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Abstract

Kalashnikov and Rachev (1986) have proposed a partial ordering of life distribu-
tions which is equivalent to an increasing hazard ratio, when the ratio exists. This
model can represent the phenomenon of crossing hazards, which has received
considerable attention in recent years. In this paper we study this and two other
models of relative ageing. Their connections with common partial orderings in the
reliability literature are discussed. We examine the closure properties of the three
orderings under several operations. Finally, we give reliability and moment bounds
for a distribution when it is ordered with respect to a known distribution.
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1. Introduction and summary

Let X and Y be positive-valued random variables with cumulative distribution
functions (c.d.f.) F and G, survival functions F = 1 — Fand G = 1 — G and cumulative
hazard functions A = —log F and A; = —log G, respectively. When the densities
exist, we denote their probability density functions (p.d.f.) by fand g and hazard rates by
hr = fIF and hg = g/G, respectively. In the literature there exist many partial orderings
between the random variables X and Y (or equivalently between the c.d.f.’s F and G).
For example, F is said to be convex ordered with respect to G if G~! o F is a convex
function (assuming G to be strictly increasing). This and many other partial orderings
may be found in Barlow and Proschan (1975), Stoyan (1983), Ross (1983), Deshpande
et al. (1990), etc. Here we study a relatively new partial ordering defined by Kalashnikov
and Rachev (1986) which is found to be useful in reliability theory. The definition of this
ordering is given below.

Definition 1. The random variable X is said to be ageing faster than Y (written

‘X < Y’ or ‘F < () if the random variable Z = A;(X) has an increasing failure rate
(IFR) distribution.
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The importance of the above partial ordering stems from the fact that it provides a
concept of relative ageing of two probability distributions. If the two failure rates are
such that 4z(x)/hs(x) is a constant, then one may say that the two distributions age at the
same rate. On the other hand if the ratio is an increasing (decreasing) function of the age
x, then we say that X ages faster (slower) than Y. It is easily seen that this is equivalent to
Definition 1 above, if the failure rates exist.

The phenomenon of crossing hazards also comes up in survival analysis. Pocock et al.
(1982) have observed this phenomenon in connection with prognostic studies in the
treatment of breast cancer. Champlin et al. (1983) and Begg et al. (1984) have also
reported instances of the superiority of a treatment being short-lived. An increasing
hazards ratio is a reasonable alternative to the proportional hazards model in these
situations.

Returning to the problem of modelling, we can think of two simple generalizations of
the * <’ order by replacing ‘IFR’ in Definition 1 by ‘IFRA’ or ‘NBU’. These orders can
also be shown to have intuitive interpretations in terms of relative ageing. The formal
definitions of these orders will be given in the next section.

The objective of this paper is to study the * <’ ordering and the two related orderings.
In Section 2 we note many characterizations of these orderings, some of which are
originally due to Kalashnikov and Rachev (1986). The relative ageing interpretations of
these orderings are highlighted. We also establish a connection among these partial
orderings. In Section 3 we show that distributions within several parametric families are
* <’ ordered according to the values of some parameters. Some examples show that the
three orderings discussed here do not imply or are not implied by the convex, star or
superadditive orderings which are commonly known in reliability. The closure proper-
ties of the orderings are discussed in Section 4. In Section 5 we provide bounds for the
Kolmogorov distance between the ¢ <’ ordered distributions. We also find upper and
lower bounds for the survival function F if F is ordered with respect to a known
distribution G in one of the three ways and shares a common moment with it. The cases
of slower ageing with respect to a known distribution are also considered. Next we
provide inequalities among the moments of the ‘ <’ ordered distributions. Finally the
stability of F when it is ordered with respect to G is considered.

2. Properties and characterizations of the orders

At the outset we impose the constraint that the support of the distribution functions
mentioned here includes the point 0. We begin with the following proposition which was
noted (but not proved) by Kalashnikov and Rachev (1986).

