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Abstract

Box -Cox power transformation has been used traditionally to linearise otherwise nonlinear models. In this paper. Fngle's
hinear ARCH specification is considered for a regression model in which the dependent variable is Box Cox transformed.
The consequent issues arising in both testing and estimation of the model are investigated. A Lagrange multiplier test is
also developed to test Engle’s linear ARCH model against this wider class of models. The usefulness of this generalisation

is examined by applying it to the daily closing prices on the Bombay Stock Exchange Sensitive Index, and the findings
strongly favour the proposed model.
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1. Introduction

Until the early 1980s the focus of most macroeconometric and financial time-series modelling centred on the
conditional first moment. With the recognition of the increasingly important role played by risk and uncertainty
considerations in modem economic theory, the development of new econometric time-series techniques that
allow for modelling of time-varying variances and covariances began in right earnest. The most important
contribution in this new development has been the autoregressive conditional heteroscedastic (ARCH) class
of models introduced by Engle (1982). In time-series regressions, Engle’s linear ARCH formulation allows
the conditional variance of the present error to change over time as a function of past errors keeping the
unconditional variance time invariant. It has been observed that such models can capture many important
features like the thick-tail distribution, nonlinear dependence and volatility clustering of many economic and
financial variables. Since Engle’s paper there have been many extensions and generalisations of the ARCH
model. Some of the well-known ones which have been also found to be extremely useful in applications are
generalissd ARCH (GARCH), nonlinear ARCH (NARCH), exponential GARCH (EGARCH). threshold



366 N. Sarkar | Statistics & Probability Letters 50 (2000) 365374

ARCH (TARCH) and ARCH-in-the-mean (ARCH-M) models (see Bera and Higgins (1993) for an excellent
survey on ARCH models).

Although one of the most important features of the linear ARCH model is that it postulates a nonlinear
relationship between the present and the past values of a time series, current evidence suggests that it is not
nonlinear enough to model some financial time-series data. For example, Hsieh (1989, p. 336) found that
the GARCH model cannot fit some exchange rates satisfactorily; Scheinkman and LeBaron (1989, p. 313)
found evidence that volatility in stock market data cannot be captured completely by the lincar ARCH model.
To deal with this limitation of “inadequate” nonlinearity inherent in the linear ARCH specification, several
researchers like Engle and Bollersiev (1986) and Pantula (1986) have suggested alternative functional forms
for the conditional variance function. Recently, Higgins and Bera (1992) and Hentschel (1995) have further
contributed to this specific area of research. While Higgins and Bera have proposed a generalisation, called the
nonlinear ARCH (NARCH) model, which can be viewed as the Box and Cox (1964) power transformation
on both sides of Engle’s specification of conditional variance, Hentschel’s suggestion is to consider a nested
family of asymmetric GARCH models treating the variance equation as a law of motion for the Box—Cox
transformation of the conditional standard deviation.

In this paper we propose to capture the strong nonlinearity in some financial time-series data by suggesting
a different approach in which instead of assuming highly nonlinear and somewhat arbitrary specifications for
the conditional variance, the time-series variable (dependent variable in the context of regression framework)
is transformed by the Box—Cox (1964) family of power transformations. This transformation has traditionally
been used to linearise otherwise nonlinear models (see Carroll and Ruppert, 1988, p. 118). This has also been
used for reducing heterogeneity and achieving symmetric distribution of the transformed variable. In fact,
Box—Cox proposed this family of power transformations of the dependent variable in a regression model
so as to achieve all the three properties, viz., linearity, homoscedasticity and normality of the transformed
dependent variable simultaneously. Although subsequent researchers, e.g., Draper and Cox (1969), Guerrero
(1993), Poirier (1978) and Sarkar (1985), have shown that all the three desirable properties may not, in
general, be achieved simuitaneously, BC transformation is used in both time series and cross-section data
analysis with the aim of achieving these propertics as closely as possible. Insofar as the performance in
terms of forecast accuracy of BC transformation is concerned, the available evidence is somewhat mixed.
For instance, while Hopwood et al. (1984) have found that in time-series analysis incorporating this power
transformation for ARIMA models is beneficial in terms of forecast accuracy, Granger and Newbold (1976)
and Nelson and Granger (1979) observed while analysing a collection of macroeconomic time series, that
there was little gain due to this transformation in forecast quality. Such mixed evidences have led Granger
and Newbold (1986, p. 119) to conclude that “whether the additional effort is likely to lead to much reward
in terms of superior forecast performance is not clear”. This observation notwithstanding the use of BC
transformation is often motivated by the possibility of obtaining improved forecasts, It may also be noted that
BC transformation has been modified by Bickel and Doksum (1981) to accommodate negative values of the
underlying variable. In this context it may be mentioned that in all the works on ARCH mode! and its various
generalisations and extensions as well as numerous applications of these models, the underlying time-series
variable has been assumed to be nontransformed.

