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It is argued here that the global anomaly of SU(2) Weyl fermions is related to the
residual topological properties of massive Dirac fermions leading to the topological
index corresponding to the fermion number. As in the case of the chiral anomaly
with Dirac fermions, the SU(2) anomaly with a Weyl fermion vanishes when the
effect of this topological property is taken into account in the Lagrangian formu-
lation.

I. INTRODUCTION

Witten! discusses the mathematical inconsistency in an SU(2) gauge theory involving an odd
number of Weyl doublets. In the Euclidean functional integral approach, as m*(SU(2))=Z,, non-
trivial gauge transformations U(x) exist so that the Euclidean path integral in the presence of a
single doublet of the left handed (Weyl) fermion, viz.,

1 - -
Z=f [dA,L]exp( —Ezf Tr(FM,,F“”)d“x)f [dy dip]lwey exp( —f Yiby d“x)

vanishes identically when A ,, the SU(2) gauge potential, is allowed to have all possible configu-
rations. This is because corresponding to any A4 ,, we have an Af{ given by

U__yr- -
A =U"'A,U—-iUT"9,U

and U(x) being a nontrivial gauge transformation in four-dimensional Euclidean space cannot be
deformed to identity, if U(x) “wraps™ around the gauge group an odd number of times—a
consequence of 7#*(SU(2))=Z,. To see how this actually happens, one has just to perform the
fermionic part integration in Z. This comes out to be [det iD(A “)]1/2, where D(A,) is the full
four-dimensional Euclidean Dirac operator. Under A, — Af{; U(x), the implementing nontrivial
gauge transformation, we get

[det iD(A])]"?= —[det iD(A,)]".

Since both A, A}, configurations are admissible while evaluating Z, we get Z=0 identically. For
any physical quantity to be represented by a gauge-invariant operator x (say), a similar argument
leads to Z,, the path integral for x also equals zero. Hence the expectation {x)=Zx/Z becomes
indeterminate. This leads to an inconsistency. Clearly, it arises due to the change in signature of
the Weyl fermionic determinant when we consider all possible A, configurations. This is the
reason for recognizing it as a global anomaly. As a matter of fact, there is no local anomaly in any
SU(2) gauge theory.

However, subsequently a few authors® have pointed out that the inconsistency which cropped
up in Witten’s analysis is due to the fact that he disregarded the zero mode of the Dirac operator
altogether. Indeed, it is the zero modes which play a decisive role in resolving the crisis of the
global anomaly associated with Weyl fermions. The zero mode contribution is nonperturbative in
origin and is connected with a number of normalizable positive chirality zero modes (n,) and a
number of normalizable negative chirality zero modes (n_) of the Dirac operator in a compactified
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space. The quantity n, —n_=v is an invariant (topological) index of the Dirac operator. For any
SU(2) gauge field configuration having nontrivial » (v # 0), the Dirac operator will have zero
modes. v is also called the Pontryagin index and is given by

1
v=n+—n_=1—6—;§f Tr(*F‘“’F#,,)d“x.

F,, is the SU(2) gauge field strength tensor; *F*” is its dual. This zero mode contribution is
reminiscient of the connection of the ABJ anomaly with chiral fermions. Indeed, the anomaly
shows up in this case because we have a Weyl (left) fermion doublet (helicity and chirality
concepts are equivalent) and the Jacobian of the Weyl fermion measure for U(1) transformations
changes if the Dirac operator has zero modes.

In this article, we want to emphasize that the global anomaly as mentioned above, is related to
the problem of how the topological properties of a massive fermion leading to the fermion number
as a topological index survives in case of massless Weyl fermions. In Sec. II, we recapitulate
briefly how the topological index arises in the case of a massive fermion and is associated with the
the origin of the fermion number. In Sec. III, we discuss how the incorporation of this topological
property helps us to understand the chiral anomaly of a Dirac fermion and how this anomaly is
avoided when we take into account the proper topological features.® In Sec. IV, we shall show how
the residual effect of this topological property of a Dirac fermion manifests itself in the case of a
Weyl fermion and helps us to understand the global anomaly. In fact, the anomaly is avoided when
this residual property for massless Weyl fermions is taken into account. Thereafter, a brief discus-
sion follows in Sec. V.

