except when both ¢ = j and & = ).
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The goal of the channel assignment problem is to assign frequencies to the cells
satisfying the frequency separation constraints, as specified by the component 5
above, in such a manner that the required system bandwidth becomes optimal.

Call 7 in cell 7 is represented as a node (ij) of a graph and the nodes (ij) and
(kl) are connected by an edge with weight ¢k, if c;x > 0. We call this graph as a
Channel Assignment Problem (CAP) graph following the terminology in [21]. In our
model, we assume that the channels are assigned to the nodes of the CAP graph in a
specific order and a node will be assigned the channel corresponding to the smallest
integer that will satisfy the frequency separation constraints with all the previously
assigned nodes. Suppose there are m nodes in the CAP graph. Therefore, the
nodes can be ordered in m! ways and hence for sufficiently large m, it is impractical
to find the best ordering by an exhaustive search due to exponentially increasing
computation time, Usually, algorithms are developed so as to find the optimal or at
least a near-optimal solution to the channel assignment problem within a reasonable
amount of computation time.

2.2. Cellular Graph and Distance-2 Clique

The above model represents the CAP in its most general form. However, the reg-
ular geometry of hexagonal cellular network enables us to reformulate the problem.
Here follow some definitions for the cellular network having a regular geometry.

Definition 1 The cellular graph is a graph where each cell of the cellular network is
represented by a node and two nodes have an edge between them if the corresponding
cells are adjacent to each other (i.e., when the two cell boundaries share a common
segment) [20].

Definition 2 The cellular network is said to belong to a k-band buffering system
if it i3 assumed that the interference does not extend beyond k cells from the call
originating cell [20].

We assume that the calls in the same cell should be separated by at least sg and
the calls in the cells those are distance i apart should be separated by at least s;,
1 < < k, for avoiding channel interference.

Definition 3 Suppose G = (V, E) is a cellular graph. A subgraph G’ = (V', E') of
the graph G = (V, E) is defined to be a distance-k cligue, if every pair of nodes in
G’ is connected in G by a path of length at most k [20].

In all our later discussions, we assume that the cellular graph is hexagonal in

nature with a 2-band buffering restriction.

Definition 4 A distance-2 clique with 7 nodes is defined as a complete distance-2
clique of the hezagonal cellular network, and the node at distance-1 from all other
remaining nodes is termed as the central node of that distance-2 clique. Nodes other
than the central node are termed as the peripheral nodes.

Example 1 Fig. 1{a) shows a complete distance-2 clique of a hezagonal cellular
structure, where node 4 is its central node, and all other nodes are peripheral nodes.
Definition 5 In any distance-2 clique, joining the node pairs at distance-2 by
dashed edges, we generate the graph defined here as the cellular clique Q2. The
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w )
Fig. 1. (a} A complete distance-2 clique G (b) A complete cellular clique Q2.

cellular clique generated from a complete distance-2 clique is defined as a complete
cellular clique.

Example 2 Fig. 1(b) shows the complete cellular clique Q2 corresponding to the
complete distance-2 cligue G shoun in Fig. 1(a).

2.3. Clique-Classes

Fig. 1(b) shows that any cellular clique consists of two types of edge sets - i) set
E, for connecting the node pairs at distance-1 (shown by solid lines), and ii) set E;
for connecting the node pairs at distance-2 (shown by dashed lines). We represent
it as Qo(V, Ey U Ep). With reference to Q2, we extend the usual definitions of an
induced subgraph, and graph isomorphism in the following way:
Definition 6 Given any graph G = (V,Ey U Ey), E;, Ep being the sets of two
types of edges (solid and dashed), for any V' (V' C V), G’ = (V', E{ U E3) s the
induced subgraph of G if and only if E{ C Ey contains all the solid edges existing
in G between two nodes vi,v; € V', and E} C Ey contains all the dashed edges of
G ezisting between two nodes vp,vg € V',
Definition 7 Two graphs G = (V, E1 U E3) and G’ = (V', E{ U Ej}) are said to be
isomorphic to each other, if there is a one-to-one correspondence between their ver-
tices and between their edges of respective types, such that the incidence relationship
is preserved for both.
Example 3 Fig. 2 shows three induced subgraphs of cellular cligue Q2 shoun in
Fig. 1(b), where Figs. 2(a) and 2(b) are isomorphic to each other, but Fig. 2(c) is
not isomorphic to any of them.

1 1 1
| | 2
3 2
<. <
6 s 4
(a) ©

®)
Fig. 2. Three induced subgraphs of Q2.
Let us denote the set of nodes in the complete cellular clique Q- of Fig. 1(b) by

V'=1{1,2,3,4,5,6,7}, and let S be the set of all possible subsets of  nodes taken
from V. That is, S®={V® : V() € V and |[V¥)| =i,1 < i < 7}. Cleatly |V =
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7C;, 1 < i< 7. Suppose, V' € S®), A conflict-free assignment of w frequencies to
each of the nodes in V'’ will be termed as a homogeneous assignment with weight
w and will be denoted by A, (V’). The minimum bandwidth required for A,,(V")
actually depends on the connection pattern of the nodes in the subgraph of Q4
induced by the nodes in V.
Definition 8 All subsets of nodes V¥ € §¥) 1 < i < 7, are classified in r; disjoint
clique-classes, say, C®(1),0®(2),---,C%(r;) so that two node sets V¥ and V)
belong to the same clique-class if and only if the subgraphs of Q2 induced by Vl(ﬂ
and V«‘,(i) are isomorphic to each other.
Example 4 : Consider V' = {1,3,6}, V" = {1,2,5}, and V" = {1, 2,4} belonging
to S of the complete cellular cligue Q2. The corresponding induced subgraphs are
shown in Fig. 2. As already mentioned, the graphs of Figs. 2(a) and 2(b) are
isomorphic to each other, but Fig. 2(c) is not. Therefore, V' and V" belong to the
same cligue-class, while V" belongs to a different clique-class.

The member sets in different clique-classes corresponding to each S®,1 < i < 7,
for the complete cellular clique of Fig. 1(b) are shown in Table 1.

With reference to Table 1, the u** subset of nodes of the class C¥)(j), is denoted
as VI(j) (1 €i<7,1<5 <mi 1 Su < ICG))).
Remark 1 Given any distance-2 cligue G of the hezagonal cellular network, even
if it is not complete, Table 1 can be used to identify the corresponding clique classes
just by deleting the nodes which are not present in G.