Proposition 2.1

() IfX < YandY < Zthen X < Z.

(ii) Therelations X < Yand Y < X hold simultaneously if and only if Ay = cA; for
some ¢ > 0.

(iii) Let E be an exponential random variable. Then X is IFR (DFR) if and only if
X < E(E < X).
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The proof of the above, especially when the distributions are not strictly increasing, is
non-trivial. We defer the proof until after the statement of the next proposition.

In view of (i) and (ii) above if one forms equivalence classes with random variables
such that any two members in a class have proportional hazard rates, then the * <’ order
corresponds to a partial order of these equivalence classes. It is also clear that two
distributions which age equally fast would belong to the same equivalence class and
thereby to the same ‘proportional hazards’ or ‘Lehman’ family. Property (iii) brings out
the fact that the IFR and DFR classes can be obtained by comparing probability
distributions to the exponential distribution in the sense of the <’ order. One may
recall that these classes may also be obtained as special cases of the convex ordering. It
turns out that the * <’ ordering can also be described by the notion of convexity. The
next proposition gives this and two other characterizations of the * <’ ordering. The
proof follows from the definition of the ordering. In the following, we use the definition
Ag'(x)=inf{y: Ag(y) > x}. Consequently Az ¢ Ag'(x) = x when Ag is continuous at
xand Ag' o Ag(x) = x when Ag is strictly increasing at x.

Proposition 2.2

(i) X < Yifandonlyif Ar = Ag'is convex on [0, o).

(i) X < Yifand only if Af(Y) has a DFR distribution.

(iii) If hpand hg exist and hg # 0, then X < Yif and only if 4/hg is a non-decreasing
function.

Proposition 2.2(i) should be contrasted with the definition of the convex ordering. The
latter is equivalent to the convexity of G~! o F (which is the same as Ag' o A;). Later
on we shall see that the ‘ <’ and convex orderings form quite different systems of
equivalence classes, none implying the other. The characterizing property in Proposition
2.2(iii) appears to be the one which is easiest to interpret in terms of relative ageing as
discussed in Section 1. When £5(0) Z 4¢(0), the © < * ordering implies the ‘hazard ratio’
ordering (Ross (1983)), which means that 4z dominates 4.

Proof of Proposition 2.1. Let X, Y and Z have cumulative hazard functions Az, Ag
and A,, respectively. We use Proposition 2.2(i) repeatedly to prove the results. To prove
part (i), let Ar = A;' and A; ° Az! be convex functions. Since these functions are also
non-decreasing, the composition Ay © Ag! o A; © Ag! is a convex function. It is clear
that Ag' o Ag is the identity function over an interval where Ag is strictly increasing.
Now suppose A is constant over the interval [a, b). (The assumption that the support of
G includes the point 0 implies that a > 0.) Then A, must also be constant over [a, b) so
that the non-decreasing function Ag ° Ag! is convex. Thus the range of Ay;! has no
overlap with the interval [a, b). Because of the right-continuity of the cumulative hazard
functions, the domain of A; must be a union of the two types of intervals described
above. Therefore Ay o Ay'isidenticalto Ar o Ag' < Ag < Az', which is convex. Using
Proposition 2.2(i) we obtain 2.1(i). To prove 2.1(ii) note that X < Y if and only if
Ar o AG! is convex, which is equivalent to saying that (Ar c Ag')~! or Ag o Ar! is
concave. On the other hand Y < Xif and only if Ag < Ar' is convex. These two hold
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simultaneously if and only if A; = Af!is a linear function. The result follows. Part (iii)
of 2.1 also follows from 2.2(i) by noticing that A; is a linear function when G is
exponential.

It is well known that successive generalizations of the property of convexity give rise to
the star and superadditive orderings. In the same manner we now generalize the * <’
ordering.

Definition 2. The random variable X is said to be ageing faster than Y in average
(written ‘X < Y’ or ‘F < G’) if the random variable Z = A;(X) has an increasing
failure rate average (IFRA) distribution.