While it is true that the analysis and the interpretations are made easier if the data are not transformed,
we argue that the linear ARCH specification may not be able to capture adequately the strong nonlinearity
of many financial time series, and that a suitable transformation of the time series may be able to do so.
Following arguments of Carroll and Ruppert (1988) as also of Mills (1990, p. 41), we reason that for a
given time series data having strong nonlinear dependence there would exist a value of 4, the transformation
parameter under the BC family of transformations, such that the ARCH model with transformed variable
appropriately models the strong nonlinearity in the data.

The proposed generalisation of the ARCH model might also be useful in another respect, viz., the transfor-
mation might affect the distributional shape of the variable favourably. It is well known that the unconditional
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distribution of data for which linear ARCH models are used is frequently skewed and leptokurtic. Since appro-
priate transformation may induce symmetry to the distribution, it is probable that the proposed generalisation
would yield, in addition to capturing the presence of strong nonlinearity in the data, an approximate symmetric
and mesokurtic distribution. In this context it may be pointed out that BC transformation does not, in general,
permit large negative values for the transformed variable (cf. Poirier, 1978). Also, Yeo and Johnson (1998)
have shown that the inducement of symmetric distribution may not be achieved always if the modified trans-
formation of Bickel and Doksum (1981) is used. However, as stated by Davidson and MacKinnon (1985),
Lahiri and Egy (1981) and others, it may safely be assumed that the probability for large negative values for
the transformed variable is very small and hence the property of symmetry to the distributional shape may not
be seriously affected. Thus, apart from capturing strong nonlinear dependence, the proposed model is likely
to induce (near) symmetric and mesokurtic properties (i.e., normality) for the unconditional distribution. The
paper is organised as follows. In Section 2, the proposed model is described. The estimation of the model
is discussed in Section 3. A Lagrange multiplier test to find the adequacy of Engle’s lincar ARCH model
against the generalisation proposed is developed in Section 4. The application of the generalised model to a
given financial data is discussed in Section 5. The paper ends with some concluding remarks in Section 6.

2. The model

The generalisation of the ARCH model, to be henceforth called as the Box-Cox transformed ARCH
(BCARCH) model, as proposed in this paper, is specified as follows:

Z | W ~N(X B By), t=1,2,...,T, (2.1)
where z; is the BC transformed value of the (original) dependent variable y, i.c.,

(V-1 A#0,
z= (2.2)
ln Yts A= 0,

he=ag+oqel_ |+ + 0p8f L (2.3)

op > 0,0;20, i=1,2,..., p, so that the conditional variance is strictly positive, g, —z, —x/f,x, is the k x 1
vector of fixed observations at time ¢ on the k independent variables which may include the lagged values of
the dependent variable, f is the k x 1 vector of associated regression coefficients and ¥, is the information set
at time . It order that the transformation given in (2.2) is defined for all real values of 4, ¥, must obviously be
positive for all . It may, however, be pointed out that the definition of the BC family of power transformations
has been extended by Bickel and Doksum (1981) to accommodate negative values of y, when A > 0. The
extended BC (EBC) transformation, as it may be called, is defined as

g =[sign(y)lyd" = 1/A, 4>0. 24
Burbidge et al. (1988) have argued that 4 is unlikely to approach 0 in the presence of negative y;’s because of

