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SUMMARY. An io rop ion and somo i raloa 10 i
have boon studied for linoar funotions of ordor statistica bated on mixing procosscs,

1. INTRODUCTION

An earlier paper of the author, Singh (1970), presented a study on an
asymptotic representation and convergence rates to normality of L-statistics
based on i.id. random varinbles. The present paper intends to extend the
domsin of this work to somo weakly dependent processes. Singh (1070)
is referred to as 81 hercafter in this paper. Our main attempt is to give
some extensions of tho basjc bounds used in SI. These bounds are mostly
about empirical distribution functions and are of independent importance.
To avoid undesirable duplication, no serious attempt is made to make this
articlo self-contained. Tho reader is referred to Sl for a detsiled description
of tho problem tackled. Technical terms are defined at their first appearances
in the paper.

Tho dependent pr idered here are tho two most popular
mixing processes—@-mixing and strong mixing. A process {X,} is called
¢-making if there exists a sequence of non-negative numbers {$¢ decrensing
to zero such that

sup{| P(BJA)—P(B)|; P(4) > 0, A€ 820, B & 822} & $a

where @2 stands for o{X,, ..., X3}, b > a. (X,) is called strong mixing if

there exists a sequence of non-negotive reals {xg} decrensing to zero fuch that
sup{| P(AB)—P(A)P(B)|; A ¢ BLa, Be B2} & a,.

The class of ¢-mixing processes includes m-dependent r.v.s. and somo Markov
processes, Most commonly given examples of strong mixing processes come
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from tho classes of dependent gaussinn, moving average and auloregressive
processes.  Tho condition of @-mixing is much more restrictive than that of
strong mixing but the asvmptotic snelysis is generally tougher in the later
cago ond somo times tho bounds are less good.

The proofs of the key bounds nbout o.d.f.a are collected in Section 2,
This scction is mostly sclf-contained and o reader who is bnsically interested
in ed.f. may confino to this scction. Also, this scction contains two very
generel exponentiel bounds, one for cech of the above mentioned mixing
processes, which are usablo in soveral contexts. In Section 3, we combino
the bounds of Section 2 and some of S1, which do not require independence,
to produce a.8. expansion of L-statistics bascd on mixing processes. Finelly,
we aim at the convergenco rates in Secction 4 where we borrow some results of
Statulevisius on Berry Esscen type 1 13 for mixing pr

Throughout 1§ and /g denote (log n)* and (log log »)* respectively and
¢i’s etand for positive constants,

2. €OME ASYMPTOTIO BOUNDS FOR E.D.F.

Let {X, X,, X,,...} bo o stationary sequence of r.v.8 with E|X| <
and X having a continuous d.f.F, so that tho transformed r.v.s U= F(X),
Ui=F(Xy), i=1,2,... have U[0,1] distribution. Let F. ) and V()
denote tho o.d.fs (right continuous versions) of {X), X, ..., X,} and
{Uy, Uy, ..., U,} respectively.  For rome r [0, 1/2], we let

Vol r) = =) V)t
and
E p=sup{V, (4 r); te(0, 1)}

As mentioned in S1, if {X¢8} arc independent, E,<n i as. for oll
re(0,1/2). Our first plan is to present the extensions of this bound that
have been possiblo for mixing r.v.s. The results are stated below.

Proposition 2.1 : If {X,} is & d-mixing process with Eg}# < o for some
221, then for all 0 € r < 1/2—1/2(s41), E,<€n-ll} as.

Proposition 2.2: If {X;} is & strong-mixing process with Zaf® <o
for some 8 > G, then, for all 0 § r < 1/2~4f(s42), E, < n-M1} a5,

Let us see first tho proof of Proposition 2.1. Tho proof is based on
probabiliy nequalitica provided by Lemma 2.1 given below. In fuct,
Lemma 2.1 is tho only property of ¢-mixing processes to bo used throughont
this section. Let us defino

x((s, 1) = I(min(s, 1) € Uy € max(s, 1))—|s—1¢)
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for some 0 € 5,1 < 1 and let 3, bo tho smallest positive integer i such that
ngy/i < 1. Further, let Sy, stand for the sum Zq. gy, e 2((® a+ ),
suppressing II and a which are irrclovant for probability Lounds.

