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Let (Z, %) be a partial linear space such that each of its points i1s con-
tained in at least n+1 lines. Fix a prime p. Let €, < I denote the p-ary
code generated by lines iIn % and ¥ denote its dual. In this article, we
prove that the minimum weight of €5 is at least 2n4+2—2". (As a special
case of our result we see that the minimum weight of the p-ary code dual to
the code generated by lines in a projective plane of order n is at least
2n+ 2—%" . This bound sharply improves upon the earlier known bounds as
given in [1, Corollary 6.3.1 and Theorem 6.4.2]). We also prove that the
induced structure on the support of a word of weight 2n 42 --2;’; in € 5, if it
exists, is isomorphic to the join of two Steiner 2-designs with 7 lines
through every point and p points on every line (Theorem 2).

For a projective plane IT of order n, let € denote the p-ary code gener-
ated by lines in /7 and €' its orthogonal. We denote by Hull,(II) the
intersection € N C *. The plane I7 is said to be tame at p if the minimum
weight of Hull,(IT) is 2n and the words of minimum weight are scalar
multiples of vectors of the form ¥, —,,, where ¥, and ¥,, denote charac-
teristic functions of two lines L and M in I7. It is called tame if it is tame at
all the primes that divide ». Thus, our result also implies that a projective
plane of order p is tame. As only desarguesian planes are believed to be
tame (see [ 1, Theorem 6.9.1] and the discussion thereon), the results of this

article provide strong evidence towards the validity of the prime order case
of the Hamada- Sachar conjecture.
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2. RIGIDITY THEOREMS

In this section, in Theorem 1, we prove a generalisation of Bagchi’s
conjecture for linear spaces of prime order. Let us fix a prime p.

Let & be a non-empty set and ¥ < P(¥) be a collection of non-empty
subsets of . The pair (&, &) is called a partial linear space if for any
A#Bin Z, {A, B} is a subset of at most one L e #Z. Elements of £ are
called points and elements of % are called lines. By a line through A4, we
mean a line containing the point 4. The p-ary code generated by the lines
in & is denoted by %, and its dual by €. We call a partial linear space
(%, L) non-trivial at p if the p-ary code €, is not equal to E*'}f .

Let (%, £) be a partial linear space such that at least n+41 lines pass
through every point in Z, and let % be a subset of 4 such that no line in .
intersects % in one point. Let .’ denote the set of lines in % obtained by
intersecting lines in & with %, Then (%, £’) is also a partial linear space
with > n+-1 lines through every point. This is called the induced structure
on %. Let (Z, %) and (%, %) be two partial linear spaces with disjoint
point sets. Their join is the partial linear space (F v ¥, % U U L)
where % is the coliection of sets {x, y} for all xe & and ye #. If (%, #)
and (%,, %) are two partial linear spaces such that p divides the cardi-
nality of every line in % U %, then their join is non-trivial at p since the
non-zero word w defined by w(x) =(—1)' for all x € Z; is in the dual of the
code generated by its lines.

A vpartial linear space in which any pair of distinct points lie on a
(unique) line is called a linear space. A Steiner 2-design is a linear space
whose lines have same cardinality and the same number of lines pass
through any point. The cardinality of a set S is denoted by |.S].

TurOREM 1. If a partial linear space (Z, ) is non-trivial at p and has at
least n+1 lines through every point, then |Z|= 2n+2—-2;'. Moreover, the
equality holds if and only if (Z', &) is isomorphic to the join of two Steiner
2-designs with ) lines through every point and p points on every line.

Proof. A Steiner 2-design with 7 lines through every point and p points
on each line has n+1—3 points. Thus the join of two such designs is a
linear space with 2n+2—3;' points and exactly n+1 lines through every
point. Moreover, by the above remark, it is non-trivial at p.