the extreme effects, i.e., the transformed observations may have infinitely large negative values. We, however,
include the case where A =0, by defining
z =sign(y)In |y, A=0. (2.5)
Without loss of generality, the first regressor is assumed to be unity so that the model allows for an intercept
term. It may also be stated that all the independent variables can as well be transformed with the provision
of different values of A for different variables. However, this would not obviously give rise to any additional

statistical problems than those arising in the model given in (2.1), nor would it change any of the essential
conclusions — only the number of parameters in the model would increase.
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It may be noted that A is a parameter in this model, and this parameter indicates the degree of nonlinearity
present in the data. Obviously, the model reduces to the linear ARCH model of Engle when 4= 1. Hence,
this generalisation provides a framework for developing a specification test for the linear ARCH model.

3. Estimation

In this section we briefly outline the estimation procedure for the BCARCH model. As with the other
generalisations of the ARCH model, we suggest the maximum likelihood (ML) mecthod of estimation of
BCARCH model. In this context it may be mentioned that Guerrero (1993) has suggested methods for esti-
mating A in the usual ARIMA model framework from consideration of variance-stabilizing transformation as
well as bias reduction of the forecast in the original model. Obviously, these methods cannot be straightway
applied to our model. The fact that these methods are essentially model independent holds only in the con-
text “when using ARIMA, structural or unobservable components models for time series” (Guerrero, 1993,
p- 46). Extension of these procedures for ARCH models like ours would have a basic problem in that ARCH
process mmplies that while unconditional variance is homoscedastic, the conditional variance is time depen-
dent in nonlinear relationship. Moreover, because of nonlinearity introduced due to power transformation and
also due to the nonlinearity inherent in the ARCH specification, it would be extremely difficult to obtain the
relevant analytical expressions so as to be able to use some kind of a generalised Guerrero’s method.

Under the assumptions stated earlier, the log-likelihood function of the original deservations y, ya,..., yr,
is given, conditional upon ¥,_; (which is being dropped from notations for the sake of simplicity), as

T
18)=>_1(8), 3.1)
t =l
where
_ i py2
1(8) = const. — ;—lnh, - %(z—'—’fﬁ)— +(A—Dlny, 3.2)

is the log-density function for the fth observation, 8’ = (4, ',a') is the 1 X (k + p +2) complete parameter
vector, o' = (@, %,...,%,) is the 1 x (p + 1) component vector of coefficients in the ARCH specification,
and the last term is the logarithm of the Jacobian of BC transformation. The Jacobian allows for the change
of scale of the response due to the operation of the power transformation, It may be noted that to compare
different values of 1, it is necessary to consider the likelihood in relation to that of the original observations,
and hence the likelihood function has been accordingly written in (3.2). Mention may also be made of the fact
that some values of y,, especially of financial variables like the return data, are likely to be negative as well.
In such situations we suggest, as already discussed in the preceding section, using the EBC transformation as
given in (2.4) and (2.5). The log-density function in that case, say /,(8), would be given by

2 h

The ML estimates of the parameters are obtained by solving the normal equations which are obtained from
(3.1} and (3.2). These equations are, however, highly nonlinear not only because of ARCH structure but
also due to the transformation parameter 1. In order to solve the nonlinear equations for obtaining the ML
estimates, we suggest using the well-known algorithm proposed by Berndt et al. (1974).

If § is the ML estimate of 8 thus obtained, then it is well known that under standard regularity conditions

(cf. Bollerslev, 1986; Crowder, 1976), ($' $)2(6 — 60) 4 N(0, i, pr2), where §=((31(6)/20;)); is the matrix

