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Abstract

This paper considers various tests for the unit root hypothesis in panels,
where the cross section dependence is due to common dynamic factors.
Three situations are studied. First, the common factors and idiosyncratic
components may both be nonstationary. In this case all GLS type test
statistics possess a standard normal limiting distribution, whereas the OLS
based test statistics are invalid. If the common component is I(1) and the
idiosyncratic component is stationary (the case of cross-unit cointegration),
then both the OLS and the GLS statistics fail. Finally, if the idiosyncratic
components are I(1) but the common factors are stationary, then the OLS
based test statistics are not applicable, whereas the GLS type statistics do
not have problems in this situation. A Monte Carlo study is conducted to
gauge the small sample performance of these tests and a panel data set of
16 countries is used to test the hypothesis that interest rates are stationary.
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1 Introduction

Panel unit root tests are proposed to improve the power of standard univariate

unit root tests. However, an important problem with the application of panel

data methods to regional data is that the data usually exhibit substantial cross

sectional dependence. In recent years, two different approaches have been ad-

vanced to cope with such situations. Chang (2002, 2004), Breitung and Das

(2005), and Harvey and Bates (2003) assume “weak” error dependence that can

be characterized by the fact that all eigenvalues of the error covariance matrix are

bounded as the number of cross section units tend to infinity. On the other hand,

the work of Choi (2002), Phillips and Sul (2003), Bai and Ng (2004), Moon and

Perron (2004), and Pesaran (2005) assumes a “strong” form of dependence that

is due to common factors. In this case the largest eigenvalue of the covariance

matrix tend to infinity as the cross section dimension (N) increases.1

In this paper, we consider four panel unit root tests under strong dependence.

The first test statistic is the pooled OLS t-statistic that ignores a possible cross-

section dependence. The simple robust OLS t-statistic suggested by Breitung

and Das (2005) was found to perform well in the case of weak cross section

dependence. In this paper we show that in the presence of common factors the

test has a nonstandard limiting distribution under the null hypothesis. We also

study test statistics based on suitable transformations of the variables. Two

different approaches are considered. First, the inverse of the estimated residual

covariance matrix is used to compute the GLS t-statistic. The second approach

employs a transformation matrix that eliminates the common factors. Such test

procedures are suggested by Phillips and Sul (2003) and Moon and Perron (2004).

We focus on the latter test statistic that is based on the principal component

estimator of the common factors.

These test statistics are used to test the null hypothesis that all time series

in the panel data set are I(1). This null hypotheses may be the result of three

different situations. In case (a) we assume that both the common and idiosyn-

cratic components are nonstationary. In case (b) it is assumed that the common

factors are I(1) and the idiosyncratic components are I(0) (that is, there exist a

cointegration relationship among the panel units), whereas in case (c) the com-

mon factors are I(0) and the idiosyncratic components are I(1). In this paper

we study the asymptotic properties of alternative panel unit root tests in these

1For a recent review of the literature see Breitung and Pesaran (2005).
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three situations. We show that no test procedure is able to cope with case (b),

where the series are cross-cointegrated. In the other cases at least some of the

tests are valid.

The rest of the paper is organized as follows. In Section 2, we analyze the

asymptotic properties of the OLS based test statistics. In Section 3 the asymp-

totic properties of the GLS type test procedure are considered. Section 4 presents

the results of some Monte-Carlo experiments and Section 5 provides an empirical

illustration. Some concluding remarks are offered in Section 6.

2 The OLS based test statistic

Consider a collection of time series {yi0, . . . , yiT}i=1,...,N that is generated by the

composed process

yit = γ′ift + uit , (1)

ft = Aft−1 + vt , (2)

uit = θui,t−1 + εit , (3)

where ft is a r × 1 vector of unobservable common factors, γi is a r × 1 vector

of non-random factor loadings, Γ = [γ1, . . . , γN ]′ is the matrix of factor loadings

and uit is an idiosyncratic error component. The eigenvalues of the r × r matrix

A are on or inside the unit circle of the complex plane. Specifically, we will focus

on the special case A = ρIr with |ρ| ≤ 1.

To simplify the exposition we have left out any deterministic terms and short-

run dynamics. The inclusion of constants, time trends and short-run dynamics is

straightforward and is considered in Breitung and Das (2005). Similar versions

of the factor model are considered by Phillips and Sul (2003), Moon and Perron

(2004) and Pesaran (2005).

