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SUMMARY. Quantum stochastic evolutions are constructed for unbounded coefficients 

and infinitely many noise components. A sufficient condition for the evolution to be conser 

vative is obtained. The theory is then used in dilating Feller's minimal process, associated with 

an unbounded Markov generator, in boson Fock space. A necessary and sufficient condition for 

the dilation to be conservative is obtained. It is also shown how to realise the minimal process 

as a commutative stochastic flow. A notion of quantum exit stop time is introduced. 

1. Introduction 

The basic tools for bosonic stochastic calculus were developed and a 

necessary and sufficient condition for existence of a unitary evolution, satis 

fying a quantum stochastic differential equation (q.s.d.e.) with bounded 

coefficients was obtained in [17]. In [23] these results are extended to include 

the cases where infinitely many noise components are present. 

This theory has many applications : the dilation of dynamical semigroups 

[7], the construction of quantum diffusions in the sense of [9] and modelling 

physical systems [4] etc. 

However, in the context of [2-4, 6, 10-13, 18, 22], the coefficients are 

irregular and therefore there arises the problem of extending these results. 

In [11], improving the basic inequalities concerning iterative integrals, a suffi 

cient condition on the coefficients is obtained to guarantee the existence of 

a unitary evolution. In particular it successfully deals with the quantum 
harmonic oscillator. On the other hand in [10], eqnicontinuity method has 

been employed to guarantee the existence of a unique contractive evolution 

associated with a pure birth (pure death) process and a necessary and suffi 

cient condition for the evolution to be unitary is obtained. Model dependent 

studies have been carried out and some more results in this direction can be 

found in [3, ?, 6, 12, 22]. 
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In this paper we consider a class of q.s.d.e.s with unbounded coefficients 

and infinite degrees of freedom. In Section 2, mostly, we review the basic 

results in quantum stochastic calculus with regular coefficients [8, 9, 16, 17, 

18, 23, 24, 25]. In particular we recall the etime reversal property' indicated 

in [18], which allows us to derive some analytical properties of the evolution 

from that of the dual process. 

In Section 3 we exploit the method outlined in [10] to ensure the existence 

of a contractive operator valued process satisfying a quantum stochastic 

differential equation wdth unbounded coefficients which admits an approxi 

mating sequence of regular elements. The spirit is similar to that of semi 

group theory developed as in [27]. The approximating sequence of evolutions 

being non-commutative, it only guarantees a contractive solution as a 'weak 

operator limit 
' 

of a subsequence of the evolutions. Analyticity of exponen 
tial vectors (Wiener chaos expansion) plays an important role in setting up 
an inductive procedure to get a sufficient condition for the solution to be 

unique or isometric. Analysing the dual process we also obtain a sufficient 

condition for the evolution to be co-isometric. It is worth noting that the 

condition for the evolution to be isometric (co-isometric) is similar to that of 

Feller's condition for the minimal process, associated with a Kolmogorov's 
differential equation, to be faithful. To emphasise this point we shall deal 

with two classes of dilations associated with countable state Markov processes. 
To this end, in Section 4, we review a construction of Feller's minimal solution 

and some basic analytic facts from the literature ([14], [19], [20]) on classical 

theory of Markov processes. 

In Section 5, a generalised quantum harmonic oscillator [11], associated 

with a Markov generator, is constructed. It is a contractive process satis 

fying a cocycle property in the sense of [18], and the induced family of Evans 

Hudson maps dilates Feller's minimal solution in Fock space. Feller's con 

dition is still necessary and sufficient for the dilation to be conservative. For 
an unbounded generator it is not clear whether this dilation admits a diffu 

sion equation in the sense of [9]. 

In Section 6, we continue the programme begun in [21]. In a series of 

papers [24, 23, 10], it has been shown how to realise a classical Markov process 
with countable state space as a commutative Evans-Hudson flow. But it 

is restricted only to processes with bounded Markov generators. Here, in 

Section 6, we consider the general situation and realise Feller's minimal 

solution as a commutative Evans-Hudson flow. Motivated by the construe 
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tioii of Feller's minimal solution, as outlined in [20], we introduce a special 

sequence of commutative Evans-Hudson flows which approximates the 

induced Evans-Hudson flow on a suitable algebra in the strong of operator 

topology. A necessary and sufficient condition for the flow to be conservative 

is obtained. A notion of quantum exit stop time is introduced. It is a com 

mutative adapted family of strongly continuous increasing projections on 

Fock space. Feller's exit stop time is realised as the vacuum expectation 
of these projections. In view of Feller's boundary theory [14] we expect this 

stop time to play a crucial role in describing the dilations of other solutions 

associated with Kolmogorov's first and second differential equations. In 

the spirit of [19] we hope to deal with the dilation and non-uniqueness prob 

lems associated with birth and death processes. Finally imposing a weak 

hypothesis on the Markov generator, we show that the dilation admits a 

diffusion equation for suitable elements. 

2. Notations and pbeliminabies 

All the Hubert spaces that appear here are assumed to be complex and 

separable with inner product < ., . > linear in the second variable. For 

any Hubert space H, we denote by T(H) the symmetric Fock space over H 

and B(H) the C* algebra of all bounded linear operators in H. For any 
u e H, we denote by e(u) the exponential vector in T(H) associated with u : 

e(u) = ? u{n) 

where u{n) = 
-< 

1 ; n = 0 

1 

^/n 
u ; n > 1. 

The family {e(u) : u e ^H) is total for any dense linear manifold +/K in H 

and linearly independent in T(H). So operators may be defined densely on 

T{H) by giving their action on each e(u). Thus, when O is a bounded operator 

on JJ and u is an element of H, the second quantized T(C) of G and the Weyl 

operator W(u) are determined uniquely by the relations : 

T(C) e(v) = e(Cv) 

W(u) e(v) = exp f ? ? \\u\\z 
? < u, v > \ e{u+v) 

for all v e H. 
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Fix two Hubert spaces h0 and k and write r+, Tst for T(H) when 

H = L2(I, k) and I = 
JR+, [s, t) respectively. Set 

H = 
hQ? r+, Fn 

= 
Ao <g> r0j, H[t 

= 
r,|0B 

we have the decomposition H = 
Hq?QHy. The Hubert space Ht] will be 

identified with the subspace Htj ? 0[t of JET where 0[f is the vacuum vector in 

H[t. Every operator defined on a tensorial factor of H will be identified with 

its canonical ampliation to the whole space and denoted by the same symbol. 

Fix dense linear manifolds J& in A0 and +M in L2 R+) k). The algebraic 

tensor product J& (g) e (^H) is dense in H, where e (sJi) is the linear manifold 

generated by the vectors e(u) : u e sM. 

Definition 2.1 [17]. A family X == {X(t) : t > 0} of operators in H is 

called an adapted process with respect to (Je-, sM) if 

(a) ^(I(?))P^^W 

(b) Z(t)/e(^[0^) eff^and X(t)fe(u) 
= 

{X(t)fe(uxmj} efaft,?)) for all 

?> 0,fe&,ue^{. 

It is said to be regular, if in addition, the map t->X(t)fe(u) from 7?+ 

into JEf is continuous for each /e &,ue *M. An adapted process is called 

bounded, cantractive, isometric, co-isometric or unitary according as the operators 

X(t) are bounded, contractive, isometric, co-isometric or unitary for every 

?> 0. 

For 0 < s < t denote by a8tt the von-Neumann subalgebra of a == 
JB(r+) 

given by 
{W(u) :m$$uQ[s9t]} 

This is simply I0j8 ? B(FSit) ? J?,?. The family {NSi t = 
a0 (g) a*fi ; 

0 < s < ?} forms a filtration of the Von-Neumann algebra N : = 
a0 (g) a where 

a0 : = 
.B(A0). Vacuum conditional expectations {&st 

: 0 ^ s < ?} on each 

of these subalgebras exist and are characterized by 

&s,t [B<g) W(u)] = < c(0), W(uXwr)e{0) >B? W{uXm) 

where [5, t]c 
= 

72+\[s, f]. They satisfy the relations : 

where [M]C [$',?'] We also write &s for <JM. 
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Definition 2.2 [25]. A bounded operator valued process X = 
(X(t) : t > 0 

is called a martingale if 

&s[X(t)] 
= X(s) 

for all 0 ^ s < t and a regular martingale if there is a Randon measure ?i on 

??+ for which 

\\{(X(t)-X(sm*+\\[X(t)*-X(s)*]rJr||* < /?([S, i])||f ||* 

whenever 0 < s < ? and ^r e ro? (g) 0[s. 