Definition 3. The random variable X is said to be ageing faster than Y in quantile
(written ‘X < Y’ or ‘F < G’)if the random variable Z = A;(X) has a new better than
used (NBU) distribution.

We can immediately see that parts (i) and (ii) of Proposition 2.1 hold for these two
orderings, while part (iii) holds with appropriate modifications. (For 2.1(i) to hold for the
* <7 ordering, we need the additional assumption that the distributions are strictly
increasing.) Thus the IFRA, DFRA, NBU and NWU classes of life distributions can be
viewed as spécial cases of these orders when either F or G is exponential. The following
chain of implications is also obvious:

X<Y=X<xY=X<Y.

We now give two sets of characterizations which help understand the new partial
orderings.

Proposition 2.3

(i) X < Yifand onlyif Ap o Ag' is star-shaped on [0, o).

(i) X < Yifand only if A(Y) has a DFRA distribution.

(iii) Suppose at least one of the two distributions F or G is continuous and strictly
increasing. Then X < Y if and only if Ag/A; is an non-decreasing function.

Proof. Parts (i) and (ii) follow from the definition. Part (iii) is proved in two steps.
Suppose G is continuous and strictly increasing. Then Az/Ag is non-decreasing if and
only if the function Ay~ Az'(y)/y is non-decreasing. A similar argument involving
A © A7'(»)/y can be made when F is continuous and strictly increasing. Putting these
together and using Parts (i) and (ii) we have the desired result.

Proposition 2.4

(i) X g Yifandonlyif Af ° Ag! is superadditive on [0, c0).
(i) X g Yifand only if A;(Y) has a NWU distribution.
(iii) X g Yifand only if

- (Fx+1) o [Glx+1)
F <—————F(t) );G <_G(t) ) for each x, t >0,
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assuming F and G to be continuous and strictly decreasing functions.

Proof. Parts (i) and (ii) are easy to prove. In order to prove part (iii), let a, b >0,
t =A;'(a) and x +¢t =A;!(a + b), and note the following sequence of equivalent
statements:

Apo A (@ +b)=Ap o Agl(a)+ Ap o AG'(b) foreacha,b>0

SOA =1
< —log (M) = —log F(A;'(b)) foreacha,b>0

F(AG'(a))
"I(M>§A5‘(b) foreacha, b >0
F(Ag'(a)
o poi F(x+t)> _|<_ G(x+t))= .y G(x+t)>
F <—F(t) = Ag log—G(t) G (—G(t) for each x, t > 0.

The quantity F~'(F(x + t)/F(t)) may be interpreted as the rescaled quantile of the life
distribution of a component which is t units old, that is,

P[X>F"(F(;T:-)t))}=P[X, >x],

X, being the remaining life of a unit that is ¢ units old, and X = X,. Part (iii) of
Proposition 2.4 indicates that the rescaled quantile of one distribution is smaller than
that of the other distribution at all ages. Thus the last parts of Propositions 2.3 and 2.4
provide natural ageing interpretations to the new partial orderings and justify the names
given in Definitions 2 and 3.

Since G~! o F is the same as A;! o Ay, star-shapedness or superadditivity of this
function represents the star and superadditive ordering, respectively. The first parts of
Propositions 2.3 and 2.4 indicate that the functions A;' and Ay are composed in a
different way in the case of * <’ and * <’ orderings.

The‘ <’,* <’ and * X’ orders share several properties which will be discussed below.
We shall use the generic symbol ¢ < * for simplicity, while describing any result that holds
for each of these orderings.

Theorem 2.1. X < Yifand only if u(X) < u(Y) for every strictly increasing positive
function u passing through (0, 0).

Proof. Let A% and A% be the cumulative hazard functions of #(X) and u(Y),
respectively. It is easy to observe that A% o (A%) 1= Ap o Ag'.