Lemma 2.1: Lel D, Z, B be positive numbers and N some posilive
integer obeying the relationship ZNB & D% Let (X} be a ¢-mixing process
with £g¢ < 0. Then, for all B B, u N and ¢ > 0, there exist constanis
€, €4, €y such that

P(|Sup|> 2 0,D) € ¢e 24N Y54 D|Z) % . (2])

The conslanis ¢y, ¢y, ¢y are independent of D, Z, B and N ; Towcver ¢y may
depend upon c.

Proof : Wlg. let us assume Sy = Ty w20, ) for some (0, 1)
and let k = [#/2yy5]. Let us writo

Sug = Zpm pE+E)+ben

where

&=ZI,., P U A
and

&=

21-1,”:("—))0,“ (0.8

provided k» 1. If k=0, we understand that fp, = Sy, ond
ey bt = Zpd; =0. We show now that P(Sioy b 2 ¢,D) has an
upper bound like the r.hs. of (2.1). The bound is obtsined similarly for
~Zpq b ond £Tp 2 to conclude (2.1).

Let £&o denoto £I(|&] € D/2). Now using the moment incquality
giveu vy Lemma 2 of Ghosh and Babu (1977), which clearly remains valid under
the condition B¢ < oo for bounded r.v.8., we see Lhat

| P(Ztar, bt D 6DV —P(Etarpnfss 2 &D)|
< P&l > DIZ) < cd¥ Iy n)Va(DI2)
Now, using Markov's inequality, the fact that ¢w~ & ¢n/N¥ ond Lemma 1
on page 170 of Billingsley (1008) repentedly, we find thet
P(Tiaxinéer 2 D) & exp(—¢ 2)E °XP(ZD_’El-1,h\E(‘)

& Yexp{—c,Z2)[F exp(ZD§0) +2rg ‘PNF
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< 3oxp(—6,Z+klog(l4 | E ZD-'¢e+E(ZD-,0)*+2¢ yN-1)
< 3exp(—e, Z+H2 E(ZD7¢,) +2eynN-")
€ cgeZ
if ¢, is approprintely large. Tn the abovo derivation, wo also used tho condi-
tion that ZVB < D* and the easily verifiable facts that
|EZD"¢s| € E(ZD¢,)* ond EE} € c/wB.

DProof of Proposition. 2.1 : Let us fix some 0 < & < 1/2—1/2(s41) and

show that
aup(Va(t, 1/2—1/2a+1)—8); £€(0,1/2)} & n=t I} ns.

which will then imply by symmetry that

oup {Valt, 1/2—1/2(a+1)—8); te[1/2, 1)} < n-V2 U} ap and theso
two together will complete tho proof of the proposition.

Wo writo a for 1/8 in rest of this proof. Let us divide the interval
(o, 1/2) into thrce parts namely I, In, and In, where Iy, = (0, 571,
Iy = (7078, 150 and Tny = (159 1/2]. Sinco In-Y;*< o, tho event
{Uge I,)) happens only for finitely many i’s a.s. This along with the fact that
a-1;2 | 0 implies that V (n-17%) = 0 for all sufficiently large n as. Using
this, it is trivial to sce that

sup{V (8, 1/2—1)2(s+1)—=8); te ], } € n~Villtas.