Il. TOPOLOGICAL PROPERTIES OF A DIRAC FERMION AND THE ORIGIN OF
FERMION NUMBER

The conventional stochastic quantization scheme of Nelson* can be generalized to the rela-
tivistic domain when we consider Brownian motion processes both in the external and internal
spaces.’ The nonrelativistic case is then given by the sharp point limit. To have the quantization of
a fermion we have to introduce an anisotropy in the internal space so that this gives rise to two
internal helicities depicting particle and antiparticle states. Thus the internal helicities may be
taken to have a geometrical realization of the fermion number. These features relating to the
quantization procedure of a fermion and the geometrical interpretation of fermion number effec-
tively leads to the fact that fermions in general correspond to Skyrme solitons and the Skyrme
term which has been introduced to have the stability of the soliton appears here just as an effect of
quantization. From this relativistic generalization procedure, where we have incorporated the
Brownian motion process in the internal space also apart from that in the external space, after
quantization, for an observational procedure, we can think of the mean position of the particle x,,
in the external (observable) space with a stochastic extension determined by the internal stochastic
variable £, 8 In the nonrelativistic case, the sharp point limit helps us to realize the quantum
mechanical correlations from the stochastic variables.” So for the expectation values of a stochas-
tic variable, we can assign a quantum mechanical observable with the same expectation value.
Indeed, to have quantization in Minkowski space—time, we have to take the space—time coordi-
nate in complexified space—time as Z,=x,+i§, . Now the observation of Heisenberg’s uncer-
tainty relation from stochastic mechanics along with the customary time-energy uncertainty rela-
tion helps us to formulate the commutation relations®

[Q[J.’ Pu]ziﬁg,u.u; [Q;,w Qv]:():[P;_w Pv]’ (1)

where Q, and P, are defined as

Q.=q,+iQ,; P,=p,+iP,, g, ~diag(l,—1,—1,—1) )
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and g,(p,) denotes the mean position (momentum) in the external (observable) space and
Q,(P,) is given by the internal space variable £,(i(#9€,)) denoting the stochastic extension. We
introduce a new constant w=#/Ilmc, where m is the mass of the particle and [ is the fundamental
length, with the following representation of Q,/w and P,/ where the latter are considered as
acting on functions defined on phase space9

0 P
= —i(Sloput b, £ =310, + 0, (3)

where ¢, and ¢, are some complex-valued functions. Now when we introduce an anisotropy in
the internal space giving rise to the internal helicity to quantize a fermion, ¢, and ¢, become
matrix-valued functions due to the noncommutativity character of the components of Q,(P,).
The anisotropic feature of the £ space helps us to consider £, as an attached “direction vector” to
the space-time point x . The two opposite orientations of the “direction vector” give rise to two
opposite internal helicities corresponding to fermion and antifermion. This internal helicity can
easily be formulated in terms of the extended space—time metric g ,“,(x,G,H) where 0(6_)) are
two-component spinorial variables.'® In fact, for a massive spinor, we can choose the chiral
coordinates in this extended space as

i
Z“=x“+-2- AO® (a=1,2), 4)

where we identify the coordinate in the complex manifold Z*=x*+i&* with £=i\"6". We can
now replace the chiral coordinates by their matrix representatives

’ 12 l ’
M =X oGt 6, ®)
where

XAA =1 and A4 eSL(2,0).

1 [x0—xt  xZ+ix?
V2 [x2=ix® 104!

With these relations, the twistor equation is now modified as

Z,Z94+ N 025 a4, =0, (6)
where 7,4(,+) denote the spinorial variable (complex conjugate spinor) corresponding to the
four-momentum p, (the canonical conjugate of x*) and is given by the usual matrix representation

for p,,, viz.,

pAAI=7_TA7rAI, Z“=(w‘,’rrA/), Zaz(’ﬁ'A,wAl), (7)

with

po /
wA=i(X'“ +3 A4 0") Tar.
Eq. (6) now involves the helicity operator

S=—MA Gy, - @®)
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which we identify as the internal helicity of the particle and relate it to the fermion number. It may
be noted that we have taken the matrix representation of p, (the canonical conjugate of x*
occurring in the complex coordinate expression Z#=x*+i&*) as py4r = Ty, necessarily im-
plying pi=0, So, the particle will have mass due to the nonvanishing character of the quantity §fL.
It is observed that the complex conjugate of the chiral coordinate given by Eq. (4) will give rise
to a massive particle with opposite internal helicity corresponding to an antifermion. In the null
plane where §i=0, we can write the chiral coordinate as

’ ’ i = ’
=Xt 400, ©)

where the coordinate £ is replaced by £44'=16464". In this case, the helicity operator is given
by

=—5A6AI’I-TA‘7TAI=—'gg (10)

where £=i6 A’mr; &=—i9"*7,. Shirafuji'' noted that the state with the helicity +1/2 is the
vacuum state of the fermion operator