Corollary 2.1. X < Yif and only if aX < aY for all a > 0.
Corollary 2.2. X < Yifandonly if X’ < Y’ forall r > 0.

It is seen that the result in Corollary 2.1 is weaker than the result available for the
convex, star and superadditive orderings, where the ordering of X with respect to Y
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implies the corresponding ordering of aX with respect to bY for all a, b > 0. We shall
come back to Corollary 2.2 in Section 5.

We conclude this section with the statement of a property of the * < * ordering which is
analogous to a similar property of the star ordering.

Proposition 2.5. If F < G and F and G have no common point of discontinuity,
then F crosses G at most once and from above.

Proof. The condition F < G implies by Proposition 2.3(i) that the graph of
Ap o AZ'(x) crosses the x at most once and from below. This ensures that over an
interval where A is continuous, Ay crosses A; at most once and from below. The same
argument holds over an interval where Ay is continuous, using the fact that Ag o Agis
inverse star-shaped. The result follows.

3. Parametric classes

When the ¢ <’ ordering (or the other two orderings defined in the previous section) is
restricted to certain parametric classes, it reduces to a natural ordering among the
parameters as shown in the following examples.

Example 3.1 (linear failure rate). Let Fi(x) =exp{ —o;(x + 46,x?)} fori=1,2.In
this case F; < F, if and only if 6, Z 0,, irrespective of a; and a,.

Example 3.2 (Weibull). Let F;(x) =exp{ —a;,x%)} for i =1, 2. Then F; < F,ifand
only if 6, = 6,, irrespective of «; and a,.

Example 3.3 (Pareto). Let F;(x)=(1+ x/6;)%fori =1, 2. Then F, < F,ifand only
if 6, = 6,, irrespective of o, and «a,.

Example 3.4 (Makeham). Let F;(x)=exp[ — {a;xx + 6;,(exp(— a;x) — 1 + a;x)}]
for i =1, 2. Now, if a; = a,, then F| < F,if and only if 6, = 6,.

Example 3.5 (gamma). Let F;(x)= [ {«fy% YT(6,)}exp(— a;y)dy for i=1,2.
Now, if a; = a,, then F| < F,if and only if §, = 6,.

The last case is proved by writing F; as

_ (6 _ © _
Fl(x)=afn-‘*zF§0—f; [x""’ze(xH [ (0.—02)y"“’2“Fz(y)dy]

after adjustment of power and integration by parts. Then the ratio of the hazard rates can
be written as

hy(x) _ 1 .
hix) 14 f * (6, — 8,)2%0\(Fy(zx)/Fy(x)}dz
1
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Using arguments similar to those of Barlow and Proschan (1975), p. 74, and making use
of the fact that Fy(zx)/F,(x) decreases with x whenever z > 1, we reach the stated
conclusion.

The above examples illustrate how the members of various parametric families are
ordered through the ‘<’, ‘<’ and ‘ 5’ orderings. In general the results are not
unexpected. In the Weibull and gamma families they are ordered according to the values
of the shape parameter. In the Pareto family, however, it is seen that by fixing the values
of &, a,, 6, and 6, appropriately, the * <’ order may be made to agree with the convex
ordering or go against the convex ordering. (It may be recalled that the values of o, and
a, determine the convex order of the Pareto distributions.) This brings out the fact that
there is no implication relationship between these two orderings which are based on the
convexity of Ar o Ag!'and A;' o Ag, respectively.

4. Closure properties

In reliability we often deal with complex systems of independent components, with
convolutions, with mixture distributions, etc. Hence it is of interest to know whether the
orderings‘ <’“ <’and* <’ are preserved under such operations. The following theorem
states two closure properties.

Theorem 4.1. Let X, ~F,and Y, ~ G;fori =1,- - -, nand all the random variables
are independent. Further, let F; < G, for each i.
(i)IfFl=F2=---=F,,=FandGl=G2=-"=G,,=G,th€n

min(Xl’ XZ" "t Xn) < min(Yl’ Y2,° ) Yn)

(i) If lim,_.  F, = F, lim,., G, = G and F and G have no common point of dis-
continuity, then F < G.