- 5 _ip\2
1,(0) = const. — %ln hy — 1@ —xpy + (A — Din |y (3.3)
(4
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of first-order derivatives evaluated at § and 6, is the true value of the parameter vector §. The first-order
derivatives required for the computations by BHHH algorithm can easily be obtained from (3.2) as follows:

az(o) £ L oy (&
BTk T3 ( 1)’ GO
az(e) Z 1 ah,( 1)
g (3.5)
2h du \

318 1 oh o
( 2. Zzh, P ( 1) D a”lenyr (3.6)
1

If these derivatives were to be obtained for the likelihood function based on 7,(6) in (3.3), 21(8)/éf and
0I(8)/0a would remain the same, only in &/(0)/24 the last term would change to >, In ¥ Since all these
derivatives in turn involve the derivatives of , with respect to the parameters «, § and 7 and also &, &4, the
final expressions of these derivatives may be found by substituting the derivatives of &h,/@x, &, /E.2h,'d5
and Je,/¢A in (3.4), (3.5) and (3.6). The computational complexity introduced in the BCARCH model arises
in evaluating these derivatives which are given in the appendix.

and

4. A Lagrange multiplier test

Since BCARCH model is a generalisation of the original ARCH model in which y, has been transformed by
the BC transformation so that strong nonlinear dependence present in many financial series may be adequately
captured in the model, it is natural and also important to have a test to determine whether Engle’s linear
ARCH model provides an adequate description of the data. This is more so because once it is suspected
that the conditional heteroscedasticity is present in the original data, one is usually inclined to consider the
specification of the model with Engle’s ARCH model. Since the Lagrange multiplier (ILM) test is a very
convenient test procedure in such situations, we derive an LM test for testing Engle’s ARCH specification
against the more general class of ARCH (i.e., BCARCH) models suggested here.

In deriving the LM test statistic, we first note that for the BCARCH model, the information matrix is no
longer entirely block diagonal. This result is stated in the following theorem the proof of which is given in
the appendix.

Theorem. Like the ARCH regression model, the information matrix for the BCARCH model is block
diagonal between the regression parameters B and the variance parameters a; however, the same does not
hold for the information matrix between the regression parameters 8 and the transformation parameter i
as well as that between the variance parameters o and the transformation parameter A.

Since the information matrix is no longer entirely block diagonal, the testing for the mean, the variance and
the transformation parameter has to be carried out jointly. Now, the LM test statistic for the null hypothesis
Hp: 2 =1 (i.e., the linear ARCH regression model) against the alternative H,: A# 1 (i.e., the BCARCH
regression model) is given by

LM = d(§)1(fy ia(), 4.0
where the score vector d(6) = 81(9)/00 and the information matrix [(8) = —E(&*1()/¢000") are evaluated

at §, the ML estimate of @ under the null hypothesis 4 = 1. Differentiating (3.4)—(3.6), we can easily obtain
the second-order derivatives of the log-likelihood function.
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In evaluating negative of the expectation of the Hessian matrix we note that this expectation operation may
be simplified by taking iterated expectations on the information set ¥_,. We thus have

2HO)\ _ 62139)_)' ]_ [xf‘_:' 1 0Ok ok,
E(ﬁ aﬁaﬁT)_—E[E(éﬁaﬂ, |!F,.| —ZE Wt 2 o (4.2)

and hence this can be consistently estimated by J5(8) =3, [x:x)/h, -+ (1/2k X2k, /0B)(ER,/EBNH).

The other elements of the information matrix may be obtained in a similar fashion. To obtain the final form
of the test statistic in (4.1), we evaluate the score vector d(8) in (3.4)-(3.6) and the information matrix under
the restriction A =1, and then substitute these in (4.1). The expressions for the derivatives in the LM test
statistic involve those of ok,/00 and d¢,/04 and it may easily be obtained from (7.5) to (7.9) in the appendix
by substituting 4 = 1.

One may alternatively construct the LM test from the matrix of scores, S. Suppose that § is calculated for
the BCARCH model, but evaluated at the parameter estimates under the null hypothesis. The LM test can
then be constructed as

LM =/$(5'5)~'§;, (4.3)
where i is a T x 1 unit vector. Obviously, the LM test statistic can be expressed as
LM == TR2, (4.4)

where R3 is the unentered coefficient of determination (R?) obtained by regressing the unit vector on the
matrix of scores under the null hypothesis. This is easily computed from the R* of the first iteration starting
from the estimates found by BHHH algorithm under the null hypothesis.