Thus, it suffices to sce that

sup(V,(¢, 1/2—1/2(s+1)=8)i b e 1)) L n=2l1)R 0. . (2.2)
and
sup{V.al, 12—1/2(s41)=8); t € I} @ n- VU2 as. . (23)

To prove (2.2), wo divide tho interval I,; into subintervals of length
2715 and observe that

5“?“ V)=t +unesn +0. g I 3
< 2 max({| V(1) —t|m12 4 r2uen 4 0 5 g — =308, 207002
wor (U285 2+ 1)n" 252 - O(n-20). o (24)

For some fixed veluo of ¢ as in thoe r.h.s. of (2.4) it followa using Lemma 2.1,
with N = n, D = (4nl )23 = 121y =22 7 — 41 B = ¢ and ¢ largo enongh,

that
POV (8)—=t] > 2c,(dnd Y138 = 100041 = 4i2) G =20
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for some &> 0. In the above application of Lemma 2.1, we also require
tho fact that T3}/ < 0 == ¥, & nV4+), Now, in view of this probability
bound, we have

sup{V {1, 12— 1[2s+1) =82 11 e I} L VMM 5, v (28)
But, since /2 & I7' for all $ ¢ 1,,, (2.5) yields (2.2).

Coming to (2.3), we divide the interval I,, into subintervols of length
n~! and sce that

sup{| V()= b2+ 12asn 44 g Ty
< Zrnx{] V,(1)—1]4-18 + 100040 40, § - =4 [=ayp-1,
D04 2n7, L 100G (20 D))+ Ofamty). L, (2.6)

Now, we define three secquences of events and sco that all the three happen
only finitely ofton which then implies that the r.h.s. of (2 6) € n-'lV2 a8,
Let  np = exp{r'?) (so that n{r41)122 & npyy—np  ngfr?)  and
Sy={n:n,<n Nyl For nesSy, let us defino

Ap = {max{| Zig, 430 20, 1) [ 1718+ 220 4 390,

t=174jre1 <j < [r48/2]41} > deynin)
H, = {max{| V, ()—f -+ 320 3y — j—ay jrta,

1< j < [r'22] > (Ba+4)"22¢n5 1ML, 1)
and
0, = fmax{] V.(el3), 12— 12(e-+1)—8)= V2 (), 12 —12e+ 1))
1< < [f2)41) > 26717
where o) = Iy *+jfn and 2(j) = Iy *+[jrenlr

We appeal to Lomma (2.1) to estimate the probabilitiea of all the thres
ovents above. In Lemma (21) we take N =my,—n, B=1,
D = (dn)lan-12ui1 =3 and Z =4l, for A. and N=m=n, B=1,
D = ((8a+4)ngll, 2 02-32a4- and 2 = (Ba4- 4, for Tly to conolude that

y
I PA)<oond T PUl)<w Fimlly, coming to 0, we note
-lL® rat,®

that, for all 1 < j € [n/2]4+1.
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| Vuz(4) 2=+ 1)—8)— V. (2'(5), 1/2—1/2(a+1)—8)|

< 2| Vaa i) ===V GN+2 @ [ (pye - vausn =4

+ 2 l V.(:(j)) _:U)“(:(J'»-ln + 120041 + ‘—(z'(j))"’* + 12841y + ll
< &l Vaug) =)= VeG4 () | 142 +es | Vi) —20) | r

where the last incquality follows from tho facts that [2{j)—2(j)]| K r43,
()P ro, 2(j) »r®and a=1/3> 2. Thus,

POy n  max PV (i) —25)—V ()2 () |
16 IiE 11

> 20,67 2+ P(| Vo (el5)—205) | 3 2,c'rm}?).

The first term in the r.h.8. sbove is shown to be summable taking N = »,
B=y8 Z =4I, ana D = ¢;'r-8/2n}”% in Lemma 21 ana the sccona term
is shown to be summable taking ¥ =1, B=1, Z=4l,8na D =c3'm}™
Now the asscrtion (2.3) follows using Borel-Cantelli Lemma.,

Proposition (2.2) is also provea using exacily the same argument but we
need an exponentisl bound for strong mixing random variables to replace
Lemma 2.1, The bound is given by

Lemma 2.3.: Let {X} be a slrong mizing process with Tajt < co for
some 8> 1, 8, be defined by s~' 44~} = 1 and sy, be as defined earlier. Let
D, Z, B be positive numbers and N some posilive inleger satisfying ZN B\ & D*
and D » 4Z. Then for all u < N and B & B, there exist conslants, ¢;, Cyo
such that

P (|oy, 5| > 2¢,D)  2e7Z+¢, N*D2ayppuz) . (27
Tho constants ¢, ¢, do not depend upon Z, N, B and D.

