


Introduction

In recent years, Non-Commutative (NC) field theories have become the focus of intense
research activity after its connection to low energy string physics was elucidated by Seiberg and
Witten [1, 2]. Specifically, the open string boundaries, attached to D-branes [3], in the presence
of a two-form background field, turn into NC spacetime coordinates [1]. (This phenomenon
has been recovered from various computational schemes [4].) The noncommutativity induces
an NC D-brane world volume and hence field theories on the brane become NC field theories.

NC field theories have revealed unexpected textures in the conventional field theory frame-
work - UV-IR mixing [5], soliton solutions in higher dimensional scalar theories [6], dipole-like
elementary charged excitations [7], etc. are some of them. The inherent non-locality, (or equiv-
alently the introduction of a length scale by θρσ - the noncommutativity parameter), of the NC
field theory is manifested through these peculiar properties that are absent in the corresponding
ordinary spacetime theories.

Solitons in NC CP (1) model have been found [8], very much in analogy to their counterpart
in ordinary spacetime. In this framework, NC theories are treated as systems of operator valued
fields and one works directly with operators on the quantum phase space, characterized by the
noncommutativity condition

[xρ, xσ]∗ = iθρσ. (1)

With only spatial noncommutativity on the NC plane, the above simplifies to a Heisenberg
algebra, [x1, x2]∗ = x1 ∗ x2 − x2 ∗ x1 = iθ12 = iε12θ = iθ which in the complex coordinates
reduces to the creation annihilation operator algebra for the simple Harmonic Oscillator. Thus
to a function in the NC spacetime, through Weyl transform, one associates an operator acting
on the Hilbert space, in a basis of a simple Harmonic Oscillator eigenstates. Explicit details of
the computations in this particular model are found in [8].

In the present work, we will concentrate on a specific NC gauge theory, that was recently
proposed [9] as an alternative formulation of the NC extension of the CP (1) model. Due to
the presence of the U(1) invariance, (induced by the CP variables), the Seiberg-Witten map
[1] plays a pivotal role in our scheme. It is used to convert the NC to a theory expressed
in terms of ordinary fields, with noncommutative effects appearing as θ-dependent interaction
terms. We found in [9] that our model allows solutions obeying a (Bogolmolny) lower bound
in energy, (protected by topological considerations), which are the solitons of the NC CP (1)
model. We also noted in [9] that (unlike the commutative case) additional restrictions on the
CP (1) variables appear when the BPS equations are considered as a subset of the variational
equation of motion. The reason might be the perturbative (in θ) nature of the formalism. In
fact it is well known that there are complications in the definition of the Energy-Momentum
(EM) tensor in NC field theory [10].

The EM tensor in a generic NC field theory has been discussed in [10, 11] in the Lagrangian
framework. Hamiltonian analysis of NC theories have been performed in [12]. The novel feature
of the present work is the study of the Poincare algebra, leading to the Lorentz invariance
violation.

Of special interest will be an explicit demonstration of the validity of the ideas introduced
in [13], in the context of Lorentz symmetry violation in NC field theories. The issue is subtle
since there exists [14] two distinct types of Lorentz transformations: Observer and Particle
Lorentz transformations. The NC action, (as well as the fields and the constant tensor θµν
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comprising it), transform covariantly under the former, thereby yielding conservation of energy
and momentum, at least when only spatial noncommutativity is present. This is expected due
to the translation invariance of the theory. On the other hand, the essential ingredients of a
relativistic theory - the Schwinger condition [15] and subsequent Poincare algebra - are not
respected. This indicates a loss of the Particle Lorentz symmetry. These generic features will
emerge naturally in our Hamiltonian formulation. We have restricted the discussion to spatial
noncommutativity only so that a conventional Hamiltonian analysis can be carried through.