Since this LM test should be viewed as a diagnostic check of the adequacy of Engle’s linear ARCH
regression model after it has been estimated, in practical applications one should construct other diagnostic
tests like the BDS test statistic of Brock et al. (1987), Ljung and Box (1978) test, etc., to convey more
information on the validity of the chosen model.

5. An application

In this section we report the result of an application of the BCARCH model to daily closing prices on
the Bombay Stock Exchange (BSE) as measured by the BSE Sensitive Index (SENSEX). The data cover
the period January, 1984 to January, 1996. The analysed series is the first difference of the logarithms of
this index. Hence the data represent the continuously compounded rate of return for holding the (aggregate)
securities for one day. It may be mentioned in this context that some of the return figures were found to have
small negative values (as expected from the definition of return itself), and thus in this example instead of
the usual BC transformation (cf. (2.2)) the EBC as defined in (2.4) and (2.5) has been used. As it is well
known that GARCH is a better representation of the conditional variance than ARCH., the former has been
assumed to be the conditional variance function for this application i.e., for this example 4, bas been assumed
to be given by

he =09+ 0!18,2._1 +--- +0tp8?_p + by + -+ Sghy—g, -

where a9 > 0,0;20 for i=1,2,..., p and §; >0 for i=1,2,...,9. We have thus fitted the EBCGARCH model
to this data. For this purpose, we have assumed that apart from an intercept term there is a regressor in
the form of z..; in the model. We had earlier fitted the model without the regressor only to find that there
are high autocorrelations in the residuals, and this means that in such a case the conditional mean model
is misspecified. In fact, many researchers have found that the absolute values of stock returns are highly
autocorrelated.
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Table 1
Estimated models for sensex data®
i ﬁ 1) 4 3, Maximum
log-likelihood
GARCH (1, 1) 1 0.1736 0.3028 x 10 * 0.0932 0.9020 7120.29

{0.0202) (0.5928 x 10 %) (0.0084}) (0.0076)

EBCGARCH (1, 1) 0.89 0.1778 0.8769 x 10 3 0.0911 0.9022 7153.13
(0.0201) (0.2260 x 10 %) (0.0102) (0.0101)

*Figures in parentheses show the standard errors of the estimates.

Table 2
Ljung-Box test statistic values for the residuals

I on o3 @6 on o9 oy e Q2)

GARCH (1, 1) 1 5.60° 12.55%  13.92*  1464* 19.61* 1997 22.1%° 2393
EBCGARCH (1, 1) 089 299 1133* 1193 11.95 16.84 17.58 18.87 19.96

3Indicates significance at 5% level.
bIndicates significance at 1% level.

On the basis of estimation of the EBCGARCH model with this data set, we have found that EBCGARCH
(1, 1) fits the data best, and the log-likelihood function is maximum at A — 0.89, the maximum value being
7153.13. Insofar as the performance by the usual linear GARCH model, i.e., where 4+ 1, is concerned we
have found that the maximum value is attained when the order is (1, 1) and the log-likelihood value, as given
in Table 1, is 7120.29. Thus, it turns out that the estimated value of the transformation parameter 4 is quite
close to 1 for this data set. To find out if this closeness is statistically significant or not, we carried out an
asymptotic test of Hy: A =1 against H;: A 3 1, and found that the test rejected I, against H; at 1 per cent
level of significance. It is then clear that the fited EBCGARCH (1, 1) medel is superior to the usual linear
GARCH (1, 1) model. We have thus established through this example that an appropriate transformation of
the variable in the GARCH framework is able to model the data better by capturing the nonlinear dependence
in the time series more clearly than that explained by the linear GARCH maodel.

We have also studied the residuals of the chosen EBCGARCH (1,1) model as well as those of the linear
GARCH (1, 1) model to find if the residuals exhibit any dependence based on which the two models could
be further compared. Towards this end we have used the diagnostic test given by the Ljung Box Q(m) test
statistic where m indicates the lag value of the autocorrelation process. The values of this diagnostic test
statistic are given in Table 2.