&|S=+3)=0. (11)
Similarly, the state with the internal helicity —1/2 is the vacuum state of the fermion operator
&15=-1)=0. (12)

In the case of a massive spinor, we can define a negative-definite plane D~ where for the
coordinate Z*=x*+i&*, & belongs to the interior of the forward light cone £>0 (in & space) and
as such, represents the upper half plane with the condition det £>0 and § Tr £>0. The positive-
definite plane D* is given by the set of all coordinates Z* with £” in the interior of the backward
light cone (in & space). The map z > z* sends a negative-definite plane to a positive-definite
plane. The space M of the null plane (det £=0) is the Shilov boundary so that a function holo-
morphic in D™ (D¥) is determined by its boundary values. Thus if we consider any function
d(2)= Pp(x)+idp(&) that is holomorphlc in the whole domain, we note that the helicity +1/2
(—1/2) given by the operator i ¢*' 4 (~i6*7,) in the null plane may be taken to be the limiting
value of the internal helicity in the upper (lower) half plane.

In this complexified space—time exhibiting the internal helicity states, we can write the metric

8unx,0,0)=g4% (x)8 404", (13)

It has been shown elsewhere'? that this metric structure gives rise to the SL(2,C) gauge theory of
gravitation and generates the field-strength tensor F,, given in terms of the gauge fields B, which
are matrix-valued having the SL(2,C) group structure and is given by

Fu,=—68,B,+d,B,+[B,, B,]. (14)

Since &(6) is the spinorial variable which represents the “direction vector™ attached to the space—
time point, this effectively represents the stochastic extension of a relativistic quantum particle
representing a fermion. So from the relations we can now identify ¢, with B, and we can
associate another gauge field C,, with ¢, satisfying the relation (14). This suggests that for a
relativistic quantum particle which is taken as a stochastically extended one, the fermionic char-
acter of a particle associates the functions defined on stochastic phase space with matrix-valued
non-Abelian gauge fields having the SL{2,C) group structure. The asymptotic zero curvature
condition then implies that we can write the non-Abelian gauge field as
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B,=U"'9,U, for x,— ©; UeSL(2,C). (15)
With this substitution, we note that the corresponding Lagrangian is given by
L=M?Ty(3,U"9,U)+T{4,UU,0,UUTT?, (16)

where M is a suitable constant having the dimension of mass. The first term arises here from a
gauge noninvariant term M2B xB* and the second term clearly arises from the quantity F,, F*¥
where F,, is given by Eq. (14).

Thus we find that the quantization of a Fermi field considering an anisotropy in the internal
space leading to an internal helicity description corresponds to the realization of a nonlinear sigma
model where the Skyrme term in the Lagrangian Lgyywme=Tr(d, UU t. 9,UUM?, necessary for the
stability of the soliton, arises here as an effect of quantization. Thus in this picture fermions appear
as solitons and the fermion number is found to have a topological origin. Indeed, for the Hermitian
representation, we can take the group manifold as SU(2) and this leads to a mapping from the
space three-sphere %> to the group space .73 (SU(2)=57>), and the corresponding winding
number is given by

1
q =54—ffﬂ ds, e"F T (U™ '9,U) (U™ 19,UNU'd5U)]. an

w

Evidently, q is a topological index and represents the fermion number.

lll. TOPOLOGICAL PROPERTIES OF A DIRAC FERMION AND CHIRAL ANOMALY

However, if we demand SL(2,C) invariance of the Lagrangian, following Malin and
Carmeli,'* we can choose the simplest Lagrangian density in spinor affine space

=} T €*P7F 5 5], (18)
Applying the usual procedure of variational calculus, we find the field equations
O €*PY°F 15)—[B s, €*PY°F ,5]=0. (19)
Now one can write
B,=b,--g, F, =1, 8 (20)

where g=(g,,8,,83) are tangent vectors to the generators of the SL(2,C) group

10 e 0 1 z
81(Z2)= z 1l 82(2Z)= 0o &I 83(2)= o 1l 1)
where Z is complex. With the definition
dgm(Z)}
gm=’: (22)
az  |,_,

implying g,,(Z)=exp(Zg,,), we find

0 0 1 0 0 1
81=[1 0], 82=[0 _1}, g3={0 0}- (23)

Evidently in this space, these SL(2,C) gauge fields will appear as background fields.
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Now, to describe a matter field in this geometry, the Lagrangian will be modified by the
introduction of this SL(2,C) invariant Lagrangian density.'® Hence for a massless Dirac field, we
write for the Lagrangian