Let us put our work in its proper perspective. This paper is a sequel to [9] where we provide
a field theoretic analysis of the CP (1) model in a Hamiltonian framework, keeping in mind the
future possibility of quantization of the model. In particular, we study in detail the nature (of
the violation) of the Poincare algebra. This is probably the first example of an in depth study
of a specific NC field theory model in the Hamiltonian scheme, enunciated by Dirac [16]. Our
analysis reveals both expected and unexpected features of the model. Some of the results are
generic to any NC field theory and some are specific to the (spacetime) dimensionality of the
problem. With its non-trivial but simpler structure, 2+1-dimensional NC field theories can
become successful laboratories for higher dimensional studies, as the present work indicates.

Furthermore, our analysis goes on to show that the alternative definition of the NC CP (1)
model that we have posited in [9], leads to a consistent and well defined NC gauge theory,
which conforms to the expected features of such a system.

The paper is organized as follows: Section II introduces the noncommutative spacetime and
provides a brief digression of the NC CP (1) model [9]. The canonical EM tensor is studied in
Section III. Section IV discusses the Hamiltonian formulation of the model with the associated
constraint analysis. It also exhibits the transformation properties of the fields under gauge and
spacetime transformations and the Hamiltonian equations of motion. Section V is devoted to
the study of the Schwinger condition and Poincare algebra. The major contributions of the
present work are in Sections IV and V. Section VI provides a summary and conclusions.

Section II: Noncommutative CP (1) model - a brief digression

The CP (1) model in ordinary spacetime is described by the gauge invariant action 2,

S =
∫
d3x [(Dµφ)∗Dµφ+ Λ(φ∗φ− 1)], (2)

where Dµφa = (∂µ − iAµ)φa defines the covariant derivative and the multiplier Λ enforces the
CP (1) constraint. The equation of motion for Aµ leads to the identification,

Aµ = −iφ∗∂µφ. (3)

The ”gauge field” Aµ - being a dependent variable - can be removed from the action classically
using (3). The infinitesimal gauge transformation of the variables are,

δφ∗

a = −iλφ∗

a ; δφa = iλφa ; δAµ = ∂µλ. (4)

2Since the scenario is classical, hermitian conjugate operator φ† is replaced by complex conjugate φ∗ and
operator ordering ambiguities are not taken in to account anywhere. Adjacent φ-terms without any Roman
index are assumed to be summed.
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Let us now enter the noncommutative spacetime. In constructing the NC CP (1) (or any
generic) model the following steps are taken [9]:
(i) The appropriate NC field theory is constructed in terms of NC analogue fields (ψ̂) of the
fields (ψ) with the replacement of ordinary products of fields (ψϕ), by the Moyal-Weyl ∗-product
(ψ̂ ∗ ϕ̂),

ψ̂(x)∗ ϕ̂(x) = e
i
2
θµν∂σµ∂ξν ψ̂(x+σ)ϕ̂(x+ξ) |σ=ξ=0= ψ̂(x)ϕ̂(x)+

i

2
θρσ∂ρψ̂(x)∂σϕ̂(x)+ O(θ2). (5)

The hatted variables are NC degrees of freedom. We take θρσ to be a real constant antisymmet-
ric tensor, as is customary [1], (but this need not always be the case [17]). The NC spacetime
(1) follows from the above definition.

Note that the effects of spacetime noncommutativity has been accounted for by the intro-
duction of the ∗-product. For gauge theories the Seiberg-Witten Map [1] plays a crucial role
in connecting φ̂(x) to φ(x). This formalism allows us to study the effects of noncommutativity
as θρσ dependent interaction terms in an ordinary spacetime field theory format. This is the
prescription we will follow.

The first task is to generalize the scalar gauge theory (2) to its NC version, keeping in mind
that the latter must be ∗-gauge invariant. The NC action (without the CP (1) constraint) is,

Ŝ =
∫
d3x (D̂µφ̂)∗ ∗ D̂µφ̂ =

∫
d3x (D̂µφ̂)∗D̂µφ̂, (6)

where the NC covariant derivative is defined as

D̂µφ̂a = ∂µφ̂a − iÂµ ∗ φ̂a.