2.4. Class-Bandwidth and Increments

As the subgraphs of the complete cellular clique Q3 induced by the elements in
each C(¥(j5) (1 < j < r;,1 < i <7) are all isomorphic to each other, the minimum
bandwidth required for the assignment A;(V”) is same for all V' € CG)(j).

(1.0 2014 100 2(2,2)

\VAV/

&(1.1) 7(1.5) &L1) #2.3)
(a) ®)
Fig. 3. Different frequency assignments to a complete distance-2 clique for (a)
82 < 81 < 282 (b) 51 > 2s2.

Definition 9 Given any V' € CUO(§), the minimum bandwidth reguired for the
assignment A1(V') is defined as the class bandwidth for the class C¥)(5), end is
denoted by P (j) when s; < 81 < 282, and P (5) when 51 > 2s2.

In (6], it has been shown that the minimum bandwidth required for assigning
channels to a complete distance-2 clique of a hexagonal cellular network having
homogeneous demand of ‘only one channel and 2-band buffering, with frequency
separation 81 > 87, is (8;+582) when s2 < 8, < 25, and (281 +3s2) when 8; = 23;.
The corresponding assignments are shown in Figs. 3(a) and 3(b) respectively, where
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the label (c, B) associated with a node indicates that a frequency (asy + Bs2) is
assigned to that node.

Table 1. Class bandwidths and increments of different clique-classes for a
complete cellular clique.
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Note that, the class bandwidth for every class can be found by suitably rear-
ranging the assignments of Figs. 3(a) and 3(b) for the cases when sz < 83 < 233
and s > 2s,, respectively, All the class bandwidths of the respective classes are
shown in Table 1.
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Example 5 For s < s1 < 282, the class bandwidth P®)(4) for the clique-class
CG)N4) is 4s2. Two possible assignments for A1(V') where V! = {1,2,3,5, 6} €
C®)(4) are shown in Figs. 4(a) and 4(b). These assignments are obtained by
sustably rearranging the assignments shown in Fig. 3(a). Similarly, for s; > 2s,,
two assignments of the same node subset are shown in Figs. 5(a) and 5(b). The
corresponding class bandwidth is P"®)(4) = s,+2s,. These assignments are obtained
by suitably rearranging the assignments shown in Fig. 3(b).

10.0) 2(0.4) 1©,1) 2(0,4)
30,3) 50,2)  3(0.3) 5(0.2)
6(0,1) 7 6(0,0) 7
@ ®
Fig. 4. Two different assignments A;(V’) with V' = {1,2,3,5,6} for s2 <

81 < 2s39.

Let us now consider an assignment A;(V’) where V/ € C)(j). In the first
round, a single channel is assigned to each node, using bandwidth equal to the
respective class bandwidth P®(j). In such an assignment, say u and v are two
nodes which are assigned the minimum and maximum frequencies 0 and P (j)
respectively. In case of multiple channel demand, our idea is to assign the channels
in the second round, starting from the node u again and following the same order
as it was in the first round and so on. In that case, increment, i.e., the minimum
frequency by which we can start again at node u without conflicting the already
assigned frequencies, depends on: i) the distance between nodes u and v and ii) the
relative values of sg, 8; and sg, and it can be defined formally as follows:

10,0) 2(1.2) 1©.1) 2(1,2)

30,1 5(0.2) m.n%’wm
7 7
® )

60.1) 6(0.0)
Fig. 5. Two different assignments A; (V') with V' = {1,2, 3,5, 6} for s; > 2s3.

Definition 10 For a given subset of nodes V! € C¥)(j), let u and v be two nodes
which are assigned the minimum (zero) and mazimum (P()(j)) frequencies, re-
spectively in an assignment Ay (V'). Then an assignment A}(V') is defined as the
optimal partition assignment, if it requires a bandwidth equal to the class bandwidth
PW(5), with u and v being farthest apart. If ID(j) is the minimum frequency
that can be assigned next to the node u for A3(V') without any conflict to the al-
ready assigned frequencies in A}(V'), then we define I)(j) as the increment for
the clique-class C™) ().

Example 6 Figs. 4(a) and (b} show two different assignments for A;(V'), where
V' = {1,2,3,5,6} € C)(4). Both require the minimum bandwidth Pfs)(4)=482-
But the distance between nodes u{minimum frequency) and v(maximum frequency)
are 1 and 2 in Figs. 4(a) and (b) respectively. Thus, for the next round frequency
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assignment in Fig. 4 (a), the minimum frequency by which we can start at node 1
(i.e., node u ) is maz(so, 51 + 4s2); while in Fig. 4(b), the minimum by which we
can start at node 6 (i.e., node u) is maz(so, 5s2).

Therefore, the assignment of Fig. 4(b) is the optimal partition assignment and
maz(se, 552) is the increment of class C4)(4), '

Similarly, for 81 > 2s2, where the class bandwidth is P'*)(j), the increment

J@(j) can be defined accordingly. Figs. 5(a) and 5(b) show two different as-
signments for 51 > 2s2 with the same bandwidth P8} = g + 2s5. But the
assignment of Fig. 5(b) is the optimal partition assignment with corresponding
increment J®{(j) = maz(so,2s1 + 82).
Remark 2 As all the members of a particular class C¥)(}) are isomorphic to each
other, the increment for all the members of a particular class is same. We compute
all ID(G) and JO), (1 <j < 13,1 4 < 7), for the complete distance-2 clique
and present these values in Table 1.

From now onwards, we will mention the results for s; < 2s with increment
I9(j) only. Similar results would also be true for s; > 2s; with increment J(5).

After getting the optimal partition assignment A}(V’) where V' € C')(4), and

the increment I9(j) for class C¥(j), the multiple weight assignment can be ob-
tained by the following result.
Lemma 1 For the multiple weight assignment A,,(V'), w 2> 1, the node u can be
successively assigned the frequencies 0, I (5), 2I9(3), ..., (w—1)I¥(j). Similarly,
each of the remaining nodes in V' can be assigned w frequencies with successive gaps
of I (j), giving rise to a total bandwidth requirement of (P (3) + (w — NI®(5)).

Proof : See [7].

Next we present some lower bounds on the bandwidth requirement of a distance-
2 clique.