L=—yy"D —; Tr(€*PYOF ,4F .5), (24)
where D, is the SL(2,C) gauge-covariant derivative
D,=d,~igB, (25)
and g is some coupling strength. Now, from the properties of the SL(2,C) generators, we find
5= e, XL, 0= P03 f,p, (26)
with
d,55=0. 27)

However, in the Lagrangian (24), if we split the Dirac massless spinor in chiral forms and identify
the internal helicity +1/2 (—1/2) with left (right) chirality corresponding to @ and 6, we can write

YYD =4y, ,4—igy,Bog’ ¥
= 8, Bt v Bt By B BB, 29)
Then the three SL(2,C) gauge field equations yield the following three conservation laws:
OulH ~ig ¥Ry, br) +i,1=0,
‘9,;[%(“1'8',2%7#%'*'1'8%—01(7#%) +jf,]=0, (29)

dulx(~igdy, ) +J3]=0.

These three equations represent a consistent set of equations if we choose
iy =Y (30)

which evidently guarantees the vector current conservation. Then we can write
) 3#(‘7/R‘>’;4¢/'R+ji)=0, 3,( &LYyV/L‘ji):O- (31)

From these, we find

0u( By ¥s ) =8,05==23,j5. (32)
Thus the anomaly is expressed here in terms of the second SL(2,C) component of the gauge field
current i3 .- However, since in this formalism, the chiral currents are modified by the introduction

of j2 Jj s We note that the anomaly vanishes.
This current j2 1. is related to the topological origin of fermion number, as we have

q= f jA(x)d3x. (33)
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Indeed, the term Tr(e*?YF sF ys) in the Lagrangian can be expressed as a four-divergence of the
form 4,(0* where

1 2
e v A Tr[ BoFgy=7 BaBgB,|. (34)

The Pontryagin density is
I N
P=__7167r Tr(*F**F ) =3,0%, (35)

where () is the Chern—-Simons secondary characteristic class. The Pontryagin index

q= f P d*x (36)

is a topological invariant and is related to the current ji through the relation (33) which suggests
that

75 — 15 = J5 02
B=05+20Q,=05+252 (37)

implying aﬂii=o. That means, when the topological properties of a fermion related to the origin
of fermion number is taken into account, we are not confronted with the chiral anomaly.

IV. TOPOLOGICAL PROPERTY OF WEYL FERMIONS AND GLOBAL ANOMALY

This topological property will have its residual effect in Weyl fermions also. This is due to the
fact that as discussed earlier, the SU(2) doublet of massless Weyl fermions are now represented by
the null plane §i=0 which is the Shilov boundary of the negative- and positive-definite planes D~
and D" corresponding to the forward and backward light cones in the & space depicting the
massive Dirac fermion and antifermion. Indeed, for any function holomorphic in the whole do-
main, the internal helicities in the upper and lower half planes will have their limiting values in the
boundary in this complexified Minkowski space—time. So the topological index denoting the
fermion number will have its residual effect in this boundary. Thus the conserved current in this
case will also be given by

75— 5 g5 2 _

3, =0,0,+26,j,=0, (38)
where ji will be denoted here by boundary values. Indeed, with the identity of ji with Q ,, the
Chern-Simons term also suggests that in the case of Weyl fermions, €, will have its residual
effect in the boundary. Thus for a left Weyl fermion, the conserved current Jﬁ is given by

Fe=H{Ih = (5 +2Q ) =HIh - (5 +22)}. (39)

The corresponding conserved charge is then expressed as

Gou=| vl x| 5 . 0

It is the Chern-Simons term Qﬂ(ji) which defines the fermion number through the associated
charge [j} d°x. Generally, we get two equal and opposite charges in the upper and lower half
planes for a massive fermion and antifermion. The boundary values of these two charges can then
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be taken to represent massless Weyl fermions ¢, and 5. Qs thus is responsible for generating
U(1) rotation in the ¢ sector. The term [j} d>x=gq can be identified with the topological index
corresponding to the fermion number and is actually an integer.