We fix an orthonormal basis {ei : i e S} in k and sot 2?} 
= 

| e;- > < e? | : 

i,jeS. The basic quantum stochastic processes {A] 
: i,j e S : = 

S[J {0}} 
are defined by 

MX?o,t)?fy) i ?>?eA 

Aj(0 
= <! 

%[o,*l ? e?) 5 i e #, j = 0 

AX[o,t]?ej) ; i = 0,jeS 

L *I ; ? = o=j. 

Then quantum Ito's formula can be expressed as : 

?Aj?Af 
= 

?JiAj ... (2.1) 

for all i, j, h,le S where 

f 0 ; / = 0 or i = 0 

(^ 8\ ; otherwise. 

We denote by ui(s) = < fy, w(?) >, i^(s) = 
v?{s) for j e S and w0(s) = 

w0($) = 1. Choose J?={wef?:4) 
= 0 f?r all but finitely many j e S} 

and set iV(w) = 
{j ; w* (.) ? 0}. So # #M < 00 for u e ̂ H. 

Definition 2.3 ([17], [25]). L ~ 
?Xj(s) : ?,j e $} is said to be a (?, w#) 

adapted square integrable family of processes of each L\ is (^, ^#) adapted and 

for each j e S,fe J&., u e sM and t > 0 

2 / ||LJW/e(u)||? *>?(?)< 00 ... (2.2) 

where ? 

*(*) = J (l+llttWH1)*. 0 
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We shall denote by <?(&, *4t) the class of all such square integrable families. 

For further details on these definitions and quantum Ito's formula the reader 

is refered to Hudson-Parthasarathy [17], Evans [8] and Mohari-Sinha [23J. 
A complete account is available in Parthasarathy [26]. 

Theorem 2.4 [17, 23] . 
Suppose L e <?(&, +4t). Then 

X(t)= S_ J L?(s)dAi(s) 
vjeS 0 

exists in the strong sense on J&. (g) e (%At) and defines a regular adapted process 

satisfying for f, g e & and u,ve^fi 

<fe(u),X(t)ge(v)>= 2 _ f dsut(s)v>(s) < fe(u), L)(s)ge(v) > ... (2.3) 
UjbS 0 

\\X(t)fe(u)\\ 2< 2 exp (vu{t)) . S / \\Lj(s)fe(u)f dvu(s) ... (2.4) 
ie8,jeN(u 0 

If M is another element in <?(&, ^4t) and 

Y(t)= S? } 3?j(s)dAi(s) 
ijeS 0 

then 

< Y(t)fe(u), X(t)ge(v) > - 2 _ ?dsm (s)v?(s){ < Y(s)fe(u), Lj(s)ge(v) > 
ijes o 

+ < M>(s)fe(u), X(s)ge(v) > + 2 < M\(s)fe(u), V?{s)ge(v) > } ... (2.t) 
keS 

Proof. This is a generalisation of the basic result of Hudson 

Parthasarathy [17]. We omit the proof since, in this generality, it is presented 
in Mohari-Sinha [23] and a complete and self-contained account is included 

in Parthasarathy [26]. 

Denote by SCr the class of elements Z == 
(Z) : i,j e S) where Z) e ?(h0) 

for all i,j e S and there exist non-negative constants (depending on Z) Cj, j e S 

satisfying 

?_||Z}/||2<c, U/H* ... (2.6) 
ie S 

for all feh0. Also denote by JR the class of elements Z e 2?r satisfying for 

all v/ e S 

Z*j+(Z{)*+ Z(ZJ)^=0 
... (2.7) 
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The necessary convergence in (2.7) follows from (2.6) and the following 
Lemma 2.5. 

Lemma 2.5. Suppose {AfC}k^ll and {B^^i are two families of bounded 

operators in h0 such that 2 AlAj? &nd 2 BtBjc converge in strong operator 

topology. Then 2 A\Bjc also converges in strong operator topology. 

Proof. For a proof, see Mohari-Sinha [23]. 

For any Z = 
(Z%. :j e S), denote by Z ? 

(z{ :i,je S) where 

Z) 
= (Zif. 

Also set yR 
= 

{Z : Z e yR) and JR ~ 
{Z : Z e JR}. 

Theorem 2.6 [17, 22, 23]. Suppose Z e 2?R and ZeJR. Then there 

exists a unique strongly continuous co-isometric operator valued (h0,+Ji) adapted 

process V = 
{V(t) : t > 0} satisfying 

dV(t)= 2 V(t)ZidM(t)', V{0) = I ... (2.8) 
ijes 

on hQ?e(*JC). 

And (a) for all feh0, u e *M, 0 < s < t < T 

\[V(t)~V(s)]fe{u)f < KT{f u)[vu(t)-vu(s)] ... (2.9) 
where 

KT(f, u) = 2 exp(vu(T))\\e{u)f . 2 \\Z)f\\*. i e sj e N(u) 

(b) V is also isometric if and only if Z e JR. 

Proof. It is essentially a restatement of the basic result in Bosonic cal 

culus developed in Hudson-Parthasarathy [17]. For this generality, see 

Mohari-Sinha [23] except (2.9) which follows from the basic estimate (2.4) 

and the fact that ||F(*)|| < 1 for all t > 0. 

Denote by 6 the right shift on L2 (72+, h) so that for alH > 0 

f u(x?t) ; x > t 
(0tu) (x) = 

<{ 
|^0 ; 0 < x < t. 

For any bounded operator A in H,Y(dt) AY(6*t) takes h0 (g)'<S>t] ? H[t into 

itself. Denote by Y(dt)AY{6*t) the canonical ampliation to the whole space ff. 

Definition 2.7 [18]. An adapted bounded process V = {V(t) : t > 0} 
is said to be a cocycle if for all s, t > 0 

V(t+s)= V{t)T(0t)V{s)T{6?) ... (2.10) 



262 AK1LESH MOHARI 

For a cocycle set Pt : = 
&0[V(t)] and observe [1, 16] that P == 

{Pt : t > 0} 
is a semigroup. V = 

V(t) : t > 0} is said to be a regular cocycle if P is norm 

continuous. 

We quote the following theorem without proof. 

Theorem 2.8 [1, 15]. Suppose V 
? 

{V(t) :t^0}isa strongly continuous 

contractive cocycle. Then there exist two weakly* continuous semigroups 

r 
" 

{rt : t > 0}, t = 
{ft : t > 0} of positivity preserving contractions on ???(A0) 

such that 

Tt{B)= &0[V(t)(B?I)V(t)*] 

h(B) = ?0[V(tr(B?I)V(t)] ... (2.11) 

for all B e ?B(h0). 

Denote by Rt the time reversal operator on oC2(Z?+, k) so that for f ̂  0 

(A,?) (x) = 
<? 
f ??(??a-) ; 0 < x < ? 

.r) ; t < x 

and % : -- T(Bt). For any bounded adapted process 7 ss 
{7(0 : f ̂  0} we 

write 7%~ {7(0 : t > 0)} for the dual process ([18]) defined by 

7(0 
= 

<UtV(ty&71- (2.12) 

Proposition 2.9 [18]. 7 = {7(0 : t ̂  0} is a (regular) cocycle if and only 

if V = {7(0 : t > 0} is a (regular) cocycle. 

Proof. Since V = V, it suffices to show 'only if part. As in Joiirn? 

[18] observe that 

(a) for Ie%)(g)?(rM) and Y = r(6t)Xr(d*) we have USXU~X 

(b) for X e ?(h0)<g)?(r0it) we have 

Ut^X4l?+\ 
= 

Y(ds)<UtXU^Y(d\) 
and 

7(i+S) = 
f??+sr(o?)7(5).T(^)^r+18^+^(?)'^r+? 

= ?s V(8)*wr(e8)4?t V(ty u;x Y(d\) 

v(s)r(ds)V(t)m) 
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when (a) and (b) have been used to get the second equality. So V is a cocycle. 

Now set Pt : = 
d0[V(t)] t > 0 and observe that Pt = 

PJ, Hence this 

completes the proof. 