2.5. Bandwidth-Bounds for Distance-2 Clique

Before describing the algorithm to assign channels to the distance-2 clique, it
is necessary to know the lower bounds on the minimum number of frequencies
needed for its assignment to check the optimality of the solutions achieved. For a
complete distance-2 clique G, the minimum bandwidth (B,(,i?n) required to satisfy a
homogeneous demand w, has been derived in [6]. Let us now consider the complete
distance-2 clique G with non-homogeneous demand vector W = (w;) (w; being the
channel requirement for cell i) where w = mazr(w), i = 1,2,-++,7. It is evident

that the minimum bandwidth (B,(,:’,.)n) required to satisfy the homogeneous demand
w, is an upper bound on the minimum bandwidth requirement Bpn of G with the
demand vector W = (w;). It is also evident that a lower bound on Bpin for G is
(w—1)sq. However, this lower bound is not always tight for all values of s¢, 81, s2,
and W. We find a tighter lower bound on bandwidth for the general case in the
following way:
Lemma 2 A lower bound on Bpin for G with demand vector W = (w;), where
W=maez(w;), i =1,2,---,7, is :

1. maz((w—1)so, (1, wi — 1)s2+ (so — 52){wa —2) +2(s1 — 52)) for s1 < 80 <

(2s; ~ 82), and
2. ‘n;a:::((w ; 1)30, (ZZ=1 w; — 1)82 + 2(81 - 82)(1!14 - 2) + 2(81 - 32)) fOT 8o =
81 — 82).
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Proof : See [7].
It does not, however, necessarily mean that there always exists a conflict-free
assignment of G with the lower bound given above.

3. Frequency Assignment of a Distance-2 Clique

We present an algorithm for assigning frequencies to the nodes of a given distance-
2 clique G with a demand vector W = (w;), 1 < ¢ < 7 and the frequency separation
constraints sq, $;, and s3. The assignment is done in two steps. First, we break-up
the total demand of G which is non-homogenous in general, in terms of homoge-
neous demands on different subgraphs of G;. Each such subgraph of Gz is also a
distance-2 clique. This process will be termed as partitioning of demand into ho-
mogeneous subsets and will be done through an integer programming formulation.
After this partitioning of demand is done, the actual assignment of frequencies with
homogeneous demands taken together on the appropriate subgraphs of the given
distance-2 clique, is done by another algorithm. Finally, all these homogeneous
assignments on the appropriate subgraphs of the given distance-2 clique together
constitute the non-homogeneous assignments of Gs.

We now present the integer programming (IP) formulation for the partitioning
of demand into homogeneous subsets.

8.1. Integer Programming (IP) Formulation

Given any distance-2 clique G5 with its demand vector W = (w,) and frequency
separation constraints (so, s1, and sz), we apply IP technique to find the homoge-
neous weight xH (4) for the subset v (4), for all 1, j, u, such that they together
satisfy the total demand given by W, and at the same time keeps the required
bandwidth minimum. We formulate the problem in the following way:

Min.imize [(21«57,153'5:-,-.15u5|0(*)(5)lI D@ )X‘(‘i)(j )
subject to the following constraints :

2. All X,(f)(j)’s are integers.
The non-zero X ff)(j )’s obtained from the solution to the above integer programming

problem consists of the partitions of G into several sub-sets with homogeneous
demands.

Let the solution set consist of £ non-zero x& (5)’s denoted as {X,(f,‘) (71)s X,S?) (J2,
ey XS(Gk)} Where 1 € ip €7, 1 S jm < ri,1<m <k and 1l < up <
|Clm)(j)|. For ease of notation we refer to the value of X5 (Gm) by am,
1 <m <k, and the complete solution set will be denoted by a = {a1, a2, ..., ax}.
Let the corresponding set of partitions be § = {thf‘)(jl), V,,(:“)(jz), aeey V,E:") ()}
Example 7 Consider the distance-2 cligue Go shown in Fig. 6(a) where the label
[o} associated with a mode indicates the demand of that node. Let the frequency
separation constraints be so = 5, s} = 2, and sp = 1. The increments for different
classes are taken from the last column of Table 1. The solution to the IP formulation

for this problem is: X (1) =7, XP(4) =5, X¥(1) =3, x¥(1) =13, xP ) =
12, X,9(1) = 5. From Table 1, § = { V¥ (1), v®(4), v¥(), v®(), (),
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Fig. 6. A distance-2 clique G2 and its partitions.

1/5(3)(1)}, with the corresponding subgraphs as shown in Figs. 6(b)-(g). We call
these subgraphs of Figs. 6(b)-(g) as partitions Py, Py, ..., Pg respectively.

After the partitioning of demands, the assignment of frequencies to different
nodes is to be done according to an optimal ordering of partitions, as described in

the following subsection.

(0} )]

3 4 5
oV 14}
w ® ©
1 2 1 2z
12} 1
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3 /] 3 3 4
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@ @ o

Fig. 7. Optimal partition assignment for G3.

3.2. Ordering of Partitions

The actual assignment of frequencies to different nodes, following the above
Partitioning of demands is a bit tricky. We first restrict to the case where assignment
for each partition is done exactly once. We would then generalize this for multiple
assignments on each partition using Lemma 1. For example, the assignment of a
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single frequency to each of the partitions Py, Ps, P3, Py, Ps, and Pg separately
corresponding to the Example 7, is shown in Figs. 7(a)-(f). Note that each of these
assignments in these partitions is done requiring the corresponding class bandwidths
of the respective classes. Within a particular partition P;, 1 < i < 6, the assignment
of frequencies to the different nodes is, however, not unique. Figs. 7(a)-(f) show
only one possible such assignment. Now, to combine these assignments so as to
meet the required total demand on each node, we have to assign frequencies to all
these partitions in a certain order.

For single assignment to each partition, we observe that assigning frequencies to
these partitions in a different order would result in a different bandwidth require-
ment. For example, if we first assign the frequencies to the nodes of Py, then the
assignment according to the partition P, would necessitate a frequency of 6 on node
1, which would finish with a frequency 10 on node 6. Continuing this way for the
partitions P, Py, Ps, and Ps and in this order we would see that the maximum
frequency assigned is 31 on node 4 (Fig. 8). On the other hand, the assignments in
the order Ps, Py, P, Ps, P2, P} would lead to a maximum frequency requirement of
34. Note that, using each of these partitions once in this whole assignment process,
we actually assign 2, 2, 5, 5, 6, and 4 channels on nodes 1, 2, 3, 4, 5, and 6 of G»
respectively. We represent this by another clique G with demand vector P:(2, 2,
5, 5, 6, 4) as shown in Fig. 9(a). The corresponding assignment is shown in Fig,.
9(b).