The NC action (6) is invariant under the ∗-gauge transformations,

δ̂φ̂∗

a = −iλ̂ ∗ φ̂∗

a ; δ̂φ̂a = iλ̂ ∗ φ̂a ; δ̂Âµ = ∂µλ̂+ i[λ̂, Âµ]∗. (7)

We now exploit the Seiberg-Witten Map [1, 18] to revert back to the ordinary spacetime degrees
of freedom. The explicit identifications between NC and ordinary spacetime counterparts of
the fields, to the lowest non-trivial order in θ are,

Âµ = Aµ + θσρAρ(∂σAµ −
1

2
∂µAσ)

φ̂ = φ−
1

2
θρσAρ∂σφ ; λ̂ = λ−

1

2
θρσAρ∂σλ. (8)

As stated before, the ”‘hatted”’ variables on the left are NC degrees of freedom and gauge
transformation parameter. The higher order terms in θ are kept out of contention as there are
certain non-uniqueness involved in the O(θ2) mapping. The significance of the Seiberg-Witten
map is that under an NC or ∗-gauge transformation of Âµ by,

δ̂Âµ = ∂µλ̂+ i[λ̂, Âµ]∗,

Aµ will undergo the transformation
δAµ = ∂µλ.
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Subsequently, under this mapping, a gauge invariant object in conventional spacetime will be
mapped to its NC counterpart, which will be ∗-gauge invariant. This is crucial as it ensures
that the ordinary spacetime action that we recover from the NC action (6) by applying the
Seiberg-Witen Map will be gauge invariant. Thus the NC action (6) in ordinary spacetime
variables reads,

Ŝ =
∫
d3x[(Dµφ)∗Dµφ+

1

2
θαβ{Fαµ((Dβφ)∗Dµφ+ (Dµφ)∗Dβφ)−

1

2
Fαβ(Dµφ)∗Dµφ}] (9)

The above action is manifestly gauge invariant. Remember that so far we have not introduced
the CP 1 target space constraint in the NC spacetime setup. Let us assume the constraint to be

identical to the ordinary spacetime one [9], i.e.,

φ∗φ = 1. (10)

The reasoning is as follows [9]. Basically, after utilizing the Seiberg-Witten Map, we have
returned to the ordinary spacetime and its associated dynamical variables and the effects of
noncommutativity appears only as additional interaction terms in the action. Hence it is natural
to keep the CP 1 constraint unchanged. (For more details, see [9].)

This allows us to write,
Aµ = −iφ∗∂µφ+ aµ(θ) (11)

with aµ denoting the O(θ) correction, obtained from (9,10). For θ = 0. Aµ reduces to its
original form. Note that aµ is gauge invariant. Thus the U(1) gauge transformation of Aµ

remains intact, at least to O(θ). Keeping in mind the constraint φ∗φ = 1, let us now substitute
(11) in the NC action (9). Since we are concerned only with the O(θ) correction, in the θ-
term of the action, we can use Aµ = −iφ∗∂µφ. However, in the first term in the action, we
must incorporate the full expression for Aµ given in (11). Remarkably, the constraint condition
conspire to cancel the effect of the O(θ) correction term aµ. Finally it boils down to the
following: the action for the NC CP 1 model to O(θ) is given by (9) with the identifications

Aµ = −iφ∗∂µφ, Fµν = ∂µAν − ∂νAµ and the constraint φ∗φ = 1 [9].