Proof : 'The Lasic iden of martingalo approximation used in this proof
i8 borrowed from Thilipp {1977), but the techniquo has been modified consi-
derably. Let us write 8y, p = I oy, b4y £14+3 1ay, 2 & just 89 in the proof of
Lemma 2.1, except that wo replaco Y, by p = [D[42). Thus k = [u/2p]).
We get below a bound like (2.7) for P (E ¢y, x4y & > ¢,D) and tho procedure
is to bo repeated for —Eg.y, 249 Erond & () 2 E; to conclude the lemma.
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Let §o =0 = ¢y forallj 3 k41, £ = 0(Z,, .., &) ondd oy = E—E(Ze/Liy)
forall i > 1. Thus {5, 9,,...,} is & martingale dilferenco scquence bounded
by D/Z. Now, wo uso the result on page 209 of Stout (1974) (nlso atated
as Lomma 3.2.5. in Philipp (1977)) to conclude that tho sequence (T4 defined
asTo=1and foralli 1,

To = exp(Z2D~! Epey g 95— (3MHNZD-'PEpey 0 E(0}/ L))
is & non-negative super-martingale and that
P(ZD T 1oy k1 B—(3ANZDWE ek B0} 111 3 2)
=P(Ten P D)< et
Thus, it only remains to be shown that
PU| Z s p s B L1+ (AN ZD N E s p i Bl o11) |
2 enD) € ¢)aN* D Yapppigy o (2.8)
To this end, we requiro o fow estimates based on Davydov’s inequality
(sce Lemma 1 of Deo, 1973) which we establish now. The first estimate is
as follows :
1B s, 01 ECE ] LVlg € ity sahE(Et/ i)y
= iy, bl EEG L)) & Brapbraldaplfll)? < 2032V, ... (2.9)
Duo to the samo reasons, we also have
IZ tesp B9} 14— Enlly < crap®pY. e (210)
Finally, for any u 2 2
B}y = E(Z1et0 10,1 8]) 28 ey, 1l —=0)2y(0, | A1N7111f0, 181)
<l Bl(1= | A1)+ 2uB iy us —iful0, |81, 0
< uB+2B"(E oy ual < (1425 etuB'™ (@11

80 thot
Lrnkrt= 2,-,,&+.E(£|—E(£|/-04-.))’

= Ste kB — EEEILe)) € Dernr B8}

Q14281 ONB " & (1425000, 0d)DIZD. o (212)
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Now, combining the estimates obtained {hrough (2.9)-(2.11), and using
Chebychev inequality, wo gee that if ¢, > 1425, » 2}, Lh.s. of (2.8) can
not excced
P(| B2y 2y B £11)+(30) 2D "2y (B0 Loy)— EnD) |
D (e —1—2Z¢ 0 a})D) € ¢, NapD1,

Tho proof of Proposition. 2.2 is omitted but we offer an explanatory
remark aboub it

Remark 2.1: The restriction r < 1/2—4/(s+2) in Proposition 2.2 emerges
out of the requirement that n*D-%aipz < n-2-* while dealing with Iy, since
in that particular application of Lemma 2.2, we have got to take Z = 4l,
ond D =(nl, V4", Tho other requirements are automatically met if
r < 1j2—4f(s42).

Next, we give bounds for probabilities of deviations of E, which are
direct extensions of Lemma 3.1 of S1 to mixing r.v.s.