(12}

(19}

@

Fig. 8. Ordering of partitions of G2 for optimal assignment.

We check that the assigned numbers of channels on all the nodes of G sum to
24. Since sp = 5, 8; = 2 and sz = 1, the lower bound on bandwidth required for
the assignment of G can be found from Lemma 2 as 31 (= maz(5x 5,23 x 1 +2 %
1 x 3+ 2 x 1)), which is the same as obtained in Fig. 9(b). However, this minimum
bandwidth may not always be achievable unless we can assign both the minimum
and maximum frequencies to the central node 4.

Next let us consider the general case where each partition may be assigned mul-
tiple frequencies. Before describing the algorithm, we illustrate the basic ideas with
an example. With reference to Example 7, the actual weights for the partitions
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Fig. 9. (a) G} with demand vector P  (b) Optimal solution for G5.

Py, Py, ..., Ps of Figs. 6(b)-(f) are 7, 5, 3, 13, 12, and 5 respectively. The assignment
shown in Fig. 10(a) is obtained from the assignment of Fig. 8(a) by assigning 7
frequencies to all the nodes of P, with successive gaps of 7, since the increment
for the class to which the partition P, belongs, is equal to maz(sg,2sy + 3s2) =
7. Similarly, the assignments As(Vi®(4)), As(V(1)), Ais(VA (1)), Ana(VE(1)),
and As(V(1)) shown in Figs. 10(b)-(f) are obtained from the assignments in Figs.
8(b)-(f) respectively, by changing the starting frequency channel accordingly and
maintaining the same ordering Py — P — P3 — Py — P; — P;. All the assign-
ments of Figs. 10(a)-(f) together constitute the assignment for the given distance-2
clique Ga. :

It is to be noted that the total demand on all nodes of G2 of Fig. 6(a) is 175.
Since sop = 9, s; = 2 and s2 = 1, the lower bound on bandwidth required for the
assignment of G2 can be found from Lemma 2 as 252 (= maz(44 x 5,174 x 1 +2 x
1 x 38 + 2 x 1)). Therefore, the assignment of Figs. 10(a)-(f) for the clique G is
optimal,

{4-46} {48-68) (8131}
2

(2-44) {50:70) {4969
5 ] 4 5

increment=7 increment=5
weighix7 ) weight=$

{547

increment=5
weight=12

(O] ) ®

Fig. 10. Optimal assignment of G'2.

3.3. Assignment Algorithm

Once the partitioning of the distance-2 clique G2 has been done, the following
algorithm is used to assign the channels to Ga.
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Algorithm Assign _Distance-2_Clique
Input : § = {V(")(jl) (")(_12),. ("‘}(3,,)}, a = {a;, 0z, ...,0r}, and the fre-
quency separatlon constraints sg, 83, and ss3.
Qutput : A conflict free assignment of Gg and the required bandwidth B*.

Step 1 : For each V, ("”)(jm) 1 € m < k, find the set of optimal partition

assignments {A}(Vi¥r (jm))}. Set Dy {AF(ViS (jm))}-

Step 2 : Select an assignment from each D,,, 1 < m < k, and assuming an
arbitrary ordering of partitions combine all these assignments by changing the start-
ing frequency channel accordingly to avoid conflict. Find the minimum bandwidth
B tequired from all possible selections of A} and all possible ordering of the
partitions.

Step 3 : For each m (1 < m < k), use the value of B,,;, in step 2 to per-
form the assignment A, (V; viim)( jm)), by giving oy, frequencies to all the nodes

in I’,f,'n“)(Jm) with successive gaps of 7¢=)(j,,). Combine all these assignments by
changing the starting frequency channel accordingly to avoid conflict, giving rise to
the complete assignment for the given distance-2 clique. Return the bandwidth B*
for this assignment, and terminate.

In step 2, to find By, we may apply exhaustive search to guarantee an optimal
solution, since in general, the search space will be very limited, or we may apply
heuristics, e.g., GA or other techniques to find an optimal, or near-optimal solution.
However, in our simulation procedure, we applied the elitist model of GA presented
in [6]. To check the optimality, we present a lower bound on B,g:n in the following
remark which may determine the termination criterion for the heuristic.

Remark 3 Given a distance-2 cligue G2, and the set of partition s = {V(")(Jl),
V(")(J )y - V("‘)(Jk)}, let a node i (1 <11 <7) appear in a; different partitions of
S. Clearly a; <k foralli, 1 <i < 7. If we consider a distance-2 cligue, say G5,
with demand vector a = (a;),1 <i <7, and find out the theoretical lower bound on

bandwidth required for G4 using Lemma 2, then it would also be a lower bound on
Bmiﬂ.'

4. Critical Block and its Assignment

Let there be n nodes in the cellular graph of k-band buffering with a demand

vector W = (w;), 1 < i < n. Let us consider all possible distance-k cliques of
the cellular graph, say Gy, Gy, ...,Gp. Let B; be the minimum bandwidth required
to assign frequencies to the nodes of the distance-k clique G; (1 < j < m) with
respect to the given demand vector W and the frequency separation constraints
8i's, 0 <i<k.
Definition 11 Given a cellular graph G with a demand vector W, and the set of all
possible distance-k cliques {G,}, each with minimum bandwidth requirement Bj, the
critical block CBy, is that distance-k clique, whose minimum bandwidth requirement
i the mazimum of all B;’s.

Note that the critical block in a cellular graph may or may not be unique de-
pending on the demand vector W and s;’s, 0 € 4 < k. Since, we consider only
a 2-band buffering system, we would consider the critical blocks with k = 2 only.
Here follow the algorithms for identification and frequency assignment of the critical
block CB; of a network.
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Algorithm Find_Assign.Critical Block

Input : The cellular graph G with demand vector W = {w;), and frequency sepa-
ration constraints sg, §; and s,.
Output : The critical block CB> with a conflict free assignment to it.
Step 1:
For each node i of the cellular graph do
begin

Consider the distance-2 clique centered around node %, say D;.