Section III - Energy-momentum tensor for the NC CP (1) model

As is well-known, in general, it is not possible to obtain a symmetric, gauge invariant and
conserved EM tensor in an NC field theory, with noncommutativity of the form of (1). There
are two forms of EM tensor in vogue [10]: a manifestly symmetric form, obtained from the
variation of the action with respect to the metric, and the canonical form, following the Noether
prescription. The former is covariantly conserved whereas the latter is conserved. Since we are
interested in the space-time invariance properties and Poincare generators, we will concentrate
on the canonical (Noether) form, which is given by,

Tµν =
δL̂

δ(∂µφ∗)
∂νφ

∗ +
δL̂

δ(∂µφ)
∂νφ− gµνL̂. (12)

In the present case, for the action (9),

Ŝ =
∫
d3x[(Dµφ)∗Dµφ+

1

2
θαβ{Fαµ((Dβφ)∗Dµφ+ (Dµφ)∗Dβφ)−

1

2
Fαβ(Dµφ)∗Dµφ}
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+ Λ(φ∗φ− 1)] (13)

the EM tensor Tµν is,

Tµν = [Dµφ
∗Dνφ+ (µ⇔ ν)](1−

1

4
θαβFαβ) +

1

2
θαβ [Fαν(Dβφ

∗Dµφ+Dµφ
∗Dβφ) + (µ⇔ ν)]

−
1

2
θαµF

α
ν | Dφ |

2 +
1

2
θµβ [Fνα(Dβφ∗Dαφ+Dαφ∗Dβφ) + F αβ(Dαφ

∗Dνφ+Dνφ
∗Dαφ)]. (14)

In order to obtain a symmetric Tµν , at least for θ = 0, we have rewritten the covariant derivatives
in the following equivalent form,

(Dµφ)a = ∂µφa − (φ∗∂µφ)φa = ∂µφa −
1

2
(φ∗∂µφ− ∂µφ∗φ)φa,

(Dµφ)∗a = ∂µφ∗

a + (φ∗∂µφ)φa = ∂µφ∗

a +
1

2
(φ∗∂µφ− ∂µφ∗φ)φ∗

a. (15)

Note that µ ⇔ ν symmetry of Tµν is destroyed by some of the θ-terms. However, Tµν is
manifestly gauge invariant and conserved (as it is derived from the canonical definition (12)).

Section IV - Hamiltonian formulation and constraint analysis

Let us now perform a Hamiltonian constraint analysis, in the Dirac [16] scheme, which entails
in obtaining the full set of constraints in a given theory. Furthermore, the constraints are
classified in to the largest set of commuting constraints (the First Class Constraints (FCC))
and the remaining non-commuting constraints (Second Class Constraints (SCC)). The presence
of FCCs indicate local gauge invariances. For a consistent quantization programme, the SCCs
are taken into account by replacing the Poisson brackets by Dirac brackets [16], that is defined
below for two generic variables A and B,

{A,B}DB = {A,B} − {A, χi}{χi, χj}
−1{χj , B}, (16)

In (16), Poisson brackets are used in the right hand side and {χi, χj}
−1 denotes the inverse of

the constraint Poisson bracket matrix {χi, χj}, the latter being invertible for SCC χi. Notice
that using Dirac brackets allows us to put the SCCs strongly equal to zero since they commute
with everything in the Dirac bracket sense,

{A, χi}DB = {χj, B}DB = 0.

We closely follow the earlier work [19] on CP (1) model in ordinary spacetime. 3 Only
spatial noncommutativity is being considered here, that is θ01 = θ02 = 0, θ12 = θε12. The
canonically conjugate momenta, as obtained from the action (13), are

πa = (1 + C)D0φ∗

a − iθεij(D0φ∗Djφ)Diφ∗

a,

π∗

a = (1 + C)D0φa + iθεij(D0φDjφ∗)Diφa, (17)

3In an alternative extended space quantization scheme [20], the CP (1) model has been discussed in [21].
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where C ≡ −1
4
θεijF ij . We immediately find the following two primary constraints, ψ2, ψ3,

along with the CP (1) primary constraint ψ1,

ψ1 ≡ φ∗φ− 1 ≈ 0 ; ψ2 ≡ φπ ≈ 0 ; ψ3 ≡ φ∗π∗ ≈ 0. (18)