Proposition 2.3: If (X,} is ¢-mixing with T3}/ < oo for some &> 1,
then for any positive numbers a,b and r satisfying

0 & r < min (242811 —(a4-1)-Y), b-1) e (213)
there exists a positive constant ¢y = c4(a, b, r) such that if y* > ¢,l,
P(Ey p nYty) L n-oy-d, e (214)

Proof: Admittedly, the proof is pretty much similar to that of Lemma
3.1 of Sl, once we have the exponential bound of Lemma 2.1. A sketch of
the proof i given below.

Let us write (0,1) = Uy Jya, Where
Jia = (0, n"1-9y2), Jpn = (n1-0y70,1/2],
Jan=(1/2,1=n71-0y-1] and  J,, =[l—n-1-ayd 1),
As in 81, for oll r¢({0, 1/2),
Paup{| V(1| 1€ d,) > vty & noayd,
We divide the interval J,, into subintervals of length a-1-8y~ = y, and reo
that
sup{] V(, )| : 4 € Iy} K 2sup(| V() —t]4-r 0 e Jp.}

S dmax{| V) —=4|if b=y, §=1,2, ..., [y 2]+ 1) 40
. (215)
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For some 4 ag in tho r.ha. of (2.15), and r satisfying (2.13), wo apply Lemma
(2.1) with ¥ =n, D ="s"2y/10¢,, whero ¢, is tho constant appearing in
Lemma 2.1, Z = (2a+1){ 426l (whero 1 =log y) and B =t to sco that if
yt > (10¢,)%(2a+ 1)1+ 200,),
P(| V() —t]477 3 w1y [5) & ¢y yn-t8-1y10, e (2.16)
The condition (2.13) is actually needed to ensuro that for ¢ suffisiently large
wPE-YDJZ)-t & nnte-ND[(y-1-ay-B)rylity]-tc @ y-ta-ty-,
The requirement y2 > (10¢,)(2a+ 1)1+ 201y} is met if 22 > (10¢,(2a+ 1),
and y3/2 > (10¢,)2201y, Lut tho sccond condition is contained in tho first ono
for all  Inrge enough. Now (2.15) and (2.16) together yield
Pleup{[ Vot 1) 24 6 J4,} 2 072y) L ooyt
provided y*l, is large enough. Similar Lounds on J,, and J,, complete

the proof.

Proposition 2.4 :  If {X,}is strong mixing with Tal#* < oo for somo ¢ > 1,
then for any given positive numbers a, b and r satisfying

0 € r < min((2a+2)1—(2a+3)(s+2)~1(1 +a)"3, b-1—2(s+2)~)
- (217)

there exists a positive constant ¢, = ¢,(a, b, r) such that if 32 3 ¢,
DiEy p 0~y < n-ayd,

Proof: Tho proof is same as that of Proposition (2.3) except that
(2.16, is to bo dorived using Lemme 2.2. To do 8o, we moko the same
choices of Z, N, B and choose D to bo 'n/2y[10¢,, whero ¢, is the constant
appearing in Lemma 2.2,  We have got to check that

WD Sty € notE-Yyt . (2.18)
and
2r g 1—o) . (2.10)
The sccond requircment comes in verifying that ZNB"** & DY where
el =1,
Sinco ¢ 2 n-1-9y-?, (2.18) holds provided
(1/2—(14-a)r)a+2) > (2a+3) e (2.20)

(1=br)(s+2) > 25, oo (2.21)

and

4317
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(2.17) contains (2.10), (2.20) und (2.21).
Finally, in this scction, wo study the asymptlotic naturo of
E,, = E, (0} =sup{| V (V7 ())~1]: L e (0, 1)}

Tho statement E,, € n=' w.8. just amounts to telling that the random vari-
ables {Uy) take distinct values w.a. und this is obviously so if Ugs are inde-
pendent and have U[0,1] distribution. This ides can Lo stretched essily
to sce that E,, < mfn 8., for m-dependent v.v.s, DBut, the method works

no more once we move to mixing processes. \Wo have weuker statements
in these cascs, which wo present now.