To prove the converse, let (%, £’) be a partial linear space with > n+1
lines through every point, with |#|<2rn+2—2 and which is non-trivial
at p. Let & denote the support of a word w of least weight in % ,r. The
induced structure (&, .%,) is a partial linear space with >n+1 lines
through every point, with |#| <2n+2—2" and such that ¢ 3 is generated
by the restriction of w to Z. To simplify the notation, we also denote the
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restriction of w to its support by w. Thus (%', %) is non-trivial at p and the
characteristic function of a subset L’ of Z' is in %, if it is in the dua)
of {w)>. We now replace a line L € %, by two non-empty subsets L’ and L”
whenever L == L' U L” is a partition of L with the property that the charac-
teristic function of L’ (and hence of L” also) is in ¥,. When we reach a
stage where no such replacements can be made, we get a set of lines on &
such that the characteristic function of no proper subset of a line is in B,
(we thank the referee for pointing out this construction). We denote the
new set of lines by #. Note that the construction of ¥ from %, is not
canonical. However, for any such %, the partial linear space (4, %) will
have at least n+1 lines passing through every point and will have the
following two properties:

1. ¥, =%y and ¥, does not contain the characteristic function of a
proper non-empty subset of a line in .&.

2. %3 is one dimensional and & is the support of its generator w.

We deal with such a partial linear space in the remainder of the proof.

For any A€ Z, let x,, y,, z, denote the number of lines through 4 of
cardinality 2, 3, 4 respectively. Fix a point Q of & such that x, < x, for all
AeZ. We normalise w by assuming w(Q) = --1. We now colour & by
elements of F, using this w, wherein a point P gets the colour w(P). As the
characteristic function of a line is in the dual of {(w), the sum of the colours
occurring on any line is 0(mod p). Also, by the construction of (%, &), the
colours occurring on any proper subset of a line do not add up to O(mod
p). Hence the lines containing a point each of colour « and —a have length 2
and the lines whose every point has same colour have length p. Let
& ={aeF,| w(P)=a for some point P} denote the set of colours and let
X, & Z denote the set of points with colour «. Note that 0 ¢ & since ¥ is
the support of w.

Let S, denote the union of all the lines through a point A. Then
T+x,+2y,+32,+4(n+1-x,—y,—2,) <|S,1 <2n+2-7 so that

2
3x4+2yA+zA,>,2n+3+£. (1)
Similarly, 1+x,+2y,+3(n+1-x,—y,) <2n+2—2, Hence

2x,,+y,4>n+2+%. (2)
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A line of cardinality s is called an s-line. If L,, ..., L, denote all the
s-lines through A with s>3, then |S,|=>1+x,+2(n+1—x,—m)+
¥y (ILi]—1). The bound on || now implies that

x> 142+ 3 (L1-3). 3)
i 1

The theorem is trivial for p = 2. Thus we assume that p > 3. The number of
2-lines through any point is at least x,. Hence for every a € &, at least Xg
points of Z' are coloured —oa. As x,>0, we have a € ¥ = —a e & and

|X,) = x, for all e e &. Also, || is even as 0 ¢ &. Let |&| = 2r for some r
with 1 <r<%,". We then have

n
rxg<n+l—- . 4)
D
First consider the case when r=1. In this case ¥ ={1,—-1} and &
contains only 2-lines and p-lines. Also, since Xo <n+1-7, the number of
p-lines through @ is at least 7 . Therefore, we must have

2 n
2n+2—-'3—-1+ (p— l)+(n+1—-—-)<|SQ|<2n+2——-
p p p

Thus x, =n+1-—37 and the number of p-lines through Q must be ;.

Therefore, exactly n+1 lines pass through Q and |%|=|S,| = 2n+2—2;.
Moreover, |X{=|X_,|=n+1—7. As the number of 2-lines through a
point 4 € X is at most |X |, we must have x, = x, for all A € &. Thus the
above argument for Q also holds for any 4 € & so that the number of
p-lines through any point of Z is . Thus X, with all the p-lines contained
in it is isomorphic to a Steiner 2-design whose lines have length p and
having 7 lines through every point. As {x,y}e % for all xe X, and
y € X _,, the partial linear space (%, &) is their join.