Theorem 2.10 [16]. V e= 
[V(t) : t > 0} is a regular unitary cocycle if and 

only if it satisfies (2.8) for some Z e JR f) JR. The choice of Z is unique. 

Proof. 'If part is similar to Proposition 3.1 in Hudson-Lindsay [16]. 
To show the converse we shall adopt 'the method outlined in Hudson-Lindsay 

[16]. First observe that P e= (Pt : t > 0) is a norm continuous semigroup 
with P0 

= I, hence it has a bounded generator, say Z\. Define the bounded 

adapted process 

X(t) = V(t)~ 1 V{8) Zlds. 0 

Now exploiting the cocycle property and boundedness of the generator Z% 
as in [16] observe that X == 

(X(t) : t > 0) is a regular martingale. So by 
Theorem 3.8 in Parthasarathy-Sinha [25] we have the representation 

dV(t) = S V(t) Zj(t)dM(t) ; V(0) = I ... (2.13) 
t, j e s 

on A0? e (^) where Z^(s) 
are bounded (A0, ̂ f() adapted processes for i,jeS 

and for j e S, the series 

S_(Z#*))*%) 
... V2.14) 

converges in strong operator topology. Now employ the method used in 

[16] to conclude that Z\(s) are independent of s > 0, say Z). So by (2.14) 
Z 

==(?5j:i,je #) is an element in ??fe. Quantum Ito's formula (2.1) and 

V(t)*V(t) = l(i > 0) implies that 2e4 To show ZelR, consider the dual 

cocycle V and employ the above argument to get a representation 

df(t) = 2 ffol??Ato) ; 7(0) = 1 ... (2.15) 
ijes 

on A0(g) e (^ft) for some L e JR. The proof is complete once we have shown 

that L = Z. To this end we introduce for any fixed /, g e hQ, % v e *At 

Ml) = < fe(u), V(t)ge(v) > - 
<fe(u), ge(v) > (t > 0) 

we have from (2.14) 

?(t) = S S n{s)v?{s) <fe{u), V(s)I?ge{v) > ds ... (2.16) 
?JtS o 

A 3-2 
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and from (2.15) 

A(0= S Ui(t-s)v1(t~8)<fe(u),Z\UtV(s)*<U^ge(v)>ds. 
... (2.17) 

*,i e s 

Note that for u, v continuous at 0, lim ? 
?(t) exists and equating the 

tio * 

limiting values one gets from (2.16) and (2.17) 

S^(OHO) </, (L*-Z*)g > = 0. ... (2.18) 
i,jeS 

J 

Since (2.18) holds for all/, g e hQ, taking {u 
= 0, v = 

0}, {i? 
= 0, v = 

;ft0$1j ej], 

{u 
= 

X[01]ei, v = 
0} and {w 

= 
X{o,i\eu v = 

/fto.i] 6i} ^n I2-18) we obtain the 

required result. 

Theorem 2.11 (Journ?'s time reversal principle). Fix any Z e Jr f) Jr. 

V = {V(t) : t > 0} is the unique unitary solution for (2.8) with coefficients Z if 

and only if V = {V(t) : t > 0} is so for (2.8) with coefficients Z. 

Proof. It follows from the last part of the argument employed in Theorem 

2.10. D 

Let jt be a unitai subalgerba of ?8(hQ). 

Definition 2.12 [9, 23]. ?i = 
{//} 

: i, j e S) is said to be a family of regular 
structure maps if it satisfies the following : For x, y e ji 

(1) /?j is linear on ji ; 

(2) /#I) 
= 0; 

(3) /#*0* =/#**) ? 

(4) for each j e $, there exist constant otj > 0, a countable index set $;-; 
and a family (i>j: i e Sj) e ? (hQ) such that for all feh0 

S II/?$(*)/II? < s H ?DJ/H? 

where 

ZllarDj/1|? <?, H/H?; 

(5) n%xy) = fij(x)y+x/4(y)+ S fi?(x)/i>?(y) ke S 

where the necessary convergence in (5) follows from (4) and and Lemma 2.5. 

We shall quote without proof the following result. 
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Theorem 2.13 [9, 23, 24]. Let /i be a family of regular structure maps. 
Then there exists a unique contractive (h0, *4t) adapted family {jt :?> 0} of 
identiry preserving * homomorphisms from ji into ? (H) satisfying : for 

X jt, t > 0 

djt (x) = 2 _ jt(ft%x))dA}(t) ;j0{x) - x 
ijeS 

on h0 (g) e (sM). 

And if j% is commutative then for s, t ̂  0, x, y e J? 

jt(y)js(%)~j (x)js(y) = 0. 

3. A QUANTUM STOCHASTIC DIFFEBENTIAL EQUATION (QSDE) 

WITH UNBOUNDED COEFFICIENTS 

In this section we shall consider stochastic evolutions satisfying a q.s.d.e. 
with unbounded coefficients. To this end we introduce some notations. 

For a dense linear manifold & in h0, we denote by Z(&) the class of 

densely defined operators Z == 
(Z) : i, j e S) satisfying 

(a) &Q&(Z});(i,jeS); ... (3.1) 

(b) There exists a sequence Z{n) e XR f) JR, n > 1 so that for all 

fe&, i,jeS 

s-lim Z)(n)f^Zjf ... (3.2) 
n?> on 

and for each j e S 

sup SJI Zj(n)/||a < oo. ... (3.3) 
n^i ieS 

Lemma 3.1. Let Z = 
(Zj : i, j e S) be a family of densely defined operators 

satisfying (3.1) and (3.2) where Z(n) e JR) n > 1. Then (3.3) holds. 

Proof. Z(n) e JR implies that for each fixed j e S 

SJ|ZJ(?)/||? 
= II Z%L)f\\*- < Z>j(n)f>f> 

- 
</, ZjMf> 

ieS 

<II^W/ll2+2||/||ll||^W/[|. ... (3.4) 

Now the required results follows once we apply (3.2) in (3.4). Q 
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Lemma 3.2. Let Z e 3?(&) then for each fe&,jeS there exists a constant 

Cj(f) ̂  O such that 

S. II^/||2<C;(/). ... (3.5) 
tes 

Proof. A simple application of Fatou's lemma in (3.3) and (3.2) 

establish (3.5). 

Fix Z e ?f(A) and Z(n) e^Rf)JR satisfying (3.2) and (3.3). We denote 

y(n) == 
{Vin)(t) : t > 0} the unique co-isometric operator valued (h0, *Al) 

adapted process satisfying (Theorem 2.6) 

dV^(t) = 2 Y^\t)Z%n)dK\(t)(t) ; F<?>(0) = 7 ... (3.6) 
i,j S 

on hQ e ? (w#). 

Following an idea cf Frigerio as outlined in Fagnola [10] and Mohari. 

Parthasarathy [22] we shall investigate the asymptotic behaviour of {V{n)} 
as ft-? oo. 

Proposition 3.3. The sequence {V{n)} defined as in (3.6) admits a subse 

quence {V^^} satisfying the following : 

(i) w- Urn V(n]c)(t) 
= V(t) exists for all ? > 0 ; ... (3.7) 

?-?00 

(ii) V = {T(?) : ? > 0} ?5 a contractive (hQi *4t)-adapted process for tvhich 

Urn sup | < f, [F(n*V)-TW^) > | 
= 0 

for 0 < T < oo, ̂  e 77, fe ?, w e ^M ; 

(iii) j^or eacA O^.T<cc,feJ&,ue*J? there exists a constant c = 

c(/, w, ?7) swcA ?Aa? 

||[F(?)-F(5)]/e(^)|| < cM0-v#/2 ;0< 5 < ? < T; ... (3.8) 

(iv) V = 
(F(?) :i>0}fea strongly continuous (hQ) ^H) adapted process, 

{V(t)Z$ e A -&, ^) and 

dF(<) == S 7(^^) ; 7(0) - / ... (3.9) 
Me S 

?oZds on ,& <H) e (^fi) ; 

(v) 7/ (3.9) admits a unique contractive solution then V is a cocycle and 

w. Urn F(w>(?) = F(?)(?> 0). 
ft???e 
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Proof. As in [22] consider the sequence {/??} of continuous functions on 

72+ defined by 
P?t) = < >A, V^(t)fe(u) > 

where i?reJt,fe&, u e *4l are fixed. By (2.10) and (3.3) we have for 

0<5< t<T 

\PJJ)-P?*)\ < \\f\\\\{V^(t)-V^(sy\Je(u)\\ 

where c(f, u, T) is a non-negative constant independent of n. Furthermore 

\Pn(l)\ < IMII/e(tt)ll f?r ftU t > ? an(* ^ > 1. Hence by Arzela-Ascoli theo 
rem {/oj is conditionally compact in the topology of uniform convergence on 

compacta. Using the seperabality of the spaces involved and usual diagonal 

isation procedure extract a subsequence {V } satisfying (i) and (ii). For 

(iii) observe that for any i/r e Ji,fe J&, ue +/K 

I < f, [V(t)-V(s)]fe(u) > | =-- lim |< f, [F(n*V)- V{n*\s))fe{u) > j 

< maw, u, T)[vjt)-vu(?)y*. 