Proposition 2.5 If {X;} is & ¢-mixing process with Egll < oo for somo
&> 1 and yis a positive numbers s.t. y < 1—(2s+42)"1, then
P(E,e 2 (26,42)0"T) K n7e
for any positive number a.
Proof: E,, = sup{[ V,(V3'e)—t]; 46 [0, 1])
< sup(| VAV = V.V —0) | s e[0, 1]
< sup{| VA (VS0 = VoV —nn) 51 € [0, 1))
< max{| V)=V, 420"} 4 = jn",j =0,1,2,...,[n")
 max{| V,(N—=V, ({4200 420"7]; § = jn-7,
F=0,1, ..., (W))+ 20 v (2.22)
Now as usual, we apply Lemma 2.1 appropriately to derive the proposition.
Proposition 2.6: If {X} is o strong mixing process with Za}l* <  for
some 8> 1 and yis 8.t. 0 < y < 1~3/(s+3), then
D(E,, > ¢,n") K noitlaedfy
and if ag & ¢~ then, for all @ > 0, thero cxists a constant ca 6.b.
P(E,, > can~'f) < n-o.

Proof : For the first part, we use the bound (2.22) and apply Lemma 2.2.
For the second part, we mimic the steps of (2.22) to sco that
E,, K max{| V, ()=V ({+2n-0) 42072 ; 4 = jnt i = 0,1, ..., n¥}4- 202

and then apply Lemma 2.2 with D = (ca—2)I%, B = 2173, Z = (a+2)l,. Tho
constant cq is adjusted to be large enough.
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Corollary (I): In the d-mizing cuse with g < o, for some 8 <1,
E, <€ n7" as. for all y < 1—(2s4-2)71,

(IX): In the slrong mizing case wilh 24}/‘ < oo, for some 8 <1,
E,, €07 as. for all y < 1—3(s43)",

(ITX) :  In the sirong mizing case with ay € ¢!, E,, € n" 1 as.

Tho first and the third part of the corollary are direct application of
Borel-Cantelli lemma, The arguments for the sccond part go as follows :

If y <1-3(s+3)"", then P(E,, > ¢,n~") is summable slong the sub-
sequonco {27}. Thus, E, (27} & ¢,4(27) for o)l y sufficiently Jarge a.s. Sinco
E,, (n) is nothing but the amount of the biggest jump of the function V(4),
46[0, 1]; honce nE, (n) = cardinality of the biggest subset of {U,, U, ..., U,}
with equal values. Therefore, nE4q{n) i3 a non-decreasing function of =.
In view of this, for some n a.t. 2 & n £ 2rH

ﬂE.‘(") '< 971 E“(Z'H) < or+l c"(QIH)—1 < gcl‘nl—v
for all r large enough, a.s. Thus we have the conclusion.
3. ALMOST SURE REPREYENTATION OF L-STATISTICS

For some bounded function w on [0,1 ], consider tho following linear
combination of order statistica

L= [ sl F@)Fua)
and tho corresponding parametrie valuo
L= _f_ 2w(F(z))dF(z).
If @ denotes any inversoe of F, then wo can also write
Ly = [ GV, ¥, ond L= f Gonturin
Further, let
Yo= Y(UO = | (=K, € )ufadlO),

Y=TY({U) snd Y,=n%,. s
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Lot us say that a point z ¢ (0, 1) is & jump point of tho function w if 2
ia a discontinuity point of w but 1 is cither loft conti or right conti
at z. For convenience, let us say that the pair (F, ) is of type 4 if  has
Dounded sccond derivative on (0, 1) and F is continuous on 2, and (F, w)is
of typo B if 1w hes bounded sccond derivative throughout (0,1) except at
finitely many jump points, F is continuous on 72 and in 8 neighbourhood of
each of tho jump points, G has bounded derivative. Findings of the proof of
Theorem 1 of S1 can be summarized as

Proposition 3.1: Let (X, X,, X,, ...} bo a stationary sequence of r.vs,
with E|X| <oo. If E® & n~V2I}E na., then

1
|Ly—L—7,| < B} (u(\—u))"dG(u)+E(d, B)+n-ll,
o
for all r > 0 where E(4, B) = 0 if (F, IV') is of typo A, = E,, if (F,w) is of
type B.
Now wo have all the tools nceded for asymptotie representation of L-

statistics in caso of mixing r.v.s. We simply have to combino Propositions
2.1-2.6 and 3.1 to write down the theorems stated below.

