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Abstract

This paper considers various tests for the unit root hypothesis in panels,
where the cross section dependence is due to common dynamic factors.
Three situations are studied. First, the common factors and idiosyncratic
components may both be nonstationary. In this case all GLS type test
statistics possess a standard normal limiting distribution, whereas the OLS
based test statistics are invalid. If the common component is I(1) and the
idiosyncratic component is stationary (the case of cross-unit cointegration),
then both the OLS and the GLS statistics fail. Finally, if the idiosyncratic
components are I(1) but the common factors are stationary, then the OLS
based test statistics are not applicable, whereas the GLS type statistics do
not have problems in this situation. A Monte Carlo study is conducted to
gauge the small sample performance of these tests and a panel data set of
16 countries is used to test the hypothesis that interest rates are stationary.
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1 Introduction

Panel unit root tests are proposed to improve the power of standard univariate
unit root tests. However, an important problem with the application of panel
data methods to regional data is that the data usually exhibit substantial cross
sectional dependence. In recent years, two different approaches have been ad-
vanced to cope with such situations. Chang (2002, 2004), Breitung and Das
(2005), and Harvey and Bates (2003) assume “weak” error dependence that can
be characterized by the fact that all eigenvalues of the error covariance matrix are
bounded as the number of cross section units tend to infinity. On the other hand,
the work of Choi (2002), Phillips and Sul (2003), Bai and Ng (2004), Moon and
Perron (2004), and Pesaran (2005) assumes a “strong” form of dependence that
is due to common factors. In this case the largest eigenvalue of the covariance
matrix tend to infinity as the cross section dimension (N) increases.!

In this paper, we consider four panel unit root tests under strong dependence.
The first test statistic is the pooled OLS t-statistic that ignores a possible cross-
section dependence. The simple robust OLS t-statistic suggested by Breitung
and Das (2005) was found to perform well in the case of weak cross section
dependence. In this paper we show that in the presence of common factors the
test has a nonstandard limiting distribution under the null hypothesis. We also
study test statistics based on suitable transformations of the variables. Two
different approaches are considered. First, the inverse of the estimated residual
covariance matrix is used to compute the GLS t-statistic. The second approach
employs a transformation matrix that eliminates the common factors. Such test
procedures are suggested by Phillips and Sul (2003) and Moon and Perron (2004).
We focus on the latter test statistic that is based on the principal component
estimator of the common factors.

These test statistics are used to test the null hypothesis that all time series
in the panel data set are I(1). This null hypotheses may be the result of three
different situations. In case (a) we assume that both the common and idiosyn-
cratic components are nonstationary. In case (b) it is assumed that the common
factors are I(1) and the idiosyncratic components are I(0) (that is, there exist a
cointegration relationship among the panel units), whereas in case (¢) the com-
mon factors are I(0) and the idiosyncratic components are I(1). In this paper
we study the asymptotic properties of alternative panel unit root tests in these

IFor a recent review of the literature see Breitung and Pesaran (2005).



three situations. We show that no test procedure is able to cope with case (b),
where the series are cross-cointegrated. In the other cases at least some of the
tests are valid.

The rest of the paper is organized as follows. In Section 2, we analyze the
asymptotic properties of the OLS based test statistics. In Section 3 the asymp-
totic properties of the GLS type test procedure are considered. Section 4 presents
the results of some Monte-Carlo experiments and Section 5 provides an empirical
illustration. Some concluding remarks are offered in Section 6.

2 The OLS based test statistic

Consider a collection of time series {yio, . .., Yir }i=1,...n that is generated by the

composed process

Y = Yift+ ua, (1)
fi = Afioqi+uv, (2)
U = Ouji1+eir, (3)

where f; is a 7 x 1 vector of unobservable common factors, ~; is a r X 1 vector
of non-random factor loadings, I' = [v1,...,vn|" is the matrix of factor loadings
and wu; is an idiosyncratic error component. The eigenvalues of the r x r matrix
A are on or inside the unit circle of the complex plane. Specifically, we will focus
on the special case A = pI, with |p| < 1.

To simplify the exposition we have left out any deterministic terms and short-
run dynamics. The inclusion of constants, time trends and short-run dynamics is
straightforward and is considered in Breitung and Das (2005). Similar versions
of the factor model are considered by Phillips and Sul (2003), Moon and Perron
(2004) and Pesaran (2005).