So taking supremum over all unit vectors i/r we get 

\\mt)-V(S)]fe(u)\\ < 4f,u, T)[vu(t)-vu{s)f'\ 

V == 
{V(t) : t > 0} being contractive, strong continuity follows from 

(3.8) and also {V(t)Zty 
e <?{&, >Jl) is immediate from Lemma 3.2. Now by 

(2.3) and (3.6) we have for each f,ge&,u,ve*4l and t > 0 

<fe(u), V(t)ge(v) > - lim <fe(u), V(nk\t)ge(v) > 

= </?(?), fi?(?) > + lim S _ / ?fett^M*) </e(?), V(nk)(s)Zi(nk)ge(v) > 
k -? oo ?, j # 0 

= </e(?)? iM?) > + s - ? dsui{s)vl(s) <fe(u), V(s)Zjge(v) > 
ij es o 

which implioes (3.9) and proves (iv). 

Fix any s > 0 and define as in [16] the contractive adapted process 

Vs = (Vs(t);t>0)bj 

f V(t) ; 0 < t < s, 
V.{t) 

= 

1____?, 
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The proof of 'first part' is complete once we have shown that Vs is also a 

solution of (3.9). V being a solution of (3.9), the following holds for t ̂  s : 

dV8(t) = V{8)TWJV?-s)'{ ^WM^)W?)} ij S 

on ? (g) e U). Also observe that Wii^^^K) 
= ?AJ (t) and 

T(0:)T(0S)^I. So 

dvs(t) - v{8)i\o9)V{t-8)rw) [ s. aw^RW) I 

Hence we obtain the required result. The 'second part' of (v) follows by a 

standard subsequence argument. 

Lemma 3.4. Suppose X === 
{X(t) : t ̂  0} ?s a strongly continuous bounded 

operator value (hQ, %4i) adapted process satisfying 

dX(t) = 2 X(?)ZM?) ; X(0) - 0 ... (3.10) 

on & ?? e (+4C), Then for all m, n > 0, /, g e ?, u, v e *M and t > 0 the 

following holds : 

< fu^\ X(t)gv^ > - 2 J cfe^sMa) <fu{nH\ X(s)gv(ni) > ... (3.11) 

wAere ??(~1) = 0 and for any n > 0 

f 
^ , i = 0 

[^ ???1, ?eS. 

Proof. X being strongly continuous, for any T > 0, sup ||X(i)|| < oo. 

Now use the fact that <$-? e(s&) is real analytic for any fixed u e +41 and domi 

nated convergence theorem to get (3.11) from (3.10). 

Lemma 3.5. Suppose T == 
(T(t) : > 0) is a family of strongly contiuous 

operators in h0 such that sup \\T(t)\\ < oo and 
t &o 

dT(t) = T(t)K dt, T(0) = 0 ... (3.12) 

holds on Je.. If K is the generator of a contraction G ̂ -semigroup with J&. as a 

core then T(t) 
= 0 for all t > 0. 

Proof. ? being a core for K, for all ? > 0 we get 

(T-^&==h0 
... (3.13) 
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Define bounded operators Rx ; n > 0 by 

Bx= Je-?T(t)dt o 

and from (3.12) observe that 

XBx 
= 

RkK ... (3.14) 

on %.. Hence by (3.13) and (3.14) we have Rx 
= 0 for all A > 0, so T(t) 

= 0 

for all t > 0. 

Proposition 3.6. If Z^ is the generator of a contractive G ^-semigroup with 

J& as a core then euation (3.9) has a unique contractive solution. 

Proof. Let V' = 
{V(t) : t ̂  0} be an another contractive process satis 

fying (3.9). Using the basic estimate (2.4) and (3.5) observe that V also satisfies 

(3.8). Hence V' is stiongly continuous. Define X(t) 
= 

V{t)-V'(t) (t > 0). 
To show that X(t) 

= 
0(? > 0) it is enough to show that for any u, v 6 +M 

^(?,?(?,(0 
= 0 ... (3.16) 

where 
Tu(m)yn) (t) e 8 (h0) is defined by 

< /> Tu<mW?) (% > = < Mm)> X(W} > 

In view of Lemma 3.5, we are to show that 
Tu(m) v{n) (t) satisfies (3.12), 

We shall do this by induction on m,n > 0. For m ? 0 = n it is imme 

diate from (3.11) (u 
= 0 = 

v). Assume that (3.15) holds for all u,ve^H and 

m, n > 0 such that m-\-n < k. Then by induction hypothesis and (3.11) 

observe that 
Tu{m) v{n) (t) satisfies (3.12) for all u,ve +M and m, w > 0 where 

m+n = fe+1. Now an application of Lemma 3.5 completes the proof. 

For any Xe<8{J{) we define the bilinear forms <?) (X) (i, j e S) 
on^?e (v#) 

< fe(u), J*. (X) ge(v) > = < fe(u), XZ) ge(v) > + < Zj fe(u), Xge(v) > 

+ S <Z*fe{u),XZ)ge{v)> ... (3.16) 
kes 

where the necessary convergence follows from (3.5) and Cauchy-Schwarz 

inequality. In order that the solution V = 
{V(t) : t > 0} of (3.9) be isometric 

it is necessary that 
<??{I) 

= 
0(i,j e S). Here our aim is to get a sufficient 

condition for V = {V(t\ : t ̂  0} to be isometric. To this end we introduce 
a few more notations : 

/ == {Z e S? (A) : <?) (I) = 0 ; i, j e 8} 
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and for ? > 0 

?x 
= 

{B > 0 : Be ?(h0) ; J$(B) = 
AB} 

Lemma 3.7. If Z e J then for all m,n^ 0,f,ge&u,ve %/K and t ̂  0 

< fu^\ X(t)gv > = 2 J dsut(s)v1(s) < fu{mi\ J? (X(t))gv(n^ > ... (3.17) 
i,jes o 

J 

where m%, Uj(i,j e S) are as in (3.11) and 

X(t) = I-V(t)*V(t)(t^ 0). 

Proof. ZeJ and quantum Ito's formula impHes that for all f,geJ&, 

u, v e ^fC and t > 0 

<fe(u), X(t)ge(v) > = 2_ ?dm (s)v1(s) < e(u), <?} (X(t))ge(v) > ... (3.18) 
i, j es o 

We obtain (3.17) from (3.18) and analytieity of the map s -? e(sv) (for any 

v e *sH, where the necessary convergence follows from (3.5). 

Proposition 3.8. If Z e J and ?x 
== 

{0} for some ? > 0 then the solution 

V == {V(t) : t > 0} of (3.9) is isometric. 

Proof. Note that 0 < X(t) < I, X(0) 
= 0. Denote non-negative opera 

tors Yx e BiH) and Bf\u) e B(h0) (A > 0, n > 0, u e M) defined by 

Yx = 
fe-*tX(t)dt o 

and 

</, Bf\u)g > = 
<./*<*>, r^c?) >. 

Observe that for any fixed n ^ 0,ue *M, B^(u) 
? 0 for some ? > 0 if and 

only if X(t)fu{n) 
= 0 for all feh0 and t > 0. We shall show by induction 

on n > 0 that for all fe h0, u e ̂ H, t > 0 

X(t)fu(n) 
= 0 ... (3.19) 

Taking u = 0 = v in (3.17) observe that ?(x0)(0) e ?x. So (3.19) follows for 

n = 0 by 
our earlier observation and the assumption that /?A 

s 
{0} for some 

? > 0. Now assuming (3.19) for n? l(n > 1) we get for (i, j) ^ (0, 0) and 

t> 0 

<fuM,^(X(t))gu{nj)> 
= 0. 