Theorem 1: If {X, X,, X,, ...} is a slationary ¢-mizing seq with
I4i < 0 for some 8 3 1 and E| X |9 < 0 for some 6> 0, then
|L,—L—Y,| € n~'ll, a.s. if (F,w) is of type A

—14tar42)" 148, | .
=n if (F,w) is of type B a.s.
Jor all §,> 0. d f by

Theorem 2: If {X, X\, X,,...} is a slationary slrong mizing scquence
with Zallt <o for some 8> 6 and E|X |07 < oo for some 8> 0,
then

|Ly—L~Y,| %W, as. if (F,w) is of type A

=143{e42)~1
< {et)~119,

a.. for all 8,> 0 if (F,w) is of type B. In case ay & ¢, E|X|"¥ <0
and (F,w) is of lype B, |L,—L—Y,| € n 13, as.

4. CONVERQENOE RATES TO NORMALITY

For tho sake of convenjent referenco, wo stato bLelow a few results of
Statulevicius briefly which are used to eatablish somo uniform convergenco
rates to normality for L,.
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Theorem (S) X: If (Y, ¥y,..} iz ¢ sladionury @-mizing process with

EY =0 E|Y|3 <0, V(¥))+251y,u oY}, Yyod) > 0 and TPt < 0 then
sup| P(nY, < (V(nY,)%2)—B(z)| € n-'2l,,

II: If(Y,Y,,..} is a strong mizing process with E|Y|* < o for some
integer %> 8, ay iV 00d TP ) 00 then

sup| P(n¥, K (V(nY ) 2x)— O(k) L n-v2l,,
If 2 =3, one needs oy § e'.

Now, we state the convergence rates derived for L, using the above
Theorem (S) and the tools developed in Seetion 2.

Let us assume that 0 < o= V(}})+25.,, @ cov(Y), Y. Wedefino

T.(2) = |P(L,—L < (V(Y))22)—B(2)].

Theorem 3 (T): If (X} is a ¢-mizing process with T$}/* < oo for some
822 E|Y]P<w and E|X|%4 <o, then ||T (x)a<€n-cwl, when
c8) = 1/2 if (P, w) is of type A and c(s) is any number < 1/2—1]2(s41) if
(F, w) is of type B.

(I1):  If{Xy}issirong mizing, E|Y]* <0,y £i~* and E|X|* < 0,
then ||T Jle € n~"2, if (F, ) is of type A.

(IT1) : If {Xy) is strong mizing, E|Y|3 < 0, E|X|# <coand oy <L et
then [T y(2)le <02, if (F,0) i2 of type A and |T(z)le < n702 if
(F, w) is of type B.

A sketeh of the proof is ns follows. Wo fix a set Q, = {E, < eyn~11414%)
using Proposition 2.3 or 2.4, depending upon the mixing case, 8.b. P(Qf) € o1,
Then, procecding slong the lines of the proof of Theorem 1 of S1, we sce that,
on Q,,

|Ly=L=,| < (Et+n1)| [ CludV,in)|
+ERH-Eqn- R4 F2 § el —u))rd G+ £(4, B).
The required convergenco rntes for ¥, is supplied by Theotem (S). Tho

convergenco rates for (L,—L) are obtained using the rame or ¥,, Lemma
3.3(a) of S1 and Propositions 2.3-2.6 of the previous section.

With the same methods and tools, we can also extend the non-uniform
convergence rates of Babu, Ghosh and Singh (1977), and the moderato devin-
tion bound of Babu and Singh (1977) to L-statistics.
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