N; + the set of nodes of D;.
end
Example 8 In the benchmark network of Fig. 11, each node has a label of the form
[z], where z is the demand of that node. The values of sy, s; and s are given as
5, 2, and 1, respectively. In this graph, Ng = {0,1,6,7}, N7 = {0,1,6,7, 8,14, 15}.
Since No C Nz, we will not consider the cligue centered around node 0 in step 2
below.
Step 2
For each Dy, whose node set Ny is not a subset of any other Ny, p # g do
begi

gmAp « the lower bound of D,, obtained by Lemma 2.

B, « the upper bound of D, [6).
end
maz_lower «— maz{A,}.

Example 9 For Fig. 11, Aj9 = (95 - 1) x1+2x1x184+2x1 = 132 and
Big=(25—1) x 946 x 1 = 222 [6]. Considering all other Ap’s, we see that Ay
(AT5~1) x 1+ 2 x 1 x 38+ 2 x 1 = 252) is mazimum, i.e., mazlower=252. Since
Big < maz_lower, the clique D19 is not considered in step 3 below.
Step 3 :
For each clique D, whose B, value is > maz_lower do
begin

Do IP formulation for the clique D,, as described in the previous section

and solve it.

F,, « the value of the objective function.

Save the values S and a.
end
Finaz — maz{F,}.

Example 10 For Fig. 11, Fipar = 255 (= TxXT+5x5+3x6+13x6+12x5+5x5),

corvesponding to the clique centered around node 10.

Step 4 :

For each clique whose F, value =Fyp,q, do

begin
Consider the partition set S and their corresponding weights o for that clique.
Assign frequency channels to that clique by the algorithm
Assign_Distance-2_Clique described in section 3.3.

4 E; — the highest frequency assigned by Assign_distence-2_clique
en
Ermox mazx{E;}.
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Step 5 :

Return the distance-2 clique whose E; = Epm,z, along with its assignment, and
terminate.

Example 11 For Fig. 11, the only critical block is the distance-2 clique centered
around node 10, i.e., consisting of the nodes {3, 4, 9, 10, 11, 17}, which is isomor-
phic to G2 shown in Fig. 6(a). Hence, it has the same assignment as shown in Fig.
10, with 0-252 channels.

18 1¥

Fig. 11. The benchmark cellular network.

5. Assignment of the Cellular Network

First let us assume that for the given network, demand vector, and frequency
separation constraints, there exists only one critical block. Given any cellular net-
work and its demand vector and frequency separation constraints, we identify the
critical block CBj3, find the partitions, say (Pi, Py, --- P;), of the critical block
and assign the critical block according to an optimal ordering of partitions, by
the technique described in the previous section. Next we extend the partitions P;,
1 < i < k, of CBy over the whole network, to find a complete assignment. The
exact procedure is described in the following subsections.

5.1. Partitioning Around Critical Block

Let all the partitions of the critical block CB; be § = {P,, Py, - -, P }. Suppose
a = {a1, aa, -, ok} be their corresponding non-zero weights. Now, we consider
each partition P; of CB; and try to extend it over the distance-2 cliques around
CB; and repeat the procedure for the whole network. Initially, the critical block
C B> with known partitions is termed as the Partitioned Block PB, i.e., PB = CBs.
In each iteration, PB covers more and more nodes of the cellular graph until it is
exhausted. Let us denote the node set of PB as Vpp.

Definition 12 A distance-2 clique G5 is adjacent to a partitioned block PB, if and
only if, the center of G, is a peripheral node of PB.

Example 12 Fig. 12 shows a partitioned block PB (marked by solid bold line)
formed by the set of nodes {5,4,9,10,11,17}. The set of peripheral nodes is {8, 4,

9, 11, 17}. Then, the distance-2 clique Gy (marked by dashed line) centered around
node 9 is adjacent to PB.

Now, for the partition P; with node set Vp, of PB, let us consider an adjacent
distance-2 clique G” with node set V’ In G’ the index i refers to the partition P;

of CB; and j refers to the central node of G‘ which lies on the boundary of PB.
Let A= V/NVp, B (Vegn VH\ A We will consider only those partitions
of G‘ wlnch includes the set A but excludes the set B, and the increment for each
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partition is less than or equal to that of P;. Let us denote it as the set AP of
partitions adjacent to PB. Now, for extension of the partition P; to cover G';, we
will consider the union of P; with each partition of AP. We refer to this set as
the Candidate Partition Set for P;, termed as CP;. Now, the partitioned block is
PB = PBUGY. Next we are to repeat the procedure for another adjacent distance-2
clique of PB, unless PB covers the whole network.

Example 13 Fig. 12 shows a subgraph G induced by the node set {2, 3, 4, 8, 9,
10, 11, 16, 17} of the cellular graph shown in Fig. 11. The only critical block
CB, of G is the distance-2 clique centered around cell 10, i.e., consisting of the
set of nodes D19={34,9,10,11,17}. Initislly PB = CB; = Dyo. Let us now
consider any partition of CBz, say Ps = {9,10,11}. We initially set CP = P;.
Consider the adjacent distance-2 clique G} centered around node 9, i.e., consisting
of the nodes Dy = {2,3,8,9,10,16,17}. Then Do N CP = {2,3,8,9,10,16, 17} N
{9,10,11} = {9,10} and (Do N PB) \ {9,10} = {3,17}. Let us now consider
the set AP = {{9,10},{9,10,2},{9,10,8},{9,10,16}} of all possible subsets of
Dy = {2,3,8,9,10,16, 17} which includes {9,10} but excludes {3,17} and the in-
crement (from Table 1) is less than or equal to that of Ps. Now, for the extension
of Ps to cover Dy, the candidate partition set for Ps becomes CP; = {{9,10,11},
(9,10,11,2}, {9,10,11,8}, {9,10,11,16}}.
The algorithm is formally described below.
Algorithm Candidate_Partition
Input : The critical block CBy; set of partitions S = {Py, P;, ---, Px}.
Output : CPr’s (1 £ m < k), i.e., candidate partition sets for P;’s to be considered
for the entire cellular network.
Fori=1tokdo
begin
PB « CBQ
CP « {Vp}
Y=9¢ .
For adjacent distance-2 clique G;'- of PB until PB covers the whole network
begin
For g = 1to|CP| do
/*|CP| is the cardinality of set CP and CP(1),CP(2),---,CP(|CP|)
are the elements of CP*/
begin
A~ V}NCP(g)
B (Vpgﬂ‘/;-i)\A.
AP « {§:8 C V] and S includes the set A but excludes the set B
and the increment for S is less or equal to that of P;}
Y = Y U{CP(g) U AP(1),CP(g)U AP(2), --,CP(g) U AP(|AP)}
/*|APY} is the cardinality of set AP and AP(1), AP(2),---,AP(|AP])
are the elements of AP*/
end
CP~Y
PB— PBUG;
end
CP, —CP
end
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16 T
Fig. 12. Adjacent distance-2 clique (dashed line) of partitioned block PB
(bold line).