Hence (3.17) implices that B[n)(u)e?x for all weJi, A > 0, so B[n)(u) = 0 

for some A > 0, which by the observation made earlier implies (3.19) and 

completes the proof. 
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Now our aim is to exploit the time reversal principle to obtain a sufficient 

condition for V == 
{V(t) : > 0} to be co-isometric. To this end we impose 

some additional conditions on Z. 

Assumption 3.9. For the triad (J&, Z, Z(n) ; n > 1) satisfying (3.1)-(3.2) 

and Z(n) e JRf]JR there exists a dense linear manifold D in hQ such that 

(D, Z, Z(n) ; n > 1) also satisfies (3.1) and (3.2). 

If Z satisfies Assumption 3.9, Lemma 3.1 implies that Z e ??(J&) and 

Ze?(j&). For any X e ?(H) define the bilinear forms j?$(X)(i,j e S) on 

D?e(^f{) as in (3.16) with Z replaced by Z and set 

J = 
{Z:2t{I) 

= 
0;i,jeS} 

and for ? > 0 

?x^{B> 0:BeB(h0) : jfa(B) 
= 

?B} 

Since Z{n) e JR?\ JR(n > 1), V{n) = {V(n)(t) : t > 0} defined as in (3.6) is a 

regular unitary cocycle and by Theorem 2.11 the dual unitary cocycle 

fin) = 
{f(n)(t) : t > 0} satisfies 

d?M{t) - 
V^)(t)Zj(n)dM(t) ; P(n)(0) 

= / ... (3.20) 

on h0 (g) e {^ft). Also from (3.7) we get 

w. lim ?(n*V) 
=? V(t) {t > 0) ... (3.21) 

k ?> ? 

where ^ 

F(i) = 
UtV{tfUT\l > 0). 

Proposition 3.10. Let for Z Assumption 3.9 be valid. Then 

(i) V = 
(F(?) : ? > 0} ?5 a strongly continuous (h0, ?M) adapted process, 

{V(t)Z$e?(?,^t)and 

df(t) = S _ f(*) ZJ ?Ai (i) : 7(0) = I 
i. je S 

holds on J&.?e{^ft). 

(ii) V* == 
{V(t)* : t > 0} is strongly continuous. 

(iii) // F ?s co-isometric then Z e J. 

(iv) If Z e J and ?x = {0} /or some ? > 0 ?Aew F is co-isometric. 

Pfoo/. Ze??(&), so i) is immediate from Proposition 3.3 and (3.21). 

(ii) follows from (i) because t**> <Ut is continuous in strong operator topology. 

For (iii) and (iv) observe that V is co-isometric if and only if V is isometric. 
Hence the required results follow from Proposition 3.8 and (i).Q 

A 3-3 
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4. GlASSICAL MARKOV PROCESSES 

Here our aim is to recall some basic facts from classical theory of Markov 

processes. In particular we shall quote without proof the construction of 

Feller's 'minimal' solution as outlined in Ledermann-Reuter [20] and a nece 

ssary and sufficient condition for the minimal solution to be strictly 
stochastic. 

Definition 4.1. A family of matrices Q = 
{?l(t) 

= 
(Q#(t): i,j e Z); t > 0 

is said to be regular Markov if the following holds : 

(a) CUj{t)>0(i^j); Clii(t)=- 2 ?? (f) ; ... (4.1) 
j = i 

(b) t ?> Q.ij (t) is continuous for each i,j e Z. 

For Q(t) == ?, Q, = 
(Qij ; i,jeZ), independent of t, Q will be called a 

Markov matrix. For any n > 1 denote the family of finite matrices 

Q(n) ; = 
{Q(?>(*) 

= 
(fy (i) : -n < i, j < n) ; t > 0} 

and Fin) : = 
{jP(w) (*, ?) = 

(jFjf (?, f) : -n < ?, j < n ; 0 < s < ?}, the unique 
solution of 

a~ F^(s, t) 
= 

i^, i) Q<?>(*), 7^>(s, 5) 
= 7 ; 0 < 5 < t. 

Lemma 4.2. For all n > 1, 0 ^ s ^ ? < oo, 
? n < i, j < n the following 

holds : 

(i) F${8,8) 
= Sa ... (4.2) 

j?Yi>[s;t) 
= (ii) | Jg> k0 - S _ i$> (s, 0 ?y* (0 - (4.3) 

(iii) |?>(M)=- 
2 Qt7(s)?$>(M) ... (4.4) 

(iv) ?1?>(M)= 2 ^(?>r)J^>(r,?);(?<f <?) - (4.5) 

(v) Jg>(?,?)>0, S ^?)(?,.?)<1 ... (4.6) 

(vi) l,?+1>(s,0>^2)k0 - (4.7) 

(vii) If u (0= Q, ?e? i"S)(*)=JP?>(0, t), ?A?n JPg>(?, ?)=.Fg>(?-A). .. (4.8) 

So aa ?.-?ooi. F$(s;t) tends to a limit say F?(s,t). From Lemma 

4.2 we have the following theorem. 
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Theorem 4.3. For any fixed s > 0, Fik{s,t) is absolutely continuous in 

t, for any fixed t > 0, Fik(s, t) is continuously differentiable in s. For all 

0 ^ s < t < oo and i, ke St the following holds : 

(i) Fik{s,s) ^8ik ... (4.9) 

ST 

'S 

(ii) ^ Fik(s, t) = 2 F{j(s, t) ?jk(t) ... (4.10) 3 

for almost all t^ s (s held fixed) 

(iii) js Fik (s, t) = -E ?o (?) ̂fc(s, <) ... (4.11) 

(iv) Fik(s,t) 
= 

ZF{j(s,r)Fjk(r,t) ... (4.12) 

iv) **?(?, ?) > 0, S Fi3-(5, /)< 1. ... (4.13) 

(vi) 7/ Q(t) == Q as to Lemma 4.2 (vii) se? i?7^) = i^(0, ?), ?A?w 

Fik(s,t) 
= 

Fik(t-s) ... (4.14) 

awi (4.10) is valid for all t^s. 

Theorem 4.4. If a family of matrices P(s, t) 
== 

{P(k(s, t) : i, k e Z : 0 < 

s <^ ? < go) satisfying 
Pik(s, s) 

= 8ik, Pik(s, t) > 0 

?mrf ei?/?er (4.10) or (4.11) then 

Pik(sJ)>MsJ) .., (4.15) 

for all 0 < s < t < oo. 

Proof. For a complete account of these results see Ledermann-Reuter [20]. 

Consider the situation when ?1 (t) 
== ?2 and set -F*fr(?) : ? > 0 as in Theorem 

4.3 (vi). It is clear from (4.13) that for all t > 0 

XFtit(t)< 1 ... 
(4.16) 

k 

The following theorem indicates a necessary and sufficient condition for equa 

lity in (4.16). 

Theorem 4.5. For all i eZ and t > 0 equality holds in (4.16) if and only 

if Bx 
== 

{0} for some ? > 0 wliere 

Bx e=e {x > 0, a? e IJjt). ??x = 
Ax) 

Proof. See Feller [14]. 

For a more explicit description of Feller's condition for birth and death 

processes, the reader is refered to Karlin-McGregor [19], 
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5. A CLASS OF NON-COMMUTATIVE MARKOV PROCESSES 

In this section we shall deal with a class of quantum stochastic evolutions 

initiated by Fagnola [11]. Seme restuts in this direction will be found in [6]. 

We extend the results obtained in [11] and improve some unsatisfactory parts 
in [6]. 

Fix a Markov matrix & == 
(Qy ;ijeZ) and choose complex numbers 

mij (i> j e Z) su?h that 

Qtf 
= 

\mj\2 ; i =Aj 
(5.1) ? 