The assumptions on the error processes are summarized in

Assumption 1: The vector g, = [eyy,...,ene) is i.4.d. with E(g;) = 0 and
E(gg)) = X, where ¥ is a positive definite (not necessarily diagonal) matriz with
bounded eigenvalues and limy oo N"2S2N 22 = ¢, < oo for k € {1,...,7} as
N — oo. The r x 1 error vector vy is i.i.d. with E(v;) = 0, E(vwv;) = I, and
E(gw;) = 0. Furthermore, E(e};) < oo for alli and t and E(vvg,) < oo for all
ik t.



To test the null hypothesis that y;; is a random walk process for all: =1,..., N,
the panel data unit root test is based on the autoregression

Yit = QilYit—1 + €it -

Consider the test of the unit root hypothesis ¢ = --- = ¢y = 0 against the
homogeneous alternative ¢ = -+ = ¢ < 0. Following Levin, Lin and Chu
(2002) the test is based on the pooled regression

Ay = ¢ye_1 + €4, (4)

where Ay, = (Y1, .-, Ynel', Ye—1 = [Yr4-1, - Yne—1] and e, = [exy, ..., eny)’. The
pooled OLS t-statistic is

T
; Y118y
lois = = . (5)

|
g 21 Yi1Ye—1
t=

where 62 = (NT)! thl ee; and e, = Ay — éﬁ\yt_l denotes the residual vector.

Following Breitung and Das (2005) and Jonsson (2005) we will also consider

the robust t-statistic that employs “panel corrected standard errors” (PCSE).
The test statistic results as

T
> Ui 1Ay
t=1
trob = )
T ~
\/ Zl Y121
=

t=1

where

Using a sequential limit theory, Breitung and Das (2005) show that if all eigen-
values of the covariance matrix €2 are bounded, this test statistic is distributed
as N'(0,vq), where vg = limy . tr(Q?/N)/(trQ)/N)?. However, if  has a factor
structure, then r eigenvectors are O(N) and, therefore, the limiting distribution
is no longer standard normal. In what follows we derive the asymptotic proper-
ties of the test statistics t,;s and %, if it is assumed that the time series possess

a factor structure.



Under the null hypothesis it is assumed that all components of the vector y;,
are I(1). We will consider three different situations:

case (a) A=1I.and 0 =1 (7)
case (b) A=1 and |0 <1 (8)
case (c) A = pl, where |[p| <1and § =1 9)

In case (a) it is assumed that both the common factors and the idiosyncratic
components are nonstationary. For example, it may be assumed that the error
components follow the same autoregressive process with § = p under the null and
alternative hypotheses (Phillips and Sul 2003, Moon and Perron 2004, Pesaran
2005). In case (b) it is assumed that the series share  common stochastic trends.
Accordingly there exists a N x (N — r) matrix @ such that @'y, is stationary.
Following Banerjee et al. (2005) this situation is called cross-unit cointegration.
Finally, in case (c) the nonstationarity of the elements of y; is due to the idiosyn-
cratic component.

In the following theorem the limiting distributions of the test statistics are
given.

Theorem 1: Assume that y, is generated as in (1) — (3) and Assumption 1.
Let \f = limy_oo N71\; denote the limit of the i’th (ordered) eigenvalue of the
covariance matriz 2 = E(ese}). AsT — oo is followed by N — oo the asymptotic
properties of the OLS based test statistics for the three cases (7) — (9) can be
summoarized as follows:

> X fy W)W S [ Wi(a)d

Wz(a)

case (a): N7V, = = by =

JE N Wit NSRS

S e aﬂ—w DRTREE

=1

a)?da

jiwia)| - v

cases (b): N~ Yt,, = » lrob =

\/ S [IW, ; X2 [ Wi(a)2da

¢ =(1-0) lim tr(S/N)

case (¢)  tos is — Op(\/ﬁ), troh — —00 as min(N,T) — oo

and Wi(a),...,W,.(a) are independent standard Brownian motions.
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PrOOF: Case (a): The matrix Q = E(Ay,Ay;) = I'TY + 3 is decomposed as
Q = VAV, A =diag(Ay, ..., Ay) with the ordered eigenvalues \; > ... > Ay
and V = [vq,...,vy] is the matrix of orthonormal eigenvectors (v;). Let z; =
A~12V"y, denote a N x 1 vector of random walk components with unit covariance