The assumptions on the error processes are summarized in

Assumption 1: The vector εt = [ε1t, . . . , εNt]
′ is i.i.d. with E(εt) = 0 and

E(εtε
′
t) = Σ, where Σ is a positive definite (not necessarily diagonal) matrix with

bounded eigenvalues and limN→∞ N−1
∑N

i=1 γ2
ik = ck < ∞ for k ∈ {1, . . . , r} as

N → ∞. The r × 1 error vector vt is i.i.d. with E(vt) = 0, E(vtv
′
t) = Ir and

E(εtv
′
t) = 0. Furthermore, E(ε4

it) < ∞ for all i and t and E(v2
jtv

2
kt) < ∞ for all

j, k, t.
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To test the null hypothesis that yit is a random walk process for all i = 1, . . . , N ,

the panel data unit root test is based on the autoregression

yit = φiyi,t−1 + eit .

Consider the test of the unit root hypothesis φ1 = · · · = φN = 0 against the

homogeneous alternative φ1 = · · · = φN < 0. Following Levin, Lin and Chu

(2002) the test is based on the pooled regression

∆yt = φyt−1 + et , (4)

where ∆yt = [y1t, . . . , yNt]
′, yt−1 = [y1,t−1, . . . , yN,t−1]

′ and et = [e1t, . . . , eNt]
′. The

pooled OLS t-statistic is

tols =

T∑
t=1

y′t−1∆yt

σ̂

√
T∑

t=1

y′t−1yt−1

. (5)

where σ̂2 = (NT )−1
∑T

t=1 ê′têt and êt = ∆yt − φ̂yt−1 denotes the residual vector.

Following Breitung and Das (2005) and Jönsson (2005) we will also consider

the robust t-statistic that employs “panel corrected standard errors” (PCSE).

The test statistic results as

trob =

T∑
t=1

y′t−1∆yt

√
T∑

t=1

y′t−1Ω̂yt−1

, (6)

where

Ω̂ =
1

T

T∑
t=1

êtê
′
t .

Using a sequential limit theory, Breitung and Das (2005) show that if all eigen-

values of the covariance matrix Ω are bounded, this test statistic is distributed

as N (0, vΩ), where vΩ = limN→∞ tr(Ω2/N)/(trΩ/N)2. However, if Ω has a factor

structure, then r eigenvectors are O(N) and, therefore, the limiting distribution

is no longer standard normal. In what follows we derive the asymptotic proper-

ties of the test statistics tols and trob if it is assumed that the time series possess

a factor structure.
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Under the null hypothesis it is assumed that all components of the vector yit

are I(1). We will consider three different situations:

case (a) A = Ir and θ = 1 (7)

case (b) A = Ir and |θ| < 1 (8)

case (c) A = ρIr where |ρ| < 1 and θ = 1 (9)

In case (a) it is assumed that both the common factors and the idiosyncratic

components are nonstationary. For example, it may be assumed that the error

components follow the same autoregressive process with θ = ρ under the null and

alternative hypotheses (Phillips and Sul 2003, Moon and Perron 2004, Pesaran

2005). In case (b) it is assumed that the series share r common stochastic trends.

Accordingly there exists a N × (N − r) matrix Q such that Q′yt is stationary.

Following Banerjee et al. (2005) this situation is called cross-unit cointegration.

Finally, in case (c) the nonstationarity of the elements of yt is due to the idiosyn-

cratic component.

In the following theorem the limiting distributions of the test statistics are

given.

Theorem 1: Assume that yt is generated as in (1) – (3) and Assumption 1.

Let λ∗i = limN→∞ N−1λi denote the limit of the i’th (ordered) eigenvalue of the

covariance matrix Ω = E(ete
′
t). As T →∞ is followed by N →∞ the asymptotic

properties of the OLS based test statistics for the three cases (7) – (9) can be

summarized as follows:

case (a): N−1/2 tols ⇒

r∑
i=1

λ∗i
∫ 1

0
Wi(a)dWi(a)

√
r∑

i=1

λ∗i
∫ 1

0
Wi(a)2da

, trob ⇒

r∑
i=1

λ∗i
∫ 1

0
Wi(a)dWi(a)

√
r∑

i=1

λ∗i
2
∫ 1

0
Wi(a)2da

cases (b): N−1/2tols ⇒

[
r∑

i=1

λ∗i
∫ 1

0
Wi(a)dWi(a)

]
− ψ

√
r∑

i=1

λ∗i
∫ 1

0
Wi(a)2da

, trob ⇒

[
r∑

i=1

λ∗i
∫ 1

0
Wi(a)dWi(a)

]
− ψ

√
r∑

i=1

λ∗i
2
∫ 1

0
Wi(a)2da

ψ = (1− θ) lim
N→∞

tr(Σ/N)

case (c) tols is −Op(
√

N), trob → −∞ as min(N, T ) →∞
and W1(a), . . . , Wr(a) are independent standard Brownian motions.
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Proof: Case (a): The matrix Ω = E(∆yt∆y′t) = ΓΓ′ + Σ is decomposed as