Using the basic canonical Poisson brackets,

{φa(x), πb(y)} = δabδ(x− y) ; {φ∗

a(x), π
∗

b (y)} = δabδ(x− y) (19)

it is revealed that the linear combination

ξ ≡ φπ − φ∗π∗ ≈ 0 (20)

commutes with the other two constraints,

χ1 ≡ φ∗φ− 1 = 0 ; χ2 ≡ φπ + φ∗π∗ = 0. (21)

However, the non-vanishing bracket,

{χ1(x), χ2(y)} = 2(φ∗(x)φ(x))δ(x− y) ≈ 2δ(x− y), (22)

indicates that the above pair of constraints are Second Class Constraints (SCC) [16]. In the
present case the basic Dirac brackets are computed below,

{φa(x), φb(y)} = {φa(x), φ
∗

b(y)} = 0,

{φa(x), πb(y)} = (δab −
1

2
φaφ

∗

b)δ(x− y) ; {φa(x), π
∗

b (y)} = −
1

2
φaφbδ(x− y),

{πa(x), πb(y)} =
1

2
(πaφ

∗

b − πbφ
∗

a)δ(x− y) ; {πa(x), π
∗

b (y)} =
1

2
(πaφb − π∗

bφ
∗

a)δ(x− y). (23)

Since in the subsequent analysis only Dirac brackets are used, we have avoided the notation
{, }DB. Complex conjugation reproduces rest of the Dirac brackets. From now on we will be
utilising Dirac brackets and exploit the SCC relations strongly, that is χ1 = χ2 = 0.

In order to find the full set of constraints, we now compute the canonical Hamiltonian. This
means that the time derivatives are to be expressed in terms of the phase space variables. This
is carried out to O(θ). To that end, we first note from (17) that

D0φ∗

a = πa +O(θ) , D0φa = π∗

a +O(θ). (24)

This yields the following relations,

πa = (1 + C)D0φ∗

a − iθεij(πDjφ)Diφ∗

a +O(θ2),

π∗

a = (1 + C)D0φa + iθεij(π∗Djφ∗)Diφa +O(θ2). (25)

The above equations allow us to rewrite the time derivatives as,

D0φa = (1− C)π∗

a − iθεij(π∗Djφ∗)Diφa +O(θ2),

D0φ∗

a = (1− C)πa + iθεij(πDjφ)Diφ∗

a +O(θ2). (26)
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This leads us to the canonical Hamiltonian, (with noncommutative effects up to O(θ)),

T00 = 2(1 + C)D0φ
∗D0φ+ θεijFi0(D0φ

∗Djφ+Djφ
∗D0φ)−L

= (π∗π +Dkφ∗Dkφ)(1− C) + iθεij(π∗Diφ∗)(πDjφ). (27)

The total Hamiltonian, in the terminology of Dirac [16] is

H = T00 + Λ(x)ξ(x). (28)

It is now straightforward (though tedious) to check explicitly that

{ξ(x), H} = {ξ(x),
∫
d2y T00(y)} = 0. (29)

This demonstration is very significant as it shows that there are no further constraints and that
ξ ≡ φπ − φ∗π∗ ≈ 0 is the only First Class Constraint (FCC) [16]. The presence of the FCC
signals a gauge invariance - U(1) in the present case. This fact was apparent in the explicit
form of the action (13) as well. It is trivial to ensure that the FCC ξ(x) functions properly as
the generator Q of U(1) gauge transformation (Q ≡

∫
d2x α(x)ξ(x)) by evaluating the brackets,

δαφa(x) ≡ {φa(x), Q} = α(x)φa(x) ; δαφ
∗

a(x) ≡ {φ
∗

a(x), Q} = −α(x)φ∗

a(x),

δαπa(x) ≡ {πa(x), Q} = −α(x)πa(x) ; δαπ
∗

a(x) ≡ {π
∗

a(x), Q} = α(x)π∗

a(x), (30)

where α(x) denotes the infinitesimal gauge transformation parameter.