matrix. We have
T T N
ayy = N'T7! Z Y, Ay, = NT7! Z 2 AAz =N~ Z N&ir

t=1 t=1

where, asT" — oo, g =T~ sz 1Az = fo a)dW;(a) and {W1(a),...,Wy(a)}

represent /N independent standard Brownian motions and = indicates weak con-
vergence with respect to the associated probability measure. Thus, since &7 is
independent of &1 for ¢ # j and E(&) = 0 for all 4

any = N~! Z N&ir + Op(N_1/2)7

i=1
where we have used the fact that \; = O(N) for i = 1,...,r and all other

eigenvalues are bounded. Letting N — oo we obtain

r 1
ovr = SN [ Wila)dila)
i=1 0

Furthermore,

T T
bve = N2T72 Tyt Quey = N72T72) yi Ques + 0p(1)

t=1 t=1

T
= N72772 Z 2 NPz g +o0,(1)

t=1

N
= N7 NS +0,(1),

i=1
L 1

where, as T — oo, Sip = T2 2}, = [, Wi(a)*da. Letting N — oo we
i=1

obtain

bNT = N_2Z)\?SiT+0p(1)

i=1

= Z /\fzsﬂ“ + Op(l)
i=1

r 1
= ZA;Q/O W;(a)%da
=1



In a similar manner it follows that

CNT = N_lT_Qiy£_1yt—1
= N~ szﬁﬂp( )
= ZA*/ W;(a)?da.
Thus, t,s = anr/(G/cnr/N) is O,(N/?) and
Z A; fy Wila)dWi(a)
e @ X W,

o DA Wi@aWi(a)
lrop = = .
\/_ \/Z )\*2 fo Qda

N71/2 tos =

Case (b): Let

T
any = N_IT_lzyg_lAyt

t=1

Fft 1+ U1 (FAft + Aut)

Il
IIM%

= Z Xi/N)ép + N1 Zut WAuy +0,(1),

t=1

where 5\1, el 5\,, denote the r nonzero eigenvalues of I'T” and
~ T o~
Cr=T"" Z V! fi,
t=1

where V, = [0y,...,%,] is the matrix of r eigenvectors associated with the r

eigenvectors A, ..., A,. Furthermore, E(Auu,—y) = E[(0 — 1)u,_, + &)Jui_y =
(0 — Dtr(X). If T — oo is followed by N — oo, then

axr = SN /1 Wia)dWi(a) — (1~ 0) Jim tr(2/N).
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Under the null hypothesis the least-squares estimator ¢ is O,(T~*N~1/2) and,
therefore,
e = Ay — ngz',t—1
Ay + 0TI
= v, + Auy + O (TN,
It follows that Q = E (AyAy;)+0,(1). Accordingly, as N — oo, the (normalized)

r largest eigenvalues of 0 converge to the nonzero eigenvalues of I'T”. If T" — oo
is followed by N — oo we obtain

T T 1
bNT = ]\/v_va_2 Z y;_let_l = Z )\?2 / Wi(a)Qda
t=1 i=1 0

and .
r 1
O Zyé—ﬂh—l = Z A:/ Wi(a)*da.
t=1 i=1 0
Thus,
SSAF [ Wi(a)dWi(a) — (1 —6) lim tr(S/N)
N-124 = ant i=1 N—o0

O+/CNT Z )\;k fo]. V[/,L'(CL)2dCL
=1

or DA Wia)dWia) - (1 6) Jim r(2/N)

e \/ YA fy Wila)*da
=1

trob

Case (c): Using the same notation as in case (a) we obtain
any = N7! Z Aiir + 0p(1),
i=1

where under the assumption A = pl, with |p| < 1
Er S p—1 i=1,...r

and, therefore, ayr - (p — 1) (327_, A¥). Furthermore,
N
bNT = N_2 Z A?SZT + Op(l)
i=1
r N
= Y (/NS + N2> XSr .

i=1 j=r+1



Since Si7 is O,(T™1) for i = 1,...,7 and E(S;7) = 1/2for j=r+1,...,N it
follows that
bt = O(T) + 0,(N).

Similarly, if N is fixed we have

N
CNT = Nil Z AlslT
=1

r

N
= D (A/N)Sr+ N NSy

i—1 j—)
= O,(T7") +0,(1).
It follows that t,, = anr/+/cnr/N is —O,(N'/?) and t,4, tends to —oo whenever
min(N,T) — oco. B

These results show that the OLS t-statistic is severely biased in all cases due to
the fact that it tends to infinity as N — oco. According to the results of Breitung
and Das (2005) this behavior is anticipated since vg is O(N) if some eigenvalue
is of order O(N).