We observe from this table that all but one of the values of Q(m) test statistic for the EBCGARCH model
are insignificant at 5% level of significance. The same does not hold for the linear GARCH model. In the
latter, Q(m) values are significant for all lag values m at 5% level of significance; Q(3) is significant even
at 1% level of significance. We also carried out the Breusch-Godfrey LM test under AR MA alternative to
check whether the residuals were nonautocorrelated. The value of this test statistic was found to be 5.60 for
the linear GARCH (1, 1) model and 2.99 for the chosen EBCGARCH (1, 1) model. Thus, this diagnostic
test suggests that while the residuals of the former model have significant autocorrelations at 2.5% level of
significance, those of the latter are insignificant even at 5% level. This finding is quite in conformity with those
obtained from the Ljung-Box test. Lastly, we compared the skewness and kurtosis coefficients of the residuals
of the two models and found that EBCGARCH mode] was closer to normality than the linear GARCH model.
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This is evident from the fact that the values of coefficient of skewness were 0.1112 and 0.0025 for the linear
GARCH (1, 1) model and EBCGARCH (1, 1) model, respectively, and those of kurtosis were 5.8753 and
3.3387. We conclude therefore that for this example the data support the transformation approach proposed
in this paper.

6. Conclusions

In time-series modelling the linear ARCH model is widely used for analysing data on financial and other
similar economic variables. The original linear ARCH model of Engle has been generalised and extended in
many ways so as to incorporate other features and complexities of such data.

In this paper we consider another generalisation in which the dependent variable is transformed by the
well-known Box-Cox family of transformations; if some values are negative as the case may very well be
with return data, the extended BC transformation of Bickel and Doksum is to be used. Such a generalisation is
likely to capture the strong nonlinear dependence (in the time series) which otherwise remains unexplained by
the linear ARCH model. We have discussed the maximum likelihood method of estimation of the BCARCH
model, and also suggested a Lagrange multiplier test for testing Engle’s linear ARCH specification against the
wider class of alternative models given by the BCARCH specification. Finally, we have shown through the
analysis of daily closing prices on the Bombay Stock Exchange Sensitive Index, that such a gencralisation of
the linear ARCH model may perform much better than the original linear ARCH model.
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Appendix

Proof of the Theorem. We have already noted in Section 4 that the unconditional expectation is obtained
through conditional expectation on the information set at time ¢ — 1. We thus have

PUO)Y _ )
(~Faow ) = (5 0 || ") b

and this may easily be checked to simplify to

a21(60) 1 ok, ok
216y _ _L ok on A2
E( aﬁaw) Z:E(th 8 aaf)‘ a?)
Similarly, we have
521(9) X 38; 1 ahr ah;
El-—"21:= ~ZE{ el S A3
( aﬁaz) ZE{ h,E(a).) + 24 28 aﬁ.} 43

and

it 1 h, ok,
T udi ) 7 B 31 Ad
E( Mi) ZE(zhf oot az)' (A4)

t
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Since the expressions in (A.1)-(A.4) involve &h,/¢x, &h,/0B, Ch,/CA and O¢, /04, we differentiate h, with respect
to the parameters and & with respect to A, to obtain

P
o _ _, D%t i=12,..k, (AS)
0B =
o _ 1, (A.6)
dop
oh, -
E "'812—_[3 J= ]-’2,“': Ds (A?)
ok 4
51 =22 eVl Iyl = i+ LA (A8)
jr:l
and
Jg
75 =0yt =y + 1/ (A9)

Using Engle’s definition of symmetric function for the ARCH model, we find (i) from (2.3) that i, is a
symmetric function of & 4,...,&-p, (ii) from (A.6) that ¢k, /8% is a symmetric function, and (iii) from (A.7)
that ok, /3y (j=1,2,..., p) is a symmetric function of & j- However, it is evident from (A.5) that ¢h, ¢,
is an antisymmetric function of & 1,& .2,...,&_p. Since each of these ¢ s J— L2,..., p, is symmetrically
distributed around zero, it is then obvious that E( -22/(8)/f¢«’) = 0. As for the other two expectations in
(A.3) and (A4), viz,, E(--8?1(6)/3BcA) and E(—821(0)/éxéA), it can easily be checked, after simplifying the
expression for dk,/04 in (A.8), that each of these is different from zero.
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