Proof. Part (i) is easy to prove. To prove part (ii) it is enough to show that the
convexity (or star-shapedness or superadditivity) of — log P[Ag,(X,)> x] on [0, o)

implies that of — log P[A;(X) > x]. We prove that the latter is the limit of the former, or
equivalently,

lim P[G,(X,)=y]=P[G(X)=y] foreach y€E[0, 1).

The sequence of functions {G, } is uniformly bounded. In such a case a simplification of
Theorem 1 of Topsee (1967) gives the following necessary and sufficient conditions for
the above:

(a) lim,_ , E[G,(X)] = E[G(X)];

(b) For every ¢ > 0 the identity

P[XE A {x:Go(x +6) — Go(z —ék)>£}] -0

k=1

holds for each sequence {4, } of positive numbers converging to 0 and each subsequence
{Gn} of {G,}.
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Since G, — G pointwise, the condition (a) follows by the bounded convergence
theorem. In order to check condition (b) let x; be a continuity point of GG. For a given
€ >0 pick d > 0 such that (x, — J) and (x, + J) are also continuity points of G and
G(xy+ 0) — G(x, — J) = ¢/3. If {6, } is a sequence converging to 0, then for large enough
kwehaved, <9, |G, (%o + ) — G(xy + J)| =¢/3and |G, (x) — ) — G(x, — )| =¢&/3.
It follows that x, does not belong to the set

A (x: Gz +8,) — Gy (x — 8)>e).

k+1

Thus the above set consists of at most the discontinuity points of G. In fact it can be
shown that only finitely many of them, having jump size greater than ¢, are included in
it. Consequently condition (b) is satisfied if and only if F and G have no common point
of discontinuity.

The result in (i) above says that the * <’ ordering is preserved under formation of
series systems of i.i.d. components. However, that it is not preserved under formation of
general coherent systems is brought out if one considers the parallel system of i.i.d.
components. Similarly, the ordering is not preserved under formation of convolutions or
mixtures either. Simple counterexamples can be constructed out of exponential random
variables in order to prove these non-closures. Whether the closure properties hold for
the above operations after imposing additional relevant conditions on the distributions
is an open problem.

5. Reliability bounds and other inequalities

5.1. Reliability bounds with one known moment. Barlow and Proschan (1975),
p. 111 give a lower bound on F(¢) when Fis convex ordered with respect to G and shares
a common moment with it. Similar upper and lower bounds for star-shaped and
superadditive orderings have been provided by Sengupta (1994). These results are useful
in understanding the nature of an unknown distribution F which is ordered with respect
to a known distribution G. For example, if Fis convex ordered with respect to a Weibull
distribution G with a known shape parameter greater than 1, then one can provide a
bound on F which is sharper than the IFR bound. Following the technique of Sengupta
(1994), and assuming that G is strictly increasing, the corresponding bounds for the
‘<’ *<’and‘ <’ orderings can be obtained. Another set of bounds exist for the reverse
order between F and G. All these bounds, which can be shown to be sharp, are
summarized in Table 1. The bounds are obtained by writing Az(x)as A o Ag, where A is
a convex, star-shaped or superadditive function, and then optimizing A(x) over the
class of these special functions subject to the constraint

f “exp(— A o Ag(¥)rz'~'dz = p,,
0

where y, is the known rth moment of F (r > 0). The derivations are omitted in order to
save space.
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TABLE 1
Bounds on F(x) when j: rx"'F(x)dx = p,