Thus (%, &) is a linear space. Since any substitution of a line in %, by
its partition would prevent (Z, &) from being a linear space, we get
L =5%. Also, 2n+2——— |Z] < 1% <2n+2— 2. Hence ¥ =% so that
£ =" Thus (4, &) 1s the partial linear space (@ Z") that we started
off with. This proves the theorem for r = 1.

Thus we may assume that r > 1. To complete the proof of the theorem,
we wish to prove that no such (Z, Z) exists.

Asl<r<?s, we havep>3 so that (p— 1)(1+ )>2n+2-7 . Hence,
by (3) and (4), r #%5- . We thus have 1 <r <?,~.

Let G, denote the graph whose vertex set is & and whose edges are given
by the rule

« and B are adjacent if and only if x+f=0o0r 1 in F,.
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As the sum of the colours occuring on any line is zero, a 3-line having non-
empty intersections with X_, and X, also has non-empty intersection with
X,_.. If o has degree one in G, X, , is empty. Thus if « has degree one in
Gy, then L n X, is either empty or is {0} for a 3-line L through Q. Since
0 ¢ %, the degree of 1 is one in Gy. The only possible loop of G, is at the
vertex "—;1 and this loop occurs if and only if * ;—1 belongs to &.

If «, - --a&,,; 1S @ non-trivial cycle in G,, m must be even, as the edges of

types {&, —a} and {a, 1 —a} must alternate in the cycle. Also,
(o o)+ - +(0ty_y +0) =(+a3)+ -+ - +(a, +ay) .

Hence m must be a multiple of 2p, as one of these sums is zero and the
other is 5. However, m < |¥| < p—1, and hence G, does not contain any
cycles. Therefore, each connected component of G, is a path. In case

21! € &, one of these paths has a loop at one end.

Case 1. The graph G, is connected.

In this case, G, is a path. If 1 is the only vertex of degree one, then the
other end of this path must be a loop at 7} . Therefore, in this case Gy is
the path 1(—1)2(=2)--- (1)1, However, this forces || =p—1
which cannot happen. Therefore, G, must have two vertices of degree one
and it is the path 1(—1) 2(=2)---r(—r) with 1 <r <Z'.

Since r>1, Q¢X_, so that |{Q}uX_|=1+x, Let T=%\
({Q} v X ,) and let I denote the number of s-lines through Q with 5>2
and which contain at most one point from 7. Note that every 2-line
through Q contains exactly one point from 7. Counting points of T which
lie on lines through Q, we get

2
2n+1—xp—1)+x, < T <2n+2—7:--—(1+xg).

This means / >2+3>2.

Let L be one of these / lines. If L = X, U {Q}, then L must contain at
least = points from X_, as the colours on L add up to 0(mod p). As
Q¢ X _,, in this case |L| =* *{7—1 . If L contains one point from T, the colour
of that point in L must be (1+(|L|—2)r)(mod p). As an integer,
14 (|L|—2) r>r as |L} > 2. If this number is greater than p, then we must
have |L|—2>2=" so that |L]| >!’$. If it is less than p, then this number
itself represents the colour of the remaining point (which is not p—r by
our assumption). Thus, as & ={l,...,r, p—7,..., p—1}, we must have
p—r+1<1+(L|—2) r. This forces |[L|—2 =", so that |L|>%". Con-
sidering all the cases, we see that if a line L through @ contains at most oné
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point from T, then |L| > >”+"- Asr <”—'21 , we have [L| > 3. We may then
apply (3) and the fact that / > 7 to get

Xg > 1+%+g(p+:_l—3)=l+’—:—§r.

However, this bound contradicts (4).
Case 2. @, is disconnected.