\mu\ 

and S C Z\{0} so that for all k e Z, i 4 S 

So for each ieZ,~Ciu = 2 iiy holds. Also fix an orthonormal basis 
jeS 

{fk he S?}$ for h0 and denote by ,& the linear manifold generated by the basis 

vectors. Defne u $ itary operators Si, (i e S) and projections fa(k e Z), 

Un(n > 1) in h0 by 
Sift 

= 
fk+i > 

<f>k= \fk> </*|, 

Tln = 2 (?>k 

(5.2) 

and denote by j<l the von-Neumaqn algebra generated by {fa ; ke Z}. Also 

consider the normal operators Zi (i e S) satisfying 

Zifk 
= 

mkjs+i fk 

Observe that for each/e ,& there exists a constant c(f) >- 0 euch that 

S \\Ztf\\*<c(f) 
ieS 

Now consider operators Z ==(Zj;i,j e 8) defined by 

0 ; i,jeS 

(5.3) 

3 

-StZ, 

z;s; 

; ieS.j = 0 

; t = 
0,jeS 

(5.4) 

-y .2_Z;Z* ; i = 0 
*es 
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Taking Z(n)(n > 1) as in (5.4) with Zi(ieS) replaced by .Z<"> : = Z{ Wn a 

routine verification shows that Z satisfies Assumption 3.9, ?& is a core for Z? 

which is the generator of a contractive C'0-semigroup. Also Z e J (~) J. 

Theorem 5.1. Suppose operators Z == (Z\ : i, j e 
~S) are as in (5.4). Then 

(i) there exists a unique strongly continuous (A0, ̂ f{) adapted contractive 

evolution V = {V(t) : t > 0} satisfying 

dV(t) = 2 _ V(t)Z) dA\(t) ; V(0) - 7 
ijes 

on &?e (*Jl) 

(ii) V is a cocycle and for all i.j e St,t > 0 the following holds : 

(a) < ft, Tt{fa) ft >=Ft?t) 

(h) <f(,7t(<f>j)fi>=Fij(t) 

ivhere t ^ 
(t^q : t^ 0) and t === 

(Tt :t^ 0) are as in (2.11) and F(t) =e 

(Fij(t) : i,j e Z) is the minimal solution for the Markov matrix ??. 

(iii) The following statements are equivalent : 

(a) V = {V(t) : t > 0} is isometric. 

(b) F e= 
{Y(?) : ? > 0} is co-sometric. 

(c) 7?A 
= 0 for some A > 0. 

where BX(X > 0) are defined as in Theorem 4.5. 

Proof, (i) is immediate from Proposition 3.3 and Proposition 3.6. For 

(ii) set matrices P<*u?>(*) = 
{P$*n)(t) : -n < i, j < n} ; m > n defined by 

P^*>(?) 
= </<6(0), 7<?>W*^F<?>(i)/?e(0) > 

We shall show that for each n > 1 and m > n 

P(m,n)(t) 
= 

P<?>(?) ... (5.5) 

where P(n)(?)(? > 0) is described in Lemma 4.2 (vii). To show this first 
observe that (5.5) is true for t = 0. Quantum Ito's formula (2.1) implies that 

p(mt n)(t) 
= Q(?)p(m, ?>(;) ... (5.6) 

where il(?) =s 
(??^ : ? n <; i,j < n). 
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But (5.6) admits a unique, solution, so (5.5) is immediate. Now using 
the fact w-lim V(n)(t) =; V(t)(t > 0) we have for all t > 0, i j e Z 

lim Fft(t) 
= lim lim P\f.n>(t) 

= 
<ft,7ttf,)ft > 

Hence (b) in (ii) follows from Theorem 4.3 (vi). (a) in (ii) follows by an identi 

cal method and we omit the details. For (iii) we shall show that (a) ?=^ (c), 
a similar method will yield (b) ?=^ (c). For (a) ==? (c), observe that 

V ^ 
{V(t) : t > 0} being an isometric process we have from (ii), for each 

jeZ, ZFij(t) 
= l(t > 0). Hence by Theorem 4.5 we get Bx 

= 
{0} for 

3 
some ? > 0. To show the converse recall the sufficient condition for 

Fe={F(?)> 0} to be isometric, described in Proposition 3.8. Let Be?x 
for some ? > 0. Denote x == 

(x(k) : k e Z) defined by 

m=<f*,Bfk> 

A simple computation shows that x e Bx. Hence by our hypothesis x = 0, B 

being a non-negative element we have B = 0. Hence ?x 
= 

{0} for some 

? > 0. This completes the proof. 

It is known [6] that {a,(?S) : 
== 

V(t)<?>V{t)* ; t > 0 ; 0 e jq) is a non 

commutative family of bounded operators. By Theorem 5.1, oct is an 

identity preserving homomorphism if and only if Bx 
= 0 for some ? > 0. 

For an unbounded Markov generaror it is? not clear whether it satisfies a 

diffusion equation in the sense of [8]. 

6. A CLASS OF COMMUTATIVE QUANTUM MARKOV PROCESSES 

Here we shall continue the programme initiated by Meyer [21], studied 

subsequently in a series of articles Parthasarathy-Sinha [24], Mohari-Sinha 

[23], Fagnola [10]. 

As in Section 5, ii is a Markov matrix and operators Z%, S\{i e S) and 

Yin{n > 1) are as in (5.1) ?(5.3). Now consider operators Z = 
(Z*. :i,j e S) 

defined by 

* 
pOS;-i)fy ; hjeS, 

; ieS,j 
= 0, 

... (6.1) 
;.* 

= 
0,jeS, 

;? = 
0=j. 

&i=? 

-Zt 

Z)S] 

-1 s z\zk 
kes 
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Taking Z{n)(n > 1) as in (6.1) with Zt(i e S) replaced by Zf 
= Z{Wn a 

routine verification shows that Z satisfies Assumption 3.9 and ZeJf]J. 
Moreover & is a core for Z% which is the generator of a contractive 

O0-semigroup. Exploiting the results proved in Section 3 and Section 4 we 

have the following theorem. 

Theorem 6.1. Suppose the operators Z = 
(Z) ;i,j e S) are as in (6.1). 

Then 

(i) There exists a unique strongly continuous (hQ ̂i) adapted isometric 

evolution V = {V(t)} : t > 0} satisfying 

dV(t) = S. V(t) Z)dM(t) ; V(0) = I ... (6.2) 
ijes 

on J& Qe(^M). 

(ii) V is a cocycle and for all i, j e Z,t ^ 0 

<fi,Tt(Hfi> 
= Fij(t) 

- 

where r == (rt : t > 0) is as in (2.12) and F(t) 
= 

(Fij(t) : i, j e Z) ?5 f/*6 minimal 

solution for the Markov matrix Q. 

(iii) V = 
(F(?) : ? > 0} is coisometric if and only if Bx = 

{0} /or sow*? 

A > 0. 

Proof, (i) is immediate from Proposition 3.3 and Proposition 3.6 except 
that V is isometric which follows once we verify the sufficient condition indi 

cated in Proposition 3.8. To this end let Be?x and s?t x(k) : =e <fk> 

Bfk > (k e 3?). B being an element in ?x we have from (3.16) 

Xx(k) = ?? 
\mkk\2x(k) 

?- 
\mkk\2 x(k)-\- 2 \mktk+j\2x(k) ? L jes 

= (S.?w)a?(fc) = 0 
ies 

Hence ?x 
== 

{0} for all A > 0. This completes the proof of (i). 

(ii) follows by a similar method employed for the proof of (b) in Theorem 

5.1 (ii). Now for the 'only if part in (iii) use (ii) and Theorem 4.5. For the 

converse recall the sufficient condition indicated in Proposition 3.10 for 

V = 
{Vit) : t > 0} to be co-isometric and observe that it is the same as that 

for V = 
{V(t) : t > 0} in Theorem 5.1 to be co-isometric. So Bx 

= 
{0} for 

some A > 0 imp ies ?x 
== 

{0} for some A > 0. Hence this completes the 

proof of (iii). 
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Consider the family of maps a = 
{<xt ; t > 0} defined by 

^) 
= 
WW(#e^) ... (6.3) 

It is shown in [23, 24] if the Markov generator is a bounded operator i.e. 

sup | Qu | < oo then a == 
{ott ; t > 0} is the unique family of strongly conti 

i 

nuous identity preserving* homomorphisms satisfying : 

dott(</>)= S OLt(d) (<?>))dA}(t) ; oc0((?>) = <?> ... (6.4) 
ij*S 

on h$$e{<M), where 6^(d?:i,jeS) is a regular family of structure maps 

on Ji given by 
- 

(<?>k~i?<f>k)oij ; ?,je? 