5.2. IP formulation for the whole network

We now know all k candidate partition sets for the corresponding k partitions of
the critical block. Suppose ¥,,(t) be the weight associated with the t*? partition of
CP,, where1 <t € |CPp|and 1 € m < k. Now, the sum of weights associated with
all partitions of C'P,, must be equal to the weight of the corresponding partition P,
of the critical block giving rise to k equations of the following Integer Programming
(IP). Also, the sum of the weights of all partitions within which the node i belongs
to, must be equal to the demand for node %, giving rise to n other equations of the
IP, as described below.

Minimize{}; ¢ m<k,1<0<icP,n | L™ (Gm)Ym(t)]
subject to the constraints

L. ZIS_tSiCP,,,I ym(t) =am,m=12,.,k

2. 1 <m<k 1 <t<|CPn),peCPa) Ym(t) = Wp, p=0,1,..,n— L.

3. ym(t)’'s are integers.

Suppose the non-zero solution to the above IP constitutes the final partition set
FPp={FPn(t:), FPu(t3), .... FPn(t,,,)} for P, with their nonzero weights y,,, =
{ym(t1)$yﬂS(t2)i wevy ym(t'rm)}, 1 -<- m 5 k: 1 S t17t2$ res 7t‘/m S ICPml‘

Example 14 Consider the cellular graph shown in Fig. 11. As already men-
tioned, the partitions of the critical block CBy are given by $={{4,9,10,11,17},
{3,4,9,10,11,17}, {3,9,10,11}, {9,10,11,17}, {9,10,11}, {10,11,17}} with weights
a= {7,5,3,13,12,5}. Based on these, we get the partitions for the whole network
as shown in Table 2. The rows FPy, FP,, FP3;, FP,, FPs, and FPg in Table 2,
show the final partitions for the whole network corresponding to the partitions P,
Py, P3, Py, Ps and Ps, respectively of the critical block CBg. For example, the final
partition set F Py for the partition Py of CBy has only two partitions shown in Table
2 as rows a(1) and a(ii) with weights 6 and 1 respectively. The sum of the weights 6
and 1 15 7 which is the weight of the partition P; of the critical block. This is true
Jor all other partitions of the critical block. Also, any node, say node 20, appears in
the partitions corresponding to the rows b, ¢, d(i), d(#), d(iv), e(i), e(ii} and e(iv)
in Table 2 with respective weights 5,8,8,2,2,5,3 and 2. The sum of these weights is

25 which is equal to the total demand (as mentioned in the last row of Table 2) for
the node 20.



A New Approach to Efficient Channel Assignment 457

5.8. Assignment algorithm

At this point we know the partitions of the whole network, and their corre-
sponding weights. We would follow a technique similar to that presented in the
algorithm Assign_distance-2_Cligue of section 3.3. We recall that the assignment of
the critical block was performed partition by partition with an optimal sequence of
the partitions. Here, we maintain the same ordering of partitions existing in CBs.
Corresponding to a particular partition of CB;, now we have a final partition set
for the whole network. An optimal sequence of these partitions for assigning a given
final partition set are to be determined again by a heuristic search (e.g., using GA).
Next, assignment of the whole network is done partition by partition following the
same technique as was followed for assignment of C'B,.

Table 2. Homogeneous partitions of the cellular graph of Fig. 11.

Nodes — 01234 56 7 8 9 1011121314 1516 17 18 19 20
FPs| '
[ FP a(3) 6 6 6 6 6 6 6 6 6666 6
a(ii) 1 1 1 1 1T 1 1 11 111
TP b 5 5 5 5 5 5 5 5 5 5 5
FPs ¢ 3 333333 3 3 3
d() 3 3 3 3 3 3 3 3 3 3 3
(i) 2 2 2 2 2 2 2 2 2 2 2 2
FP, d(ee 1 1 111 1 1 1 1 1
d(iv) 2 2 2 2 2 2 2 2 2
d(v) 3 3 3 3 3 3 3 3 3
d{wi) 2 7 2 2 2 ) P 2
e(?) 5555050565 & 5 5 5
FPs e(ii) 3 3 3 3 3 3 3 3 3
e(iti) 2 2 2 2 2 2 2 2 2
e(iv) 2 2 2 2 2 2 2 2
FPs fG) 4 4 4 4 4 4 4 4 4 4
| fE)] 1 1 11 11 111
| Total | |5558122530253040402520302515'1530202025

Algorithm Assign_Cellular Network
Input : FPp={FP,(t1), FPu(t2), ..., FPn(ty,.)} with their nonzero weights
Ym={Um(t1), Ym(t2), s Ym(ty,.)}, 1 < m < k, and the frequency separation con-
straints sg, s, and ss.
Output : A conflict free assignment of the network and the required bandwidth B*

Step 1 : For each m and [, find the set of optimal partition assignments

Dp(t1) — {AJ(FPu(t))}, 1 Sm <k, 1 <1 <.

Remark 4 Note that partition P,, of CBy has been eztended to FPy, (see Algo-
rithm Candidate.Partition in section 5.1) such that the assignment A}(FPn(tr)
l<m<k1<I< Ym) can be obtained, keeping the increment unchanged

Step 2 : For each m and [, select an assignment from Dn(t;), 1 < m < k,
1 <1< 4m. For each m, 1 < m < k, assume an arbitrary ordering of the partitions
FPn(t1), FPy(ty), ..., FPn (t,,m) of P,,. Combine all these assignments by changing
the starting frequency channel accordingly to avoid conflict and maintaining the
same ordering of P,,’s obtained for the critical block. Find the minimum bandwidth
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Bymin required from all possible selections of A and all possible ordering of the
partitions FPr(t1), FPm(t2), ...; FPm(ty,,) of P, 1 <m L k.