Ω = V ΛV ′, Λ =diag(λ1, . . . , λN) with the ordered eigenvalues λ1 > . . . > λN

and V = [v1, . . . , vN ] is the matrix of orthonormal eigenvectors (vi). Let zt =

Λ−1/2V ′yt denote a N×1 vector of random walk components with unit covariance

matrix. We have

aNT = N−1T−1

T∑
t=1

y′t−1∆yt = N−1T−1

T∑
t=1

z′t−1Λ∆zt = N−1

N∑
i=1

λiξiT ,

where, as T →∞, ξiT = T−1
T∑

t=1

zi,t−1∆zit ⇒
∫ 1

0
Wi(a)dWi(a) and {W1(a), . . . , WN(a)}

represent N independent standard Brownian motions and ⇒ indicates weak con-

vergence with respect to the associated probability measure. Thus, since ξiT is

independent of ξjT for i 6= j and E(ξiT ) = 0 for all i

aNT = N−1

r∑
i=1

λiξiT + Op(N
−1/2),

where we have used the fact that λi = O(N) for i = 1, . . . , r and all other

eigenvalues are bounded. Letting N →∞ we obtain

aNT ⇒
r∑

i=1

λ∗i

∫ 1

0

Wi(a)dWi(a).

Furthermore,

bNT = N−2T−2

T∑
t=1

y′t−1Ω̂yt−1 = N−2T−2

T∑
t=1

y′t−1Ωyt−1 + op(1)

= N−2T−2

T∑
t=1

z′t−1Λ
2zt−1 + op(1)

= N−2

N∑
i=1

λ2
i SiT + op(1),

where, as T → ∞, SiT = T−2
T∑

t=1

z2
i,t−1 ⇒

∫ 1

0
Wi(a)2da. Letting N → ∞ we

obtain

bNT = N−2

r∑
i=1

λ2
i SiT + op(1)

=
r∑

i=1

λ∗i
2SiT + op(1)

⇒
r∑

i=1

λ∗i
2

∫ 1

0

Wi(a)2da.
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In a similar manner it follows that

cNT = N−1T−2

T∑
t=1

y′t−1yt−1

= N−1

r∑
i=1

λiSiT + op(1)

⇒
r∑

i=1

λ∗i

∫ 1

0

Wi(a)2da.

Thus, tols = aNT /(σ̂
√

cNT /N) is Op(N
1/2) and

N−1/2 tols =
aNT

σ̂
√

cNT

⇒

r∑
i=1

λ∗i
∫ 1

0
Wi(a)dWi(a)

√
r∑

i=1

λ∗i
∫ 1

0
Wi(a)2da

trob =
aNT√
bNT

⇒

r∑
i=1

λ∗i
∫ 1

0
Wi(a)dWi(a)

√
r∑

i=1

λ∗i
2
∫ 1

0
Wi(a)2da

.

Case (b): Let

aNT = N−1T−1

T∑
t=1

y′t−1∆yt

= N−1T−1

T∑
t=1

(Γft−1 + ut−1)
′(Γ∆ft + ∆ut)

=
r∑

i=1

(λ̃i/N)ξ̃iT + N−1T−1

T∑
t=1

u′t−1∆ut + op(1),

where λ̃1, . . . , λ̃r denote the r nonzero eigenvalues of ΓΓ′ and

ξ̃iT = T−1

T∑
t=1

Ṽ ′
rft,

where Ṽr = [ṽ1, . . . , ṽr] is the matrix of r eigenvectors associated with the r

eigenvectors λ̃1, . . . , λ̃r. Furthermore, E(∆u′tut−1) = E[(θ − 1)u′t−1 + ε′t]ut−1 =

(θ − 1)tr(Σ). If T →∞ is followed by N →∞, then

aNT ⇒
r∑

i=1

λ∗i

∫ 1

0

Wi(a)dWi(a)− (1− θ) lim
N→∞

tr(Σ/N).
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Under the null hypothesis the least-squares estimator φ̂ is Op(T
−1N−1/2) and,

therefore,

êit = ∆yit − φ̂yi,t−1

= ∆yit + Op(T
−1/2N−1/2)

= γ′ivt + ∆uit + Op(T
−1/2N−1/2).