It is interesting to note that for » = 1 the limiting distribution of the robust
OLS statistic in case (a) is identical to the limiting distribution of the Dickey-
Fuller test statistic. Indeed, in this case, the test is asymptotically equivalent
to a Dickey-Fuller test applied to the first principal component vjy;. Thus, the
limiting behavior of this test statistic is dominated by the common factor and

the idiosyncratic components do not affect the limiting distribution.

3 Tests based on GLS regressions

Since the GLS estimator of ¢ in (4) is more efficient than the OLS estimator, a
more powerful test statistic can be constructed based on the GLS estimator of ¢.
The GLS t-statistic is given by

T —~
>y Q7 Ay,

t=1

- = )
\/Z Y 1y
=1

It is important to note that this test statistic can only be computed if T > N

tgls =

as otherwise the estimated covariance matrix €2 is singular. This is an important
drawback compared to the OLS based test statistics.
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Another approach to deal with the cross section dependence due to common
factors is the elimination of the common factors by employing a transformation
matrix ) with the property Q'I' = 0. The transformed regression is

AG = ¢"G1 + e

where ¢; = Qy; and e; = Qg,. Phillips and Sul (2003) suggest to use an estimated

version of the matrix
Qps = (I, XTL) T,

where I'| is an orthogonal complement of I', which can be estimated by using
a least-squares approach. Moon and Perron (2004) employ the (the estimated
analog) of the matrix?

Qup =X (Iy =V, V)

where V,. = [vy, ..., v,] is the matrix of eigenvectors associated with the largest r
eigenvalues of ().

An important advantage of the GLS t-statistic is that it does not require
an assumption about the structure of the covariance matrix. Specifically, no
assumption about the number of common factors are required. On the other
hand, this generality gives rise to very poor small sample properties (see section
5). To improve the small sample properties of the test it is therefore desirable to
impose some structure on the covariance matrix. Assume that the innovations
admit a (strict) factor structure such that Q = I'T” 4+ ¥X. Using the well known

result on the inverse of a sum of two matrices, we obtain

Q="' -2+ ') IS (10)

To estimate Q!

consistent estimators for A and X are required. Following Bai
and Ng (2002) and Moon and Perron (2004) a principal component approach
can be adopted. Let ‘A/,n = [v1,...,0,] denote the matrix of r eigenvectors of the
matrix ) associated to the r largest eigenvalues. The matrix I' is estimated as
T'= 7, and £ = (Iy — ,V)Q(Iy — V, V7).

In the following theorem the null distribution of the GLS type test statistics
are presented.

2Moon and Perron (2004) assume that the idiosyncratic components are independent. To
allow for (weakly) correlated idiosyncratic components we pre-multiply their transformation
matrix by £ /2.
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Theorem 2: Let y; be generated as in (1) — (3). If T — oo is followed by
N — o0, then according to the cases given in (7) — (9) it holds that

case (a): tas = N(0,1), typ = N(0,1)

case (b): tas s Op(N'Y?) typ is O,(NY2T?)

case (c): tas = N(0,1), typ = N(0,1)

PROOF: Case (a). By using the same notations and decomposition of €2 as in

Theorem 1, we write

T T
dyy = NPTy Q7 Ay, = NTRTTS Ty 07 Ay, +0,(1)
t=1 t=1
T
= N7Y271 Z 2 1Az + 0p(1)
t=1
N T
N_1/2 Z T‘_1 Z Zi,t—lAZit -+ Op(l)
i=1 t=1
= N(0,1/2)
and
T R T
ent = N'T7° Z Yy Q 'y = NTITT? Z Y1 i1 + 0p(1)
t=1 t=1

T
= NI772 Z 2z 12t-1 + 0p(1)

t=1
212

as T — oo is followed by N — oo. It follows that tys = dyr/v/ent = N(0,1).

As shown by Bai and Ng (2004) the PC estimator of the idiosyncratic compo-
nent Ati; = L2Qp Ay, is a consistent estimator of Au; as min(N,T) — co. It
follows that, as T — oo, T~ Y, = SY2W (a), where W (a) = [Wi(a), ..., Wn(a)]

is a vector of independent Brownian motion with unit variances and
. T
dyy = NPT Z G1AG
t=1
T
= NPTy Cap  NTAG,
t=1
= N(0,1/2).
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Furthermore

ENT

T
= N'T72> (G
t=1
T
= N'T?D U S
t=1

T
= NI772 Z w5 g+ 0p(1)

t=1

212

as T — oo is followed by N — oo. Therefore, ty;p = CZNT/\/éNT = N(0,1).