In this case, let ¥’ & denote the set of colours which have degree
one in G,. As G, is disconnected, we must have |¥'|>3. Let
T = (Uees X,) U 3L, where 3L, is the set consisting of points Pe &\ {Q}
which lie on 3-lines through Q. Since 3L, n X, is empty for all a € &/, this
union is disjoint. Hence |T'| > 2y, +|%’|x,. The bound on |Z]-together with
(2) now implies that | '] < 4.

Thus |#'| =3 and we must have 2y, +3x, <|Z]<2n+2-%. By (2),
we also have 2y, +4x, > 2n +4+% . Hence x, >2+% so that (4) implies
that |#] =2r with 1 <r<Z%. Also, G must contain a loop as the number
of vertices in G, of degree 1is .odd Thus the graph G, consists of two
components. One is

I(-1)2(=2)---t(—2) for some ¢t such that 1 <t <vr,

and the other is

p+1\/p+1\/p—1\/3—-p\/p—-3\ p+1-—(2r-—2t))
R IER) ()
Thus 1, — and a =22"Z"2 281 (4 1) are the three vertices of degree
one in Gj,.
Let T ={Q}U2L,u3L,uX_UX, where [L, denotes the set of
points in 2\ {@} which lie on i-lines through Q. Clearly, || > 2y, -+ 3x,.
If every 4-line through Q contains a point of 2 \ T, then we get

|Z| 2 2o +|T| 2 25+ 2y +3x4-

Since this, by (1), contradicts the bound on |%]|, we must have a 4-line L
through Q contained in T'. As 2L, and 3L, consist of the points on 2 and
3-lines through Q, respectively, L< {Q} U X_, U X,.

Let L contain i points from X,, where 0 <i < 3. Then the sum of the
colours occuring on L is —1+ia—(3—i)¢ which must be O(mod p).
Substituting the value of &, for i varying from 0 to 3, we infer that one of
the following four integers is a multiple of p:

3+1,  2r+0+1,  2r—t,  6(r—f)—1.
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However, as 1 <t <r<%, none of the above integers can be a multiple
of p. This completes the proof of the theorem.

THEOREM 2. Let (¥, %) be a partial linear space whose every point is
contained in at least n+1 lines. If it is non-trivial at p, then the minimum
weight of €3 is at least 2n+2-7 . If this weight is attained, then the
induced structure on the support of a word of weight 2n+2—7% in € is
isomorphic to the join of two Steiner 2-designs with 3 lines through every

point and p points on every line.

Proof. The induced structure on the support of a non-zero word w of
€ , is a partial linear space with > n+1 lines through every point that is
non-trivial at p. Theorem 1 now implies the theorem.

THEOREM 3. A projective plane of order p is tame.

Proof. This is the special case of the above theorem when n=p and
(¥, £) is a projective plane.

A partial linear space of order n is a partial linear space with exactly n+1
lines through every point.

Remark 1. 1If a Steiner 2-design with order —1 and line length p is to
exist, then the standard divisibility properties of its parameters imply that
n=0 or p(mod p?). Therefore, in case n does not satisfy this requirement,
the minimum weight of ¥ is more than 2n+2—2;. The join of a projec-
tive plane of order 2 with a set S of cardinality 4 (with no lines!) is a partial
linear space of order n = 6. With p = 3, its cardinality is 2n+3—2'=11 and
it is non-trivial at p.

Remark 2. By arguments similar to those in the proof of Theorem 1,
we can prove that the minimum weight of ¥z corresponding to a linear
space of order 2p is at least 4p and can obtain an explicit description of
words of weight 4p in € if they exist. One consequence of our result is
that a projective plane of order 2p, if it exists, must be tame at p. (The
reader interested in knowing the detailed proof may contact the author.)

Remark 3. The join of an affine plane of order p and a set S of cardi-
nality p(p—1) with one line L = S is an example of a linear space of order
p? which is non-trivial at p and whose cardinality is strictly less than 2p*.

The results that we have obtained so far prompt us to believe in:

Conjecture 1. The minimum weight of the p-ary code ¥z corre-
sponding to a linear space of order n < p? is at least 2n.
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