It follows that Ω̂ = E(∆yt∆y′t)+op(1). Accordingly, as N →∞, the (normalized)

r largest eigenvalues of Ω̂ converge to the nonzero eigenvalues of ΓΓ′. If T →∞
is followed by N →∞ we obtain

bNT = N−2T−2

T∑
t=1

y′t−1Ω̂yt−1 ⇒
r∑

i=1

λ∗i
2

∫ 1

0

Wi(a)2da

and

cNT = N−1T−2

T∑
t=1

y′t−1yt−1 ⇒
r∑

i=1

λ∗i

∫ 1

0

Wi(a)2da.

Thus,

N−1/2 tols =
aNT

σ̂
√

cNT

⇒

r∑
i=1

λ∗i
∫ 1

0
Wi(a)dWi(a)− (1− θ) lim

N→∞
tr(Σ/N)

√
r∑

i=1

λ∗i
∫ 1

0
Wi(a)2da

trob =
aNT√
bNT

⇒

r∑
i=1

λ∗i
∫ 1

0
Wi(a)dWi(a)− (1− θ) lim

N→∞
tr(Σ/N)

√
r∑

i=1

λ∗i
2
∫ 1

0
Wi(a)2da

.

Case (c): Using the same notation as in case (a) we obtain

aNT = N−1

r∑
i=1

λiξiT + op(1),

where under the assumption A = ρIr with |ρ| < 1

ξiT
p→ ρ− 1 i = 1, . . . , r

and, therefore, aNT
p→ (ρ− 1) (

∑r
i=1 λ∗i ). Furthermore,

bNT = N−2

N∑
i=1

λ2
i SiT + op(1)

=
r∑

i=1

(λ2
i /N

2)SiT + N−2

N∑
j=r+1

λ2
jSjT .
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Since SiT is Op(T
−1) for i = 1, . . . , r and E(SjT ) = 1/2 for j = r + 1, . . . , N it

follows that

bNT = Op(T
−1) + Op(N

−1).

Similarly, if N is fixed we have

cNT = N−1

N∑
i=1

λiSiT

=
r∑

i=1

(λi/N)SiT + N−1

N∑
j=r+1

λ2
jSjT

= Op(T
−1) + Op(1).

It follows that tols = aNT /
√

cNT /N is −Op(N
1/2) and trob tends to −∞ whenever

min(N, T ) →∞. ¥

These results show that the OLS t-statistic is severely biased in all cases due to

the fact that it tends to infinity as N →∞. According to the results of Breitung

and Das (2005) this behavior is anticipated since vΩ is O(N) if some eigenvalue

is of order O(N).

It is interesting to note that for r = 1 the limiting distribution of the robust

OLS statistic in case (a) is identical to the limiting distribution of the Dickey-

Fuller test statistic. Indeed, in this case, the test is asymptotically equivalent

to a Dickey-Fuller test applied to the first principal component v′1yt. Thus, the

limiting behavior of this test statistic is dominated by the common factor and

the idiosyncratic components do not affect the limiting distribution.

3 Tests based on GLS regressions

Since the GLS estimator of φ in (4) is more efficient than the OLS estimator, a

more powerful test statistic can be constructed based on the GLS estimator of φ.

The GLS t-statistic is given by

tgls =

T∑
t=1

y′t−1Ω̂
−1∆yt

√
T∑

t=1

y′t−1Ω̂
−1yt−1

.

It is important to note that this test statistic can only be computed if T > N

as otherwise the estimated covariance matrix Ω̂ is singular. This is an important

drawback compared to the OLS based test statistics.
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Another approach to deal with the cross section dependence due to common

factors is the elimination of the common factors by employing a transformation

matrix Q with the property Q′Γ = 0. The transformed regression is

∆ζt = φ∗ζt−1 + et

where ζt = Qyt and et = Qεt. Phillips and Sul (2003) suggest to use an estimated

version of the matrix

QPS = (Γ′⊥ΣΓ⊥)−1/2Γ′⊥,

where Γ⊥ is an orthogonal complement of Γ, which can be estimated by using

a least-squares approach. Moon and Perron (2004) employ the (the estimated

analog) of the matrix2

QMP = Σ−1/2(IN − VrV
′
r )

where Vr = [v1, . . . , vr] is the matrix of eigenvectors associated with the largest r

eigenvalues of Ω.