Case Upper bound Lower bound
] 1 if x < plr ) {info<, S [COVGEBN ifx <plr
< Fx) = {Mosps
Feo = {G"(x) ifx z ut ®=10 if x Z i
F<G where o is such that where a is such that
fx rz"\G%(2)dz = p, B+ Lw rz" NG ()/G(B))°dz = u,
0
. 1 if x <plr . {G“(x) if x <plr
= F(x)=
Fx)= {G“(x) if x = plr x)= 0 ifx zulr
F<G where « is such that where « is such that
fx rz’~\Gz)dz = u, x"+ fw rz"~'G%(z)dz = u,
0 x
, 1 if x <ulr . {e“' if x <plr
5 T F Z T
Fexy= {G“(x) if x =z plr x)= 0 ifxzp!r
F<G where « is such that where « is such that
f " r2r-\Go(z)dz = p, (=1 3 e GTC @ =4
0 ne
- #G(x)
F(x)= vy
()= S Tre Gy
G<F where « is such that Fx)z0
fw rz"\G(z)dz = u,
0
F(x) = G(x)
Gz F where « is such that Fx)z0
G(x)x" + fw rz"~1G%(z)dz = u,
F(x)=e*
G F where « is such that F(x)z0

(1—e=) 351 e~ (G G N = i,

As an example, suppose we know that F < G where G(x) = exp( — x?) and that the
first moment of Fis u. Then it follows from parts (i) and (iii) of Proposition 2.1 that Fis
IFR and hence the IFR lower bound (see Barlow and Proschan (1975)) is applicable here.
However, Table 1 gives a sharper lower bound, as shown in Figure 1.

5.2. Reliability bounds with one known quantile. Barlow and Proschan (1975),
p. 110 and 188, give a set of bounds for IFRA, NBU and NWU distributions when a
quantile of the distribution is given. Similarly one can find upper and lower bounds on
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Figure 1. Lower bounds on F(x) as a function of x/u, where u is the mean of F:
dotted line shows IFR lower bound, bold line shows lower bound when F s G
and G(x) = exp( — x2).

TABLE 2
Bounds on F(x) when F(x,) = p

Case Upper bound Lower bound

~ 1 ifx<x - Gi(x) ifx<x

F(x)= ? F(x)= 7]

Fz@ )= {G“(x) ifxzx, = {0 ifxzx,
where a = log p/log G(x,) where « = log p/log G(x,)

. 1 ifx<ux - G (x) ifx<x

F(x)= P > 3

Fx¢6 )= {G“(x) ifxzx, Fx)z {0 ifxzx,
where o = log p/log G(x,) where o = log p/log G(x,)

- 1 ifx<x - p' if GVM(x,) < G(x) = G+ (x)
F(x)= ’ F(x)=z » ?
Fge6 ()= {p" 6" ) <G = G(xy) L F {1 ifx = x,
- G*(x) ifx<x , {p if x <x
< 14 > 14
G F Fn= {p i x 2 x, FOZ 600 ifxzx,
where a = log p/log G(x,) where o = log p/log G(x,)
- G(x) ifx<x . {p ifx <x
< P > 4
GsF Fex)= {p ifxzx, Fx)z G (x) ifxzx,
where o = log p/log G (x,) where o = log p/log G(x,)

G <F F(x)<{pl/(n+l) ifG”"(x,)<G(x)§G”‘"*”(xp) F(X)ip" ifG"“(x,)<G(x)§G"(x,)
s =l ifxzx,

F(x) when it is known that F(x,) = p and that F is ordered with respect to a known
distribution G. Assuming that G is continuous and strictly increasing, we summarize the
results in Table 2 and omit the proofs. These bounds are also sharp.
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5.3. Moment inequalities. Given the first moment of an unknown distribution,
sometimes one is interested in knowing the range of its other moments. If the distribu-
tion is IFRA, then one such result can be found in Barlow and Proschan (1975), p. 116.
We consider the general problem of finding a bound on the sth moment of F, given the
rth moment and the fact that it is ordered with respect to G. The following theorem gives
the required generalization.