Case (b). As in case (a) we have

T T
dyp = N~V Z yé_lﬁ_lAyt = NY27l Z Y1 Q7 Ay 4 0p(1)

t=1

t=1

N T
= Z N_1/2T_1 Z Zi,t—lAZit + Op(l)
i=1 t=1

The sets {214, .. ., 2t} and {Z,414, - . ., 23¢} correspond to the r nonstationary fac-

tors and N —r linear transformations of the stationary idiosyncratic components.

As T — oo we obtain

Furthermore, as T" — oo

ENT

dyt = —(1—60) + O,(N~V?).

T
= N7 Z Y1 Y

t=1

T
= N'T72 Z Yo Qg1 +0,(1)

t=1

T
= N7IiT72 Z 2z 121 + 0p(1)

t=1

= NI Z W;(a)*da.
i=1

It follows that t, = dyr/\/ent is O,(N/?).
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Since uy, is consistent for u; (cf. Bai 2003), it follows
i T
dny = N_l/QT_lzg—lACt
t=1

T
NPT S ST AG,
t=1
= Op(Nl/Q)
and

T
ény = N T2 Z Go1Gi
=1

T
= Ny a5
t=1
= O,(T).
It fOHOWS that tMp = jNT/V éNT 18 Op(N1/2T1/2).

Case (c). Using

T T
dyr = N~V27! Z yg_lﬁ_lAyt = N7 Z Y, QO Ay + 0,(1)
t=1 t=1

N T
= Z N_l/QT_l Z Zi,t—lAzit + 0p(1),
i=1 t=1

where zy,...,2+ are 1(0) and 2,414, ..., 25 are I(1), we obtain as T — oo is
followed by N — oo
dNT = N(O, 1/2)

and

T
ENT = N_IT_2Zy£_1Q_1yt_1
t—1

T
= N'T2) Q0 'y +o0,(1)

=1
T

_ —1p—2 /

= N°'T Zzt_lzt_l—l—op(l)
=1

212
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It follows that ¢, has a standard normal limiting distribution.
Similarly, we obtain

T
dyyp = N7Y771 Z G 1AG
=1

T

= NPTV Ca NTAG,
t=1

= N(0,1/2)

and
T
éxy = N'T7? Z Go1Gi—1
=1

T
—1mp—-2 E -~/ -1~
- N T ut_lz Utfl
t=1

T
= NI772 Z up S g+ 0p(1)

t=1

LAY

as T — oo is followed by N — oo. Thus, typ = CZNT/\/éNT = N(0,1). &

4 Small sample performance

In this section, we present the results of some Monte Carlo experiments performed
to investigate the finite sample performance of the four tests analyzed in Sections
2 and 3, i.e., the pooled OLS t-statistic, the robust test (¢,.0), the GLS t-statistic
and the test based on the transformation suggested by Moon and Perron [MP]
(2004). In addition we have included the GLS statistic that imposes the factor
structure by using the (estimated) inverse covariance matrix given in (10). This

*

test statistic is indicated by 7.

In our Monte Carlo simulations, the data are generated as in (1) — (3) with
r = 1 (the single factor model). All starting values are set equal to zero and
vy is drawn from a N(0,1) distribution. The factor loadings +; are drawn from
a U(0,2) distribution and the error vector &, = [e14, €2, - . . £n¢)' is independently
drawn from a N(0,X) distribution. The covariance matrix of the idiosyncratic
components is set to X = Iy.
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Table 1 reports the actual sizes of the tests, where both components are gen-
erated as random walks, that is, § = 1 and p = 1. This is equivalent to case (a) in
sections 2 and 3. Our theoretical findings suggest that in this situation the OLS
based test statistics are biased, whereas the GLS type test statistics are asymp-
totically valid. These results are confirmed by the simulation results presented
in Table 1. Theorem 1 implies that N~/2t,;, is asymptotically distributed as the
Dickey-Fuller t-statistic. Thus, the actual size tends to the probability

lim P(te, < ~1.645) = lim P(tys/VN < —1.645/v/'N)

T,N—oco
= P(r<0),

where 7 is distributed as [ W(a)da(a)/y/ [ W (a)?da. Since the distribution of
the Dickey-Fuller t-statistic is skewed, this limiting probability is somewhat larger
than 0.5. Indeed the results of our Monte Carlo simulations suggest that the
actual size of the OLS t-statistic tends to a value (slightly) larger than 0.5.