An important advantage of the GLS t-statistic is that it does not require

an assumption about the structure of the covariance matrix. Specifically, no

assumption about the number of common factors are required. On the other

hand, this generality gives rise to very poor small sample properties (see section

5). To improve the small sample properties of the test it is therefore desirable to

impose some structure on the covariance matrix. Assume that the innovations

admit a (strict) factor structure such that Ω = ΓΓ′ + Σ. Using the well known

result on the inverse of a sum of two matrices, we obtain

Ω−1 = Σ−1 − Σ−1Γ(Ir + Γ′Σ−1Γ)−1Γ′Σ−1 . (10)

To estimate Ω−1 consistent estimators for Λ and Σ are required. Following Bai

and Ng (2002) and Moon and Perron (2004) a principal component approach

can be adopted. Let V̂r = [v̂1, . . . , v̂r] denote the matrix of r eigenvectors of the

matrix Ω̂ associated to the r largest eigenvalues. The matrix Γ is estimated as

Γ̂ = V̂r and Σ̂ = (IN − VrV
′
r )Ω̂(IN − VrV

′
r ).

In the following theorem the null distribution of the GLS type test statistics

are presented.

2Moon and Perron (2004) assume that the idiosyncratic components are independent. To
allow for (weakly) correlated idiosyncratic components we pre-multiply their transformation
matrix by Σ−1/2.
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Theorem 2: Let yt be generated as in (1) – (3). If T → ∞ is followed by

N →∞, then according to the cases given in (7) – (9) it holds that

case (a): tgls ⇒ N (0, 1), tMP ⇒ N (0, 1)

case (b): tgls is Op(N
1/2) tMP is Op(N

1/2T 1/2)

case (c): tgls ⇒ N (0, 1), tMP ⇒ N (0, 1)

Proof: Case (a). By using the same notations and decomposition of Ω as in

Theorem 1, we write

dNT = N−1/2T−1

T∑
t=1

y′t−1Ω̂
−1∆yt = N−1/2T−1

T∑
t=1

y′t−1Ω
−1∆yt + op(1)

= N−1/2T−1

T∑
t=1

z′t−1∆zt + op(1)

= N−1/2

N∑
i=1

T−1

T∑
t=1

zi,t−1∆zit + op(1)

⇒ N (0, 1/2)

and

eNT = N−1T−2

T∑
t=1

y′t−1Ω̂
−1yt−1 = N−1T−2

T∑
t=1

y′t−1Ω
−1yt−1 + op(1)

= N−1T−2

T∑
t=1

z′t−1zt−1 + op(1)

p→ 1/2

as T →∞ is followed by N →∞. It follows that tgls = dNT /
√

eNT ⇒ N (0, 1).

As shown by Bai and Ng (2004) the PC estimator of the idiosyncratic compo-

nent ∆ût = Σ1/2QMP ∆yt is a consistent estimator of ∆ut as min(N, T ) →∞. It

follows that, as T →∞, T−1/2û[aT ] ⇒ Σ1/2W (a), where W (a) = [W1(a), . . . , WN(a)]′

is a vector of independent Brownian motion with unit variances and

d̃NT = N−1/2T−1

T∑
t=1

ζ ′t−1∆ζt

= N−1/2T−1

T∑
t=1

û′t−1Σ
−1∆ût

⇒ N (0, 1/2).
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Furthermore

ẽNT = N−1T−2

T∑
t=1

ζ ′t−1ζt−1

= N−1T−2

T∑
t=1

û′t−1Σ
−1ût−1

= N−1T−2

T∑
t=1

u′t−1Σ
−1ut−1 + op(1)

p→ 1/2

as T →∞ is followed by N →∞. Therefore, tMP = d̃NT /
√

ẽNT ⇒ N (0, 1).

Case (b). As in case (a) we have

dNT = N−1/2T−1

T∑
t=1

y′t−1Ω̂
−1∆yt = N−1/2T−1

T∑
t=1

y′t−1Ω
−1∆yt + op(1)

=
N∑

i=1

N−1/2T−1

T∑
t=1

zi,t−1∆zit + op(1)

The sets {z1t, . . . , zrt} and {zr+1,t, . . . , zNt} correspond to the r nonstationary fac-

tors and N−r linear transformations of the stationary idiosyncratic components.