Theorem 5.1. Suppose X < Y and E(X")= E(Y") for some r > 0. Then

- {;E(Ys) for all s €(0, 7),
E(x*
=E(Y*) foralls >r,

assuming the moments exist. Further, the inequalities are strict when the distributions of
X and Y are not identical.

Proof. Lemma 4.6.4 of Barlow and Proschan (1975), p. 112 goes through for the <
ordering. Moreover, the inequality given there is strict whenever y is strictly monotone,
assuming the distributions to be non-identical. The stated result follows by choosing ¥ to
be an appropriate power function.

Note that F < G implies F < (1 — G°) for all a> 0. Therefore the equality of rth
moments in the above theorem is not a very restrictive requirement. It is enough to know
the rth moment of X; then a suitable modification of Y can be found to match this
moment.

It is also important to note that the above theorem holds for <, convex and star
orderings.

Corollary 5.1. If X < Yand X and Y share two common moments, then they have
identical distributions.

5.4. Stability. Asaspecial case of Corollary 5.1, if F < (G and the distributions have
common first and second moments, then F = G. One may wish to find out how close F

and G are when they only share the first moment but the second moments are known.
Rachev (1991), p. 260 has shown that

sup | F(x) — G(x)| = 3*°[{(X, V)],

where b is the supremum of the density of either For G and {(X, Y) is the average metric
(Zolotarev (1976)) {(X, Y) given by

(= [

f " IF(t) = G())dt]| dx.

If both the distributions have densities with known supremum, one can choose b to be
the smaller of the two.

We begin with a generalization of Theorem 4.1 of Kalashnikov and Rachev (1986) in
order to obtain an expression for the average metric.
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Theorem 5.2. Suppose X~F, Y~G, F < G, E(X)<E(Y) and the second
moments of Fand G are finite. Let the additional condition F(x) < G(x) hold for some x
whenever E(X) < E(Y). Then the average metric {(X, Y) is equal to $[E(Y?) — E(X?)].

Proof. By Proposition 2.5, F crosses G -at most once and from below. The conditions
involving the first moments ensure that such a crossing does occur. Now we follow
Kalashnikov and Rachev to define

D(x)= f “LE(t) — G(t))dt

and argue that D’(x) changes sign (from negative to positive) only once between 0 and
o0, while D(0) = D(0)=0. Thus D =0 and hence {(X, Y) is the integral of — D(x)
from 0 to oo. The result follows.

Corollary 5.2. Under the conditions of the above theorem, F = G if and only if
E(X?*)=E(Y?). (This is a corollary to Theorem 5.1 as well.)

Corollary 5.3. Ifeither F or G has a density uniformly bounded by b, then under the
conditions of Theorem 5.2,

b2 1
sup |F(x) = G()| 53| 2 (E(r) - By |

We actually get a family of bounds from Corollary 5.3, since F < G is equivalent to
F < (1 — G*) for each a> 0. To be more specific, let o, be the largest value of « such
that F'is completely dominated by G* and «, be such that the first moment of (1 — G*2) is
the same as that of F. Then we have for all o€ («,, a5

b
2
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sup |F(x)— G(x)| §3[ {v(a)—E(XZ)}] ,
where
b(a) = sup ag(x)G*(x),

v(a) = fo ” 2xG4(x )dx.

Evidently the right-hand side of the above inequality may be minimized with respect to
a over (ay, o] in order to obtain the ‘best possible approximation’. For example, for any
IFRA distribution with the first two moments x, and u, (where G is the exponential
distribution) we have «; = 0 and «, = 1/u,. Corollary 5.3 says that

sup | F(x) — exp(— ax)| < 3[1 — pa¥2]"?

for all « €(0, 1/u,]. The minimum value of the right-hand side is 3[1 — p,/(2u})]"3, which
corresponds to « = 1/u,. This bound actually holds for any HNBUE distribution
(Rachev (1991), p. 260). In any case, this simple illustration shows how useful Corollary
5.3 can be.
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