Step 3 : Foreachm (L <m < k)and Il (1 €1 £ 7vp), the assignment
Ay t)(FPr(t;)) can be done by assigning ym(t;) frequencies to all the nodes in
FPn(t;) with a successive gaps of I0#=)(j,,). Combine all these assignments by
changing the starting frequency channel accordingly to avoid conflict, giving rise
to the complete assignment for the given cellular network. Return the bandwidth
requirement B*, and terminate.

In step 2, to find Bin, we may apply exhaustive search to guarantee an optimal
solution, or we may apply heuristics, e.g., GA or other techniques to find an optimal,
or near-optimal solution. However, in our simulation procedure, we applied the
elitist model of GA presented in [6]. Here also, we apply the idea of Remark 3 to
obtain a theoretical lower bound on the bandwidth B,,;,, for checking the optimality
of the sequence of elements in a final partition set. Given the cellular network,
and the set of partitions FPy= {FPn(t1), FPn(t2), ..., FPn(ty,.)}, let a node i
(0 < i < n—1) appear in p; different partitions of all FP,,’s, 1 < m < k. Clearly
pi < Zf Tm for all 4, 0 < i € n— 1. If we consider a cellular network, with
demand vector P = (p;), 0 < i < n—1, and find out the theoretical lower bound
on bandwidth required for that network, it would also be a lower bound on B

min-

@2 m 12) 12) 13

Fig. 13. The cellular network with demand vector P = (p;), 0 < i < 20.

Example 15 Fig. 13 shows the cellular network with demand vector P = (p;),
(0 <4 < 20). The label Jo] associated with a node i indicates that node i appears
in « different partitions of Table 2. For example, node 20 appears in eight different
partitions corresponding to the rows b, ¢, d(i), d(ii), d(iv), e(i), e(i) and efiv) in
Table 2. Thus, node 20 has a label [8] in Fig. 13. By Lemma 2, the distance-2 clique
centered around node 10 requires at least 89 (0 — 88) channels. So the lower bound
on bandwidth for the assignment of Fig. 13 is 89. The single channel assignment
of each partition of the final partition set with an optimal sequence obtained by the
above algorithm is shown in Table 3, where each entry shows the channel assigned
to a node corresponding to a final partition. We then assign the required number of
multiple channels to each node corresponding to every final partition F P; as specified
in Table 2, using the increment I for the class of P; and changing the starting
frequencies accordingly to avoid conflict. The complete assignment requiring 253
channels (0 — 252), has been shoun in Table A.1 in the Appendizx.

Remark 5 In the above example, it has been found that the whole network is as-
signed channels using the same bandwidth with (0—252) channels, as it was required
for assigning the critical block only. But, it may not always be the case, It is also to
be noted that if there exist more than one critical block in a network, having centers
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within distance-2, it may require a higher bandwidth.

Example 16 Fig. 14 shows a cellular network having homogeneous demand 20,
with frequency separation constraints so =5, s; =2, and s2 = 1 respectively. Here
each complete distance-2 clique is a critical block. A critical block needs at least
0 — 177 channels for its assignment (from Lemma 2). An assignment requiring
channels 0 — 177 is possible only if both frequencies 0 and 177 are assigned to the
central node of that critical block. But there are many other critical blocks having
centers within distance-2. Hence, the frequencies 0 and 177 can not be assigned to
the central node of those critical blocks. As g result, to assign other critical blocks
we require frequencies from 0 to 179. By following our algorithm, the assignment
for the whole network, demanding channels 0 — 179 is shown in Fig. 14. The
label {a — b] assaciated with a node of Fig. 14 means that the frequency channels
a,a+9,a+18,--,b~9,b has been assigned to that node.

Table 3. Optimal channel assignment for the cellular graph of Fig. 13.

Nodes — l 012345678 910111213141516 17 18 19 20
FPls )
FP a(i) 41526302 30415 |
a(#) 118129 107 9 10 7 11 8 12
FP; b 17 1316 14 15 141315 16 17 14
FP; ¢ 18 2219 21 23 20 22 19 19 21
d(z) 272428 26282525 26 2429 27
d(iz) 333034 32343131 32 30 35 31 33
FPy, [ d(#i) 36 41384037 384037 36 39
d(iv) 42 47444643 444643 42 45 |
d(v) 48 5350 52 49 50 52 48 51
d(wi) 54 50 56 58 55 56 54 57
e(3) 60 62 64 61 63 60 61 63 61 63 60
e(41) 68 65 66 68 65 66 60 66 67 |
FP; | e(ii) 7370 74 71 73 70 71 7173 |
e(iv) 78 " 7976 18 15 ki 78 75
FPs fli)[ 80 81 84 8381 8183 828080
f@)| 85 86 8886 86 88 87 85 &5

{0-171) {6-177} (3-174} {0-171)  {6-17T}

{3-179)

4-175} 1-172}
12 13 4

18 : o
Fig. 14. Assignment of cellular network with homogeneous demand 20 for each
node.

6. Simulation Results

We employ the eight CAP benchmarks widely used in the literature to compare
the performance of our technique with earlier works [2, 5, 11, 12, 13, 19, 22, 24, 25,
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26]. The cellular layout of the 21-cell system has already been presented in Figure
11. With this system, different CAP problems have been formulated, assuming
any of the two different demand vectors D, and Ds, shown in Table 4. The ith
column of Table 4 indicates the channel demand of cell i corresponding to D, or
D;. Table 5shows the specification of these eight problems (problems 1 through 8)
in terms of the specific values of sg, 8; and s; for a 2-band buffering system, and
the corresponding demand vector.

Problems 2 and 6 are the most difficult ones. Note that, the instance we con-
sidered in Example 8 is the benchmark problem 6. We have described the step by
step solution to this problem in the previous sections and presented the complete
result with 253 frequency channels in the Appendiz. |

Table 6 shows the number of frequency channels which are needed by different
algorithms in order to derive a conflict-free frequency assignment for the problems
described by demand vector(D; or Ds), and the frequency separation constraints
(s0, 51, and s2). The first row {Proposed approach) of Table 6 gives the results of
our proposed technique. The row Lower Bound corresponds to the lower bound for
each of the problems as obtained by Lemma 2.

Table 4. Two different demand vectors for benchmark problems.

D;|8 25 88 8 15 18 52 77 28 13 15 31 15 36 57 28 8 10 13 8
D25 5 5 8 12 25 30 25 30 40 40 45 20 30 25 15 15 30 20 20 25
Table 5. The specification of eight benchmark problems.