As T →∞ we obtain

dNT = −(1− θ) + Op(N
−1/2).

Furthermore, as T →∞

eNT = N−1T−2

T∑
t=1

y′t−1Ω̂
−1yt−1

= N−1T−2

T∑
t=1

y′t−1Ω
−1yt−1 + op(1)

= N−1T−2

T∑
t=1

z′t−1zt−1 + op(1)

⇒ N−1

r∑
i=1

Wi(a)2da.

It follows that tgls = dNT /
√

eNT is Op(N
1/2).
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Since ût is consistent for ut (cf. Bai 2003), it follows

d̃NT = N−1/2T−1

T∑
t=1

ζ ′t−1∆ζt

= N−1/2T−1

T∑
t=1

û′t−1Σ
−1∆ût

= Op(N
1/2)

and

ẽNT = N−1T−2

T∑
t=1

ζ ′t−1ζt−1

= N−1T−2

T∑
t=1

û′t−1Σ
−1ût−1

= Op(T
−1).

It follows that tMP = d̃NT /
√

ẽNT is Op(N
1/2T 1/2).

Case (c). Using

dNT = N−1/2T−1

T∑
t=1

y′t−1Ω̂
−1∆yt = N−1/2T−1

T∑
t=1

y′t−1Ω
−1∆yt + op(1)

=
N∑

i=1

N−1/2T−1

T∑
t=1

zi,t−1∆zit + op(1),

where z1t, . . . , zrt are I(0) and zr+1,t, . . . , zNt are I(1), we obtain as T → ∞ is

followed by N →∞
dNT ⇒ N (0, 1/2)

and

eNT = N−1T−2

T∑
t=1

y′t−1Ω̂
−1yt−1

= N−1T−2

T∑
t=1

y′t−1Ω
−1yt−1 + op(1)

= N−1T−2

T∑
t=1

z′t−1zt−1 + op(1)

p→ 1/2
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It follows that tgls has a standard normal limiting distribution.

Similarly, we obtain

d̃NT = N−1/2T−1

T∑
t=1

ζ ′t−1∆ζt

= N−1/2T−1

T∑
t=1

û′t−1Σ
−1∆ût

⇒ N (0, 1/2)

and

ẽNT = N−1T−2

T∑
t=1

ζ ′t−1ζt−1

= N−1T−2

T∑
t=1

û′t−1Σ
−1ût−1

= N−1T−2

T∑
t=1

u′t−1Σ
−1ut−1 + op(1)

p→ 1/2

as T →∞ is followed by N →∞. Thus, tMP = d̃NT /
√

ẽNT ⇒ N (0, 1). ¥

4 Small sample performance

In this section, we present the results of some Monte Carlo experiments performed

to investigate the finite sample performance of the four tests analyzed in Sections

2 and 3, i.e., the pooled OLS t-statistic, the robust test (trob), the GLS t-statistic

and the test based on the transformation suggested by Moon and Perron [MP]

(2004). In addition we have included the GLS statistic that imposes the factor

structure by using the (estimated) inverse covariance matrix given in (10). This

test statistic is indicated by t∗gls.

In our Monte Carlo simulations, the data are generated as in (1) – (3) with

r = 1 (the single factor model). All starting values are set equal to zero and

vt is drawn from a N (0, 1) distribution. The factor loadings γi are drawn from

a U(0,2) distribution and the error vector εt = [ε1t, ε2t, . . . εNt]
′ is independently

drawn from a N (0, Σ) distribution. The covariance matrix of the idiosyncratic

components is set to Σ = IN .
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Table 1 reports the actual sizes of the tests, where both components are gen-

erated as random walks, that is, θ = 1 and ρ = 1. This is equivalent to case (a) in

sections 2 and 3. Our theoretical findings suggest that in this situation the OLS

based test statistics are biased, whereas the GLS type test statistics are asymp-

totically valid. These results are confirmed by the simulation results presented

in Table 1. Theorem 1 implies that N−1/2tols is asymptotically distributed as the

Dickey-Fuller t-statistic. Thus, the actual size tends to the probability

lim
T,N→∞

P (tols < −1.645) = lim
N→∞

P (tols/
√

N < −1.645/
√

N)

= P (τ < 0),

where τ is distributed as
∫

W (a)da(a)/
√∫

W (a)2da. Since the distribution of

the Dickey-Fuller t-statistic is skewed, this limiting probability is somewhat larger

than 0.5. Indeed the results of our Monte Carlo simulations suggest that the

actual size of the OLS t-statistic tends to a value (slightly) larger than 0.5.