*_t,* <?)k-i?m,k, k+i<f>k , i e S, j 
= 0 

w*_m 9k-3?mk,k+j?k , ^ = 
0,je^ 

S I m*_r,* I ?*~r~ I Wfc* | 2?J*> , i = 0 = j 

Furthermore {a?(^) : t ̂  0, ^ e ^/f} is a commutative family of bounded 

operators. 

Here our aim is to drop the boundedness assumption of ?i and investigate 
the family a == 

{cet : t > 0} in detail. 

By Theorem 6.1 observe that a == 
{a? : t > 0} is a family of strongly 

continuous* homomorphisms and it preserves identity if and only if Bx 
= 

{0} 
for some ? > 0. 

In [22] the asymptotic behaviour of the induced Evans-Hudson flows 

$ 0(0) : = 
V(n)(t)<?>V{n)(t)*(t > 0, ci e jf) as ?i-> oo has been investigated but it 

is not clear whether it approximates the process a = 
{at : t ̂  0} in a reason 

able topology. Here we shall modify the approximating sequence to ensure 

it and conclude some properties of a = 
{a? : t > 0}. In particular, we shall 

show the commutativity of the process and prove that the differential 

equation (6.4) is satisfied in weak sense. Finally with an additional hypothesis 
on Q, we shall show it satisfies (6.4) in strong sense. To this end we intro 

duce some notations. 

Define bounded operators 8\n\i e S), Z(n) 
== 

(Zj(n) : i,j e #) (w > 1) by 

f Sill^n+I-n^n , i > 0 
sw = 

<( 

L sian\+i-nn] , i<o 



Z%n)+Z\in)*+V^(n)*Z)(n) 
= J 
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where 

nf?n = 2 fa, nn] 
= s fa 

k~&-n ft < n 

and 

r Hspr-m, ,i,jes, 

I -Zf ,ieS,j = 0, 
Z)(n) 

= ? ... (6.6) 
(Zf)*(SWf ,i = 0,jeS, 

A simple computation shows that for each n > 1, Z(n) e 2?r ?\ Jr and satisfies 

(3.1)?(3.2) where Z is defined as in (6.1). Also for all iJeS 

keS 
(^ 

0 , otherwise. 

So for each j e S and fe&me have 

2. \\Z%n)ff < !l/||2+ll^)/ll2+2||/|| \\Zpi)f\\ ies 

and (4.2) implies (4.4). Denote <7(w) == 
{(7<?>(?) : t > 0} the unique co-iso 

metric solution of (3.6) where Z(n) (n > 1) are as in (6.6). So by Proposition 
3.3 and Theorem 6.1 we have 

s-lim 0<?>(t) = V(t) (t > 0) ... (6.7) 
??>? 

Now consider the maps aim'n) ? 
(a^m,n) : t > 0) m, n > 1) defined by 

a((?>.?) (0) 
= Cta> (<)?50<?)(i)*, 0 e ./?. 

We also write a(n) for a(?iW) (? > 1). 

A simple application of quantum Ito's formula (2.1) shows that 

dcc?m'n\<p) 
= S . a\m'n^m^Y0))dM(t) ; oQ^ty) = <?> ... (6.9) 

?, jes 

where 

f (<Ti(<t>)?<l>)?ll , i,jeS, 
I 
I or,(0)ZJ?>- Zf>4> , ieS,j = 0, 

(m,?)^) 
= 

<j (^V^)-^? >)* , i = o,j e 8, 

i1 
S {(Zf >)V*(i4)Z<?)-i-(^m))*4ro)0 

l -W^W1} , i = 0=j ... (6.10) 
and 

^(^) 
= 

(^))V4n,?*e?. 
A 3-4 
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We also write {n)/i for <tt??>/? for each n > 1. Fer n > 1 denote 

<*># == 
{<?>#] : i } j e S} the regular structure maps defined by (6.10) where 

m = n and <rk(<j)) 
= 

S*k<j>SkJJce S). Some algebraic relations among these 

maps are listed in the following lemma. 

Lemma 6.2. Fix any n > 1. The following holds for all i,jeS : 

(a) for (?>ejf 

(^ nw] (n)Oj(?i) , otherwise ; 

(b) /or | it | <w ^ m 

<n7#0*) 
= 

(w'n)/#*). 

Proo/. Note that for all i e S,n^ 1 

(i) SpZW 
= S< Z<?>; 

(ii) for keZ 

{nt_w <f>k-i?<?>k), i > o, 

nn] {<j>k-i?<?>k), i <0; 

(iii) for I i ) < n < m 

With these observations a routine co-mputation implies (a) and (b).Q 

Let ^/?q be the linear manifold generated by {<j>k : k e ??}. So ji^ is 

weakly dense in j<l. 

Proposition 6.3. For any n > 1, 

(a) a(w) = 
{a?n) : t > 0} ?s a family of * homomorphisms. The family 

{x[n\<j>) : ? > 0, ci e ji) is commutative. 

(b) for \k\ < n< m;?> 0 

fl?1^*) 
= ?i"'"^*) -. (0.11) 

(c) for</>eyro,t>0 

s- Zim a$n)($S) 
= 

ott{</>) 
... (6.12) 

n?> oo 

(d) the family of operators {at{<f>) ; t > 0, <?> e ji) is commutative. 

Proof. Since {n)d is a family of regular structure maps Lemma 6.1 (a) 

implies that in)/i is also a family of regular structure maps on ji. Hence (a) 

follows from Theorem 2.13. 
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For any fixed/, geh0,u,ve jft.n > 1 denote x{m)(t) = {x^t) : | k | < n}\ 
t^0,m^n defined by 

4mV) = <fe(u), ott^Kfa) ge(v) > 

From (6.9) we get for m > n 

~ 
x^\t) = 

xi*\t)QS?\t)(t > 0) ... (6.13) 

where Q<?>(?) = 
(Q^) :- n < i, j < n) ; ? > 0 defined by 

(tt?_$)+wty) (^(0+ */) ; i ?^j 

? S Qir(t) ; i = j 

Also observe that x{m)(0) is independent of m > n. Since (6.13) admits a 

unique solution we have for all m > n > | & |, /, g e h0, ?,ve *At and t > 0 

< /e(^), a<M>(i6*)0^) > = < fe(u), o<?. *>0*)9^) > . 

Now a standard argument implies (b). For (c) it is enough to show (6.12) 
for <?> 

- = 
(?)k, k e St. From (6.7) and (6.11) we have for each n^\k\ 

af\(?>k) 
= w- lim a< 'n>(?5*) 

- 
V(t)<j>kCM(t)*(t > 0). ... (6.14) 

Wl ?> 00 

Hence we get applying (6.7) once more in (6.14) 

w- lim oc\?\</>k) = 
a,0*) (< > 0). 

n ?-> ao 

Since a^w) : n > 1 and a<(? > 0) are 
* 

homomorphisms, (6.12) follows. This 

completes the proof of (c). For (d) use (a) and (c) to show that {(xt(<?>) : t > 0, 

<?> e ^/f0} is a commutative family. Since ji^ is strongly dense in ji, (d) 

follows by a standard approximation argument. Q 

We shall show that a = 
{a% : t > 0} is indeed, a quantum analogue of 

Feller's minimal solution. To this end we introduce a few notations. For 

any fixed u e *4tc consider the family of matrices P(s, t) == 
{Pij(s91) : ? oo < i, 

j < oo}, P<?>(s, t) 
= 

{Pf{s, 0 : -w < i, j < n} ; 0 < s < t and n > 1, ??<w)(0 
= 

{QijVO : w < i, j < n} ; t > 0 where 

P%\st) 
= </ie(tt), C^>(5)*C^)(?)^C^H0*C^)(5)M^) > || e(u)||-2 

Ptf(M) = <fte(u), V(s)*V(t)<?>lV(trV(s)fie(u) > \\e(u)\\-* 

("\ma+U^i{t)\%9i ^j 

t- S ?**(*); i =j 
k*i 

and 
v^c = 

{we*rft\ it is continuous} 

?tj (t) = 
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Proposition 6.4. For any fixed u e %4lc the following holds : 

(a) lim Pf (s, t) = Ptfa t) (0 < s < t < oo) 
W??00 

(b) {P(s} t) ; 0 < s < ?} is ?Ae minimal solution satisfying (4.9)?(4.13) 
and (4.15) ?ftere Q(?) ss {??#(?) : ?oo < i, j < oo}, ? > 0. 