From Theorem 1 it also turns out that in a single-factor model the robust
t-statistic is distributed as the Dickey-Fuller ¢-statistic. The 5% critical value
of this distribution is —1.95 compared to to the critical value of —1.645 for the
standard normal distribution. Therefore, we expect a moderate positive size bias
of the robust OLS t-statistic. Indeed, our Monte Carlo simulations suggest that
this test statistic slightly over-rejects as T" becomes large.

As suggested by our Monte Carlo simulations, the actual size of the GLS type

*

test statistics that impose the factor structure (MP and ¢},

) are close to the
nominal size. In contrast, the original GLS t-statistic is severely biased if 7" is of
a similar magnitude as N. The results suggest that the nominal size is attained
when 7' is at least 10 times larger than N.

Table 2 presents the actual sizes of the test if the panel units are cross-
cointegrated (case b). As stated in Theorem 1 and 2, all tests are severely biased
in this case. The robust OLS test (f,5s) has the smallest size bias among all tests.
From Theorem 2 it turns out that the GLS type statistics tend to —oo and,
therefore, the actual size tends to one. Indeed, the results of the Monte Carlo
study suggest that as N and 7' becomes large, the actual size of the GLS type
statistics are close to one.

The theoretical considerations of sections 2 and 3 suggest that in case (c) the
actual sizes of the OLS based statistics tend to one, whereas the actual sizes of
the GLS statistics tend to the nominal ones as N and T tend to infinity. The
results of our Monte Carlo simulation presented in Table 3 confirm this theoretical

15



findings. However, the size bias of the tgrg statistic converges rather slowly to
zero as 1" tends to infinity.

5 Empirical illustration

In this section we examine whether nominal interest rates are stationary or have
unit roots. Whether shocks to the interest rates are permanent or transitory
is not only essential in understanding the nature of shocks to interest rates but
might have important implications for the monetary authority especially with
regard to a stabilization policy. Several macroeconomic models suggest presence
of unit roots in nominal interest rate. A long run (cointegration) relationship
among various interest rates of different maturities also requires that interest
rates are unit root process. Employing a univariate framework most studies
found that unit root hypothesis for interest rates cannot be rejected. See, for
example, Perron (1989), Rose (1988), and Stock and Watson (1988). However,
as we have also mentioned in the introduction, such non-rejection of unit root
hypothesis might be due to lack of power of standard univariate unit root tests.
As multivariate tests based on cross-section data provides a substantial power
gain, it might be worth examining the hypothesis of unit roots in interest rates
in a panel unit root framework. As shown by Wu and Zhang (1996), there is a
significant contemporaneous correlation among OECD country’s interest rates.
Therefore, it is plausible to consider panel unit root tests which are robust to
such cross sectional dependence.

We have used a panel data set of annual short term (3 months) interest rates
of 16 developed countries. The sample ranges from 1980 to 2003. Data has
been collected from the Datastream database. Table 6 provides the various tests
considered in this paper along with Levin-Lin-Chu (LLC) and Im et al. (IPS)
tests. All tests strongly suggest that interest rates are stationary.® As expected,
the LLC and IPS test show stronger rejections than the tests which are robust
to cross-sectional dependence. Our conclusion that interest rates are stationary
is consistent with the findings of Wu and Zhang (1996). We thus cast doubts on
previous studies relying on the non-stationarity of interest rates. In particular,
the evidences of a long run relationship among various interest rates with different

maturities and long run Fisher relationship may not be considered as appropriate.

3We do not report results of the GLS t¢-statistic as in our application T is not sufficiently
large relative to N.
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6 Conclusions

In this paper we analyze the size properties of various panel unit root statistics in
three possible situations. First, the common factors and idiosyncratic components
may both be nonstationary. In this case all GLS type test statistics possess
a standard normal limiting distribution, whereas the OLS based test statistics
are invalid. If the common component is /(1) and the idiosyncratic component
is nonstationary (the case of cross-unit cointegration), then both the OLS and
the GLS statistics fail. Finally, if the idiosyncratic components are (1) but
the common factors are stationary, then the OLS based test statistics are not
applicable, whereas the GLS type statistics are at least asymptotically valid.
These findings are confirmed by our Monte Carlo simulations.