From Theorem 1 it also turns out that in a single-factor model the robust

t-statistic is distributed as the Dickey-Fuller t-statistic. The 5% critical value

of this distribution is −1.95 compared to to the critical value of −1.645 for the

standard normal distribution. Therefore, we expect a moderate positive size bias

of the robust OLS t-statistic. Indeed, our Monte Carlo simulations suggest that

this test statistic slightly over-rejects as T becomes large.

As suggested by our Monte Carlo simulations, the actual size of the GLS type

test statistics that impose the factor structure (MP and t∗gls) are close to the

nominal size. In contrast, the original GLS t-statistic is severely biased if T is of

a similar magnitude as N . The results suggest that the nominal size is attained

when T is at least 10 times larger than N .

Table 2 presents the actual sizes of the test if the panel units are cross-

cointegrated (case b). As stated in Theorem 1 and 2, all tests are severely biased

in this case. The robust OLS test (tols) has the smallest size bias among all tests.

From Theorem 2 it turns out that the GLS type statistics tend to −∞ and,

therefore, the actual size tends to one. Indeed, the results of the Monte Carlo

study suggest that as N and T becomes large, the actual size of the GLS type

statistics are close to one.

The theoretical considerations of sections 2 and 3 suggest that in case (c) the

actual sizes of the OLS based statistics tend to one, whereas the actual sizes of

the GLS statistics tend to the nominal ones as N and T tend to infinity. The

results of our Monte Carlo simulation presented in Table 3 confirm this theoretical

15



findings. However, the size bias of the tGLS statistic converges rather slowly to

zero as T tends to infinity.

5 Empirical illustration

In this section we examine whether nominal interest rates are stationary or have

unit roots. Whether shocks to the interest rates are permanent or transitory

is not only essential in understanding the nature of shocks to interest rates but

might have important implications for the monetary authority especially with

regard to a stabilization policy. Several macroeconomic models suggest presence

of unit roots in nominal interest rate. A long run (cointegration) relationship

among various interest rates of different maturities also requires that interest

rates are unit root process. Employing a univariate framework most studies

found that unit root hypothesis for interest rates cannot be rejected. See, for

example, Perron (1989), Rose (1988), and Stock and Watson (1988). However,

as we have also mentioned in the introduction, such non-rejection of unit root

hypothesis might be due to lack of power of standard univariate unit root tests.

As multivariate tests based on cross-section data provides a substantial power

gain, it might be worth examining the hypothesis of unit roots in interest rates

in a panel unit root framework. As shown by Wu and Zhang (1996), there is a

significant contemporaneous correlation among OECD country’s interest rates.

Therefore, it is plausible to consider panel unit root tests which are robust to

such cross sectional dependence.

We have used a panel data set of annual short term (3 months) interest rates

of 16 developed countries. The sample ranges from 1980 to 2003. Data has

been collected from the Datastream database. Table 6 provides the various tests

considered in this paper along with Levin-Lin-Chu (LLC) and Im et al. (IPS)

tests. All tests strongly suggest that interest rates are stationary.3 As expected,

the LLC and IPS test show stronger rejections than the tests which are robust

to cross-sectional dependence. Our conclusion that interest rates are stationary

is consistent with the findings of Wu and Zhang (1996). We thus cast doubts on

previous studies relying on the non-stationarity of interest rates. In particular,

the evidences of a long run relationship among various interest rates with different

maturities and long run Fisher relationship may not be considered as appropriate.

3We do not report results of the GLS t-statistic as in our application T is not sufficiently
large relative to N .
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6 Conclusions

In this paper we analyze the size properties of various panel unit root statistics in

three possible situations. First, the common factors and idiosyncratic components

may both be nonstationary. In this case all GLS type test statistics possess

a standard normal limiting distribution, whereas the OLS based test statistics

are invalid. If the common component is I(1) and the idiosyncratic component

is nonstationary (the case of cross-unit cointegration), then both the OLS and

the GLS statistics fail. Finally, if the idiosyncratic components are I(1) but

the common factors are stationary, then the OLS based test statistics are not

applicable, whereas the GLS type statistics are at least asymptotically valid.