Section V: Schwinger condition, Poincare algebra and the equation of motion

Finally we are ready to tackle the question of the exact nature of Lorentz symmetry violation
induced by noncommutativity. We will closely follow the conventional field theoretic approach
in ordinary spacetime [19].

First of all, let us now compute the spatial momenta

Pi =
∫
d2x T0i(x), (31)

where Tµν in (14) reproduces

T0i = (D0φ
∗Diφ+Diφ

∗D0φ)(1 + C)

+
1

2
θεjk[Fji(D0φ

∗Dkφ+Dkφ
∗D0φ) + Fj0(Dkφ

∗Diφ+Diφ
∗Dkφ)]

= πDiφ+ π∗Diφ
∗ = π∂iφ+ π∗∂iφ

∗ + ξ(x)φ∗∂iφ ≈ π∂iφ+ π∗∂iφ
∗. (32)

We immediately find that Pi generates correct transformations among the degrees of freedom:

{φ(x), Pi} = {φ(x),
∫
d2y T0i(y)} = ∂iφ(x) ; {π(x)(x), Pi} = {π(x),

∫
d2y T0i(y)} = ∂iπ(x),

(33)
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where the Dirac brackets in (23) are used. Next we show that the Hamiltonian (27) represents
the generator of time translation,

{φa(x), H} ≡ {φa(x),
∫
d2x T00(x)}

= π∗

a + iθεij [(π∗Diφ∗)Djφa −
1

2
(Diφ∗Djφ)π∗

a] = D0φa, (34)

where we have used (25) to replace the momenta. Now notice an interesting fact that

φ∗∂0φ =
1

2
(φ∗∂0φ− φ∂0φ

∗)

= −
1

2
ξ(1− iθεijDiφ∗Djφ). (35)

Putting (35) back in (34) this means that modulo the FCC ξ(x),

{φa(x), H} = ∂0φa, (36)

so that the correct Hamiltonian equation of motion is reproduced. The above results confirm
the conservation of the energy and momenta, thereby ensuring Observer Lorentz invariance
[13]. Obviously this is expected since the action is manifestly translation invariant, but the
cancellation of the θ-term is indeed non-trivial. However, we emphasize that this is the first
explicit demonstration of the conservation principle in a particular noncommutative field theory
model, in the Hamiltonian framework. This one of our main results.

We now consider how far it is possible to construct a Lorentz covariant equation of motion
for φa. Let us start with the ordinary spacetime CP (1) model (θ = 0). The Hamiltonian
equations of motion yields,

∂0φa = π∗

a ; ∂0π
∗

a = −(π∗π)φa +Dk(Dkφa). (37)

Once again exploiting the previous argument leading to (35), we can express (37) in a manifestly
covariant form, (modulo the FCC ξ),

Dµ(Dµφa) = −(π∗π)φa. (38)

The O(θ) correction to the above equation is straightforward to compute but the the explicit
form is quite involved and not particularly illuminating. Writing the O(θ) equation of motion
schematically,

Dµ(Dµφa) = −(π∗π)φa + εµνλθµAνλ, (39)

we note that Aνλ contains manifestly Lorentz covariant and non-covariant terms, comprising of
field variables. Hence one is not able to recover a fully Lorentz covariant dynamical equation
of motion in NC field theory.