(c) lfu = 0 
P(0,t) = F(t) 

where F = (P(?) : t > 0) is ?Ae minimal solution for the Markov matrix 
Q == 

(Qtj : ?oo <i,j< oo). 

(d) cr == 
(a(t) : = 7- V(t)V(t)* ; ? > 0) is a strongly continuous increasing 

projection valued commutative adapted process. 

Proof, (a) follows from (6.7) and (6.12). For (b) using quantum Ito's 

formula (2.3) we have for 0 < s < t < oo and n > 1 

~ 
P<?\s91) 

= 
PM(s, t)Q<?>(0 ... (6.15) 

Since (6.15) admits a unique solution, we have for any i, j e Z 

n > max(|i|, \j\) 

P$\s,t)=* S Pf?{898)I%8;t) 
... (6.16) 

\k\<n 

where Fin\s, t) is the unique solution of (4.3). Now taking limit as n-> oo 

in (6.16) we get for all i,jeZ 

PijKs, t) - Fifa t) 

where (4.7) and (4.13) have been used to employ dominated convergence theo 

rem. Hence (b) follows by Theorem 4.3. (c) follows from (vi) of Theorem 4.3. 

Fix any u, ve+At and i ^ j. Since (6.13) admits a unique solution, in 

particular we have for | k | < n 

<Mu), ot?\fa)he(v) > = 0 (t > 0). 

Taking limit as n-* oo in the above expression we get for all k e Z 

< fte{u), *t(fa)f)e(v) > = 0 (* >0). 

Hence for all u,ve*M and i ̂  j 

<jW?)i?i#W>-0 (f>0). ... (6.17) 
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So for an element i?r 
= 

2c?/?e(i?f ), where finitely many c? are non-zero, 
i 

Ui e *M we have from (6.17) 

|| V(t)* n2 = 2 I a I ?H VWMmW (t > 0) ... (6.18) i 

For any fixed ue ^f(c,ieZ, 0 < s < t using (4.12) and (4.13) we get 

II WfoMII2 = S *V/(0 ̂ ^ *?(*) S W-8) 
j k j 

^IlFik(S) = 
\\V(s)*fie(u)\\ ... (0.1!)) 

Now exploiting the fact that ,& (g) e (^#) is dense in A0 (g) r+, (6.18) and (6.19) 

implies that or is an increasing process. By Proposition 3.10 (ii) F* is strongly 

continuous, hence Theorem 6.1 impUes that or is a strongly continuous pro 

jection valued process. Commutativity follows from Proposition 6.3(d). 

This completes the proof. 

For the rest of this section we shall impose the following hypothesis on 

the Markov matrix Q : 

[J/] for each j e Z, sup ?# < oo. 

Observe that for ?! satisfying (J?), 6 == 
{6? : i,j e S) described as in (6.5) 

indeed maps ^/f0 into %/?. Furthermore we have the following lemma. 

Lemma 6.5. Let (J?) be valid. Then for <?) e ji^ the following holds : 

(a) 2 0j(?J)*0j(?*) 
... (6.20) 

is convergent in strong operator topology for j e 8. 

(b) w-lim oif(W/i<(4>)) 
= 

at(d?(<t>)) 
... (6.21) 

_ n?? ? 

for t > 0,i,jeS. 

Proof. In view of Lemma 2.5 to show (a) it is enough to verify (6.20) for 

$ 
= 

fa ; k e Z. For j e S (6.20) is always valid since only finitely many 

terms are non-zero. For j 
= 0, i e S we have 

O&fayOKfa) 
= 

?*-i,*0*-<+?*,*+i0* 
so for each / e hQ 

S IW*)/||2 < 2(1 Q**| + sup fl?)||/||a 

Hence this completes the proof of (a). For (b) note that it suffices to 

verify (6.21) for $^fa\keZ. For (i,j) ^ (0, 0j,}^/i<(fa) being equal to 
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0?(<f>k) for sufficiently large n, (6.21) follows from (6.12). Proof of.(b) will be 

complete once we verify (6.21) for i = 0 =j. To show this observe the 

following : 

(i) ln)/i$(fa) being an element in the linear span of \<j)r : \r\ < n), (6.14) 

implies that 

4n)({*W**)) = V(t){<*W(fa))0<*W(t> 0) 

(ii) in)/io(<f>k) 
' n > |?| is a sequence of self-adjoint operators and 

*-lim<?> /$(&) = 
0g0*). 

A standard argument coupled with these observations and (6.7) lead us to the 

required result. This completes the proof. 

Theorem 6.6. Consider the family of maps oc = 
(a, : t > 0) defined as in 

(6.3). Then the following holds : 

(a) at : ji^> J?? ?ff (T+) ; t > 0 ??9 a family of strongly continuous* 

homomorphisms and {<xt(<?>) : ? > 0, ci e j?} is a commutative family of bounded 

operators ; 

(b) a is identity preserving if and only if Bx = 
{0} for some ? > 0. 

(c) // JL holds then for all <?> e jiQ 

?o(#)-== 4> fat(4) = 
Xcct(d?(<f>))dA? (t) (t > 0) ... (6.22) 
ijes 

holds on h0?e (sM). 

(d) For any f e h0, u e *M, t ̂  0,<f> ̂  0 and a positivity preserving 

bounded process j = 
{it((j>) : t > 0, ?S e yt) satisfying (6.22) the following in 

equality holds : 

<fe(u),jt(<f>)fe(u) > > <fe(u),xt(<f>)fe(u) > . 

Proof. By Proposition 3.10 (ii) observe that V* is strongly continuous, 

hence Theorem 6.1 implies the first part of (a). For the rest of (a) appeal tc 

Proposition 6.3 id), (b) follows from Theorem 6.1 (iii). 

First observe that for all f,ge A0, u, v e *4t, <f> e y?0 and t > 0 

< fe{u), cct(<f>)ge(v) > = lim < fe(u), ctS*ty)ge(v)) > 
n?> oo 

= <fe(u),$ge(v)>+ 2. lim J dsui(sMs)<fe(u), oi?n^/i}(<?,))ge(v)> 
?Jes n?>oo o 

- < f*(n),fog{v)> + 2 _" f dsui(s)v1{8) <fe(u),al(ej(<^)ge(v)> 
?,/es o 
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where (6.12), u, v e+J?md (6.12) have been used in the first, second and last 

equality respectively. Now for (c) it is enough to show for each ?5 e ji?, 

{oCi(d{(<?>)j} 
e <?(hQl*Jt). Adaptedness of the processes is clear from Theorem 

6.1 and for each <?> e ji&?? e S, a? being a homomorphism we get from (6.20) 

s_ ?**))*?* W)) 
= o,( s. wejm. ... (6.23) 

ie s ie s 

where the series converge in strong operator topology. at being a contractive 

map for each t > 0, we get the required result from (6.23). This completes 

the proof of (c). 

For (d) we need to show for each feh0,ue *M and \k\ < n 

Vk(t) > ?l\t) (t > 0) 
where 

y*(*)= <Mu)Jt(fa)fe(u)> 
and 

xf(t) 
= <fe(u), *\n)(fa)fe(u) >. 

Fix any n > 1 observe by our assumption on j 
== 

{jt : t > 0} 

J- 
y{n)(t) = 

yin){t)a(n){t)+z(n)(t)(t > 0) ... (6.24) 

where y<n)(t) = 
{yk(t) : -n < ? < n} and z<?>(?) = 

{z?.n)(t) : ?n < k < n} is 

given by 

#>(*)= 2 ^)%W (*>0) 
lil>w 

and zin)(t) > 0. Also note that x^(t) = 
{x{$(t) : ? n < k < n) is the unique 

solution of (6.24) where z{n)(t) 
== 0. With these observations we get the 

required inequality by integrating the differential equation. This completes 
the proof. 

In analogy with the classical Feller minimal process, we expect an 

operator inequality in Theorem 6.6 (d). However, with an additional assump 

tion on jt, namely for all i -=?j and u, v e ^H, <fic(u), ji(<f>)fje(v) > = 0 

for all t ;> 0, we have 

jt{(?>) > oct(<?>) 

whenever ci > 0. It remains an open question whether Feller's condition is 

also sufficient for the existence of a unique positivity preserving contractive 

flow satisfying (6.22). 
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