These findings are confirmed by our Monte Carlo simulations.

As an important result our analysis suggest that the OLS and GLS based test

statistics may give misleading results if the panel units are cross-cointegrated.

Whereas Banerjee et al. (2005) demonstrate that the first generation panel unit

root tests that ignore a possible cross-section dependence may be severely biased

we have shown that this also the case if second generation panel unit root tests are

applied that account for a possible cross-section dependence. The only approach

that is able to deal with this situation is the PANIC approach suggested by

Bai and Ng (2004). Their test procedure is based on a separate analysis of

the common and idiosyncratic components that are estimated by using principal

components.
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Table 1: Size: both components are I(1)

N T OLS trob MP tgls t∗gls

10 20 24.3 6.32 6.01 17.4 6.44
50 23.6 7.23 6.85 10.4 6.80
100 23.4 7.77 6.75 8.04 6.46

20 20 34.6 4.99 5.58 — 5.46
50 35.9 6.82 5.55 18.6 5.49
100 34.6 7.64 6.07 11.3 5.94

50 20 48.8 4.07 4.88 — 5.10
50 50.1 6.53 5.37 — 5.59
100 50.1 7.83 5.22 33.7 5.22

Note: tols is the pooled OLS t-statistic that ignores cross-section dependence,
trob is the robust OLS t-statistic as defined in (6), MP indicates the test statistic
based on the approach suggested by Moon and Perron (2004), tgls is the GLS
t-statistic and t∗gls is the GLS statistic which impose the factor structure on
the covariance matrix. The nominal size for all tests is 5%.

Table 2: Size: ft ∼ I(1) and ut ∼ I(0)

N T OLS trob MP tgls t∗gls

10 20 35.7 11.2 16.7 31.8 16.5
50 50.0 20.4 50.2 49.9 46.8
100 56.5 26.9 93.5 81.9 83.6

20 20 49.1 12.1 26.0 — 26.0
50 59.2 22.0 80.3 72.0 76.6
100 63.9 28.6 99.9 96.6 98.3

50 20 59.8 12.3 46.9 — 47.1
50 66.1 24.0 98.9 — 97.9
100 70.4 29.5 1.00 98.2 1.00

Note: The idiosyncratic components are generated by an AR(1) process with
autoregressive coefficient θ = 0.98. The nominal size for all tests is 5%. See
Table 1 for further details.
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Table 3: Size: ft ∼ I(0) and ut ∼ I(1)

N T OLS trob MP tgls t∗gls

10 20 54.7 21.4 6.01 39.5 9.15
50 64.2 43.5 7.22 24.9 11.0
100 67.3 57.1 6.56 18.0 10.4

20 20 74.9 21.7 5.11 — 7.23
50 85.5 54.9 5.89 54.7 8.19
100 88.0 73.7 5.60 32.2 8.12

50 20 91.5 20.7 4.39 — 5.35
50 98.6 67.2 5.27 — 6.37
100 99.5 92.2 5.06 92.0 6.27

Note: The common factor is generated by an AR(1) process with autoregres-
sive coefficient ρ = 0.8. See Table 1 for further details.

Table 4: Power: ft ∼ I(0) and ut ∼ I(0)

N T OLS trob MP tgls t∗gls

10 20 41.9 13.3 18.0 37.2 19.3
50 67.7 30.7 52.3 62.9 56.4
100 89.4 53.8 94.1 96.0 96.0

20 20 56.6 13.9 26.2 — 27.7
50 78.9 34.1 81.6 85.4 83.5
100 94.1 57.3 99.9 99.8 100

50 20 68.4 14.6 48.0 — 49.4
50 85.7 35.8 99.5 — 99.5
100 96.7 59.6 100 100 100

Note: The common and idiosyncratic components are generated by AR(1)
processes with autoregressive coefficients θ = 0.98 and ρ = 0.98. See Table 1
for further details.

Table 5: Panel Unit Root Test Statistics for Interest Rates

LL IPS trob MP t∗gls

Tests –5.87∗ –5.23∗ –3.08∗ –5.67∗ –5.42∗

Note: LL, IPS, trob, DPC, MP , denote the t-statistics corresponding to Levin et al (2002),
Im et al (2003), the robust OLS t-statistic, the Moon-Perron test with r = 1 and the GLS t
test imposing a single-factor structure (t∗gls), respectively. The GLS t-statistic has not been
considered as T is not sufficiently large relative to N .
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