As an important result our analysis suggest that the OLS and GLS based test
statistics may give misleading results if the panel units are cross-cointegrated.
Whereas Banerjee et al. (2005) demonstrate that the first generation panel unit
root tests that ignore a possible cross-section dependence may be severely biased
we have shown that this also the case if second generation panel unit root tests are
applied that account for a possible cross-section dependence. The only approach
that is able to deal with this situation is the PANIC approach suggested by
Bai and Ng (2004). Their test procedure is based on a separate analysis of
the common and idiosyncratic components that are estimated by using principal

components.
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Table 1: Size: both components are I(1)

N T OLS trob MP tis £
10 20 24.3 6.32 6.01 17.4 6.44
50 23.6 7.23 6.85 10.4 6.80
100 | 234 7.77 6.75 8.04 6.46
20 20 34.6 1.99 5.58 — 5.46
50 35.9 6.82 5.55 18.6 5.49
100 | 346 7.64 6.07 11.3 5.94
50 20 | 488 4.07 1388 — 5.10
50 50.1 6.53 5.37 — 5.59
100 | 50.1 7.83 5.22 33.7 5.22

Note: t,5 is the pooled OLS t-statistic that ignores cross-section dependence,
trob is the robust OLS t-statistic as defined in (6), MP indicates the test statistic
based on the approach suggested by Moon and Perron (2004), ¢4 is the GLS
t-statistic and tle is the GLS statistic which impose the factor structure on
the covariance matrix. The nominal size for all tests is 5%.

Table 2: Size: f; ~ I(1) and u; ~ 1(0)

N T OLS trob MP tts £
10 20 35.7 11.2 16.7 31.8 16.5
50 50.0 20.4 50.2 49.9 46.8
100 | 56.5 26.9 93.5 81.9 83.6
20 20 | 49.1 12.1 26.0 — 26.0
50 59.2 22.0 80.3 72.0 76.6
100 | 63.9 28.6 99.9 96.6 98.3
50 20 59.8 12.3 46.9 — 47.1
50 66.1 24.0 98.9 — 97.9
100 | 704 29.5 1.00 98.2 1.00

Note: The idiosyncratic components are generated by an AR(1) process with
autoregressive coefficient § = 0.98. The nominal size for all tests is 5%. See
Table 1 for further details.
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Table 3: Size: f; ~ I(0) and u; ~ I(1)

N T OLS trob MP tots £
10 20 54.7 21.4 6.01 39.5 9.15
50 64.2 435 7.22 24.9 11.0
100 |  67.3 57.1 6.56 18.0 10.4
20 20 74.9 21.7 5.11 — 7.23
50 85.5 54.9 5.89 54.7 8.19
100 | 88.0 73.7 5.60 32.2 8.12
50 20 91.5 20.7 4.39 — 5.35
50 98.6 67.2 5.27 — 6.37
100 | 995 92.2 5.06 92.0 6.27

Note: The common factor is generated by an AR(1) process with autoregres-
sive coefficient p = 0.8. See Table 1 for further details.

Table 4: Power: f; ~ I(0) and u; ~ 1(0)

N T OLS trob MP tots £
10 20| 419 13.3 13.0 37.2 19.3
50 67.7 30.7 52.3 62.9 56.4
100 | 894 53.8 94.1 96.0 96.0
20 20 56.6 13.9 26.2 — 27.7
50 78.9 34.1 81.6 85.4 83.5
100 | 941 57.3 99.9 99.8 100
50 20 68.4 14.6 48.0 — 49.4
50 85.7 35.8 99.5 — 99.5
100 | 96.7 59.6 100 100 100

Note: The common and idiosyncratic components are generated by AR(1)
processes with autoregressive coefficients § = 0.98 and p = 0.98. See Table 1
for further details.

Table 5: Panel Unit Root Test Statistics for Interest Rates

LL IPS trob MP £
Tests | —5.87° 5.23° 308" | 567 5.42°

Note: LL, IPS, t.op, DPC, M P, denote the t-statistics corresponding to Levin et al (2002),
Im et al (2003), the robust OLS t-statistic, the Moon-Perron test with » = 1 and the GLS ¢
test imposing a single-factor structure (t;ls), respectively. The GLS t¢-statistic has not been
considered as T is not sufficiently large relative to V.
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