Our next objective is the study of the Schwinger condition [15], the validity of which is
necessary and sufficient to guarantee Poincare invariance. This requires verification of the all
important bracket [15],

{T00(x), T0i(y)} = (T 0i(x) + T 0i(y))∂i
(x)δ(x− y), (40)
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known as the Schwinger condition. In the present case, after a long calculation, we find,

{T00(x), T0i(y)} = (T 0i(x) + T 0i(y))∂i
(x)δ(x− y) + (τ i(x) + τ i(y))∂i

(x)δ(x− y), (41)

where

τ i = iθεij [
1

2
(π∗π +Dkφ∗Dkφ)(πDjφ− π∗Djφ∗)

+ (π∗Dkφ∗)(Djφ∗Dkφ)− (πDkφ)(Dkφ∗Djφ)]. (42)

Clearly in the present instance, the Schwinger condition is not satisfied because τi 6= 0 in
general, indicating a violation of Particle Lorentz symmetry [13]. The reason is clearly the
introduction of a constant tensor, in the form of the noncommutativity parameter θµν , which
singles out a fixed direction in spacetime. This is the other major result that we had advertised.

It is interesting to note that, in 2+1-dimensions, even for θ 6= 0, Schwinger pcondition and
subsequently Poincare invariance can be maintained in this model provided the fields are such
that τi vanishes identically. This type of scenario has not been reported before.

If we define the Poincare generators in the conventional way,

Pµ ≡
∫
d2x T0µ ; Jµν ≡

∫
d2x (xµT0ν − xνT0µ), (43)

the sector of the Poincare algebra involving the Lorentz boost generators J0i will be violated.
It is not surprising that, although we have introduced spatial noncommutativity, still the an-
gular momentum algebra remains intact, indicating rotational invariance. This is because the
asymmetry (via noncommutativity) is actually introduced in the time direction, which is easily
seen if we look at θµ ≡ 1

2
εµνλθνλ, the dual of θµν . In the present example, a non-zero θ12 yield

a non-zero θ0.

Section VI: Conclusions and Future Prospects

Let us summarize our work. In [9] we had provided an alternative formulation of the non-
commutative extension of the CP (1) model, that was distinct from the existing ones [8]. The
present work deals with the Hamiltonian formulation of the model of [9]. We emphasize that
probably this is the first instance where a noncommutative field theory has been studied in the
Hamiltonian framework and most of the basic observations will be relevant for the study of a
generic noncommutative field theory in Hamiltonian framework.

The aim is to study in detail the characteristic features of the violation of Lorentz invari-
ance in a noncommutative field theory. This subtle issue first appeared in [13], where it was
pointed out that two distinct types of Lorentz transformations are to considered: the Observer
and the Particle Lorentz transformations. Symmetry under the former is maintained (in non-
commutative theories), due to the translation invariance of the theory, thereby leading to the
conservation of energy and momentum. The latter is destroyed owing to the presence of the
constant tensor θµν .

We have successfully addressed the above issues in the present work. We have constructed
the Hamiltonian and momentum operators and have shown that they act properly as the
generators time and space translations. This is related to the Observer Lorentz invariance. On
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the other hand, we have shown that Schwinger condition and subsequently the Poincare algebra
is not respected and that one can not derive a Lorentz covariant dynamical field equation. These
features signal a loss of the Particle Lorentz symmetry.

The age old Hamiltonian constraint analysis, as formulated by Dirac [16], has been instru-
mental in our analysis. The model contains both First Class and Second Class constraints,
conforming to the classification scheme of Dirac [16]. The Dirac brackets [16] have been com-
puted and they are exploited throughout in arriving at the above mentioned results.

An intriguing open problem is the introduction of the Hopf term in the CP (1) model and
its subsequent noncommutative extension. The classic work of [22] was the demonstration that
the Hopf term is able to impart fractional spin and statistics to the solitons of the Non-linear
σ-model. This was further corroborated in [19] in a Hamiltonian formulation. The advantage in
an alternative CP (1) representation of the Non-linear σ-model is that the Hopf term is reduced
to a local expression [23] in terms of CP (1) degrees of freedom. One of our future projects is
to study the effects of noncommutativity on the anyons induced by the Hopf term.
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