Problem number 1 2 3 4 5 6 | 7| 8

S| S 5 T17 5 5 | 7T |7

Frequency separation constraints |s; | 1 2 1 2 1 2112
;211 (111 |1]31]1]|1}1]|

Demand vector Dy | D/ | Dy Dy | Dy D2 | D2 | D2

A comparison of the lower bounds, and the number of frequency channels re-
quired by our algorithm reveals that we find optimal solution for all eight benchmark
instances. Most of the other algorithms (except the algorithm presented in [2]) de-
termined such an optimal frequency assignment only for six of these eight problems.
The average running time required in [2] for the optimal solution of problem 2 and
6 were about 8 and 10 minutes respectively, on an unloaded HP Apollo 9000/700
workstation. In contrast to this, using our proposed assignment algorithm, we need,
OR an average, only a few seconds for channel assignment of all the six benchmark
instances other than problems 2 and 6, on an unloaded Sun Ultra 60 workstation.
For the benchmark problems 2 and 6, however, our algorithm needs only 60 seconds
and 72 seconds of running time, respectively on the same workstation. For compar-
ison purposes, it may be noted that the Sun Ultra 60 workstation used by us has
SPECint95 and SPECfp95 values as 13.2 and 18.4 respectively, while those for HP
9000/series 700 model 712/100 system are 3.76 and 4.03, respectively [27, 28].

7. Conclusion

We have first introduced the notion of a critical block of a cellular network of
hexagonal structure having 2-band buffering with respect to a given demand vec-
tor. Then, we present an algorithm (using integer programming) for finding the
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critical block of the cellular network, followed by the introduction of a novel idea of
partitioning the critical block into several smaller sub-networks with homogeneous
demands. This partition makes the frequency assignment to the critical block very
simple. After the frequency assignment of the critical block, this partitioning tech-
nique is further extended to the rest of the network.

The proposed technique is able to achieve the optimum solution for all the eight
well-known benchmark instances, with the minimum number of frequency channels.
The results obtained by the application to the benchmark instances reveal that this
novel strategy clearly outperforms the already existing algorithms in terms of both
running time and required bandwidth.

Though we consider here the case of 2-band buffering, the above results can also
be extended to the cases of k-band buffering, in general. For k-band buffering, we
are to consider complete distance-k clique to classify the different clique-classes and
corresponding class bandwidths and increments. However, the integer programming
formulation would then involve a large number of variables, and the solution may
require longer time.

Table 6. Performance Comparisons between the existing CAP algorithms and

our approach.
Problem 1 2 3 4 5 6 7 8
LowerBound 381 | 427 [ 533 | 533 | 221 | 253 | 309 | 309

Proposed approach | 381 | 427 | 533 | 533 | 221 | 253 | 309 [ 309
(2001)(3) 381 { 463 | 533 | 533 | 221 | 273 | 309 | 309
(2001)[1] 381 | 427 | 533 | 533 | 221 | 254 | 309 | 309
(2000)[25] 381 433|533 |533| — {260 — | 309
(1998)[2] 381 | 427 | 533 | 533 | 221 { 253 | 309 | 300
(1998)[19] - =] = f = ]2 |28| — | 309
(1997)[12] 381 — |533]533 221 — !309|309
(1997)[24] 381 {436 | 533 {533 — [268| ~ | 309
(1996)[11] 381 | — (533533 — | - | -1} -
(1996){26] 381 | 433 | 533 | 533 | 221 | 263 | 309 | 309
(1994)[13] 381 [ 464 | 533|536 { — [293| — | 310
(1992)[5) 381 - |533533|221] — | 309309
(1989)[22] 381 | 447 | 533|533 | — l270] — | 310
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Appendix A:
Table A.1. Derived Channel Assignment for Problem 6.
0 t 2 3 4 5 6 T 8 9 10 11 12 13 14 15 16 17 18 19 20

229
234
239
244
248

52 230 48 4 1 5 2 L] 3 0 2 48 3 0 4 1 ] 96 T4 49
57 236 53 11 B 1z 9 13 10 T 2 53 0 7 11 8 12 102 80 54
62 240 58 18 15 19 16 20 17 14 16 58 v 14 13 15 19 108 86 59
67 245 63 25 22 26 23 2 34 n 23 43 4 25 13 28 114 110 64
72 250 68 32 339 33 30 34 31 28 36 68 31 28 32 20 33 120 118 69
T3 39 36 40 37 41 38 35 37 93 38 3% I 3B 40 170 124 Té

™ 46 43 47 44 T8 45 a2 44 98 45 42 46 43 47 175 142 82

85 51 77 74 49 84 SO ™ 49 104 50 93 51 108 52 180 148 88

66 83 80 54 90 55 83 54 110 S5 99 56 203 &7 185 154 94

61 89 86 59 116 60 89 59 116 60 105 61 308 82 180 160 100

66 94 M 64 132 65 95 64 170 &% 111 66 231 87 195 168 106

71 100 57 &9 138 70 101 69 178 70 117 71 236 T2 200 172 1112

106 103 76 144 75 107 74 180 123 125 123 241 91 208 177 118

112 109 82 150 81 113 80 185 129 131 128 246 97 210 1837 130

118 115 88 156 87 119 86 190 135 137 134 251 108 215 187 136

138 121 95 162 93 135 92 105 141 142 100 229 191 169
145 127 101 168 99 131 98 200 147 140 136 234 212 174
151 133 107 173 105 137 104 205 153 158 121 239 217 17T
197 157 113 178 111 143 110 210 159 1221 137 344 222 184
202 163 119 183 117 149 116 215 165 226 133 249 227 139
207 166 171 188 123 155 122 172 232 139 196
212 174 176 193 129 161 128 177 237 145 1)
217 179 181 213 138 1687 134 182 242 151 206
222 184 186 218 141 172 140 187 247 157 219
227 189 191 223 147 177 146 192 252 163 224

194 228 153 182 182 230 229

199 233 159 187 158 235 234

204 238 168 192 164 240 239

209 243 170 197 169 245 244

214 248 175 202 174 250 2490

180 207 179
1856 212 184
190 3217 189
195 222 194
200 237 199
205 1232 3204
210 33T 308
18 242 214
220 247 219
225 2532 224

230

235

240

250
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