Now, in the conventional Hamiltonian formulation of the gauge theory of the SU(2) Weyl
fermion the states are labeled by an index n, the winding number of SU(2) gauge potential A ,,
and eigenvalues of the generator T5. Besides these, we also have the conserved left charge. To
define it, we introduce the SU(2) Pontryagin index density (i/167%) Tr(*F**F u»)s F,, being the
SU(2) gauge field strength tensor, *F*” being its dual. This term can be written as d,C*; C , being
the Chern—-Simons current given by

ie 2
M= nvpa i, T2
c Ten? € Tr[A,,Fp,, 3 ie ALAA| 41)

Then, from d,J fl= il16m* Tr(*F**F uv) Where J fLE: s ¥, is the usual anomalous left current,
one constructs a modified conserved left current J,L‘=(JfL-C x) and defines the chiral charge
Q5= J jé(x)d3x. .7,'1 is gauge noninvariant due to C . Qs is conserved in time and is taken as the
generator of chiral (left) transformations. The inadequacy with Q5 is that it is not invariant under
the time independent SU(2) transformation (), with winding number n. One actually gets the
relation

Q;lQ50n=Q5+n. (42)

Now, T3, the diagonal SU(2) generator, is not supposedly affected by n because it is associ-
ated with the physical charge and not the axial charge. Hence, if one considers a transformation on
the physical states by the composite operator G=V~'Q;'VQ, where V = ¢>™73, one finds that
G=1. Thus G implements a trivial transformation.

However, considering any particular SU(2) left member, V can be realized also through U(1)
chiral rotation through the generator Qs. Then one gets'*'>

G=e" im0 " 1ei50) =i, 43)
n

For n odd, G # I. This is considered as the inconsistency of the SU(2) Weyl fermions.

In our approach, we have the conserved left current as l?fL')"ul/IL— jf‘; ji being the second
component of the SL(2,C) gauge field current. This current defines a time-invariant left charge
given by Eq. (40). For left fields, fj3 d°x could be set at some even or odd integer value to begin
with—this being a convention. Then in presence of SU(2) gauge fields we must have

G=e«iW—QSLQ;Iei"r-QSLane'—i"T.QSLei"('QS—q""n):ei"(q——-q’+n)=l as q:ql——n' (44)

The explanation is quite simple—when SU(2) gauge fields wrap n times, the SL(2,C) gauge fields
already associated with the left matter field space—time region unwrap that many times so that the
left charge Qs; never gets offset with time. So in {}, whether n is even or odd we are not
confronted with any real inconsistency if we focus our attention to the whole ¥, —B,— A, field
system.

The origin' of the global SU(2) anomaly lies in the change of sign of the partition function for
a disconnected gauge transformation, i.e.,

[det iD(AY)]V?=—[det iDD(A)]"?, (45)
where

iD(A)y=iy,(d,—ieA,)Y=0. (46)
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¢ is an SU(2) doublet and A ,, is a matrix-valued gauge potential. This determinant is not invariant
under large gauge transformations U, but changes sign when U belongs to an odd homotopy
group. When A, is labeled by a homotopy parameter 7 such that A ,(x,7) vanishes at 7=~ and
is a pure gauge U a U at 7=+ with U belonging to the first homotopy class, the determinant
at 7=-+oo has opposne sign from that at 7=—o, Indeed defining

A(A)=A43(A)=[det(d+4) )], 47)

where the subscript (4) indicates that we are dealing with the usual 4X4 y matrices, we can take
Al# (A) to be the product of positive eigenvalues (which may be odd or even in number) at
=— and follow these eigenvalues as 7 passes to +. If an odd number crosses the axis, the
determinant changes sign. It is assumed that there is no zero mode, so the determinant is nonva-
nishing. This suggests that the eigenvalue A(7) of (#+4),) must have the kink shape changing
sign as 7 passes from —o to +oo. This is avoided in our formalism as follows.

The SL(2,C) gauge fields B, makes it obligatory for us to write the partition function for a
Dirac doublet as

z=f dA#f dB,Lf(dJ/ d ) picac exp[—f 1/}(im+g3)¢d4x]

Xexp,

_ j 2_;_2_ Ti( Eaﬁy‘si‘aﬁi yo)d*x exp[ - f %7 Tr(FﬂvFW)d“x}. (48)
Here,
A,=SU(2) gauge potentials (one-form),
B,=SL(2,C) gauge potentials (one-form),
bD=vy,(d,~ieA,); g=uy,—B, coupling strength,
F uv=SL(2,C) gauge field strength tensor (two-form),

F,,=SU(2) gauge field strength tensor (two-form).

Now, we will surely have

=det(iD+gh). (49)

f (@9 d¥)piae exp[ -[ dip+smyy ate

However, in the SU(2) Weyl left doublet case, asymmetry in point of contributions received by the
distinct Weyl species when one breaks up the term B ¢ [shown in Eq. (28)] does not permit us to
write in general

(50)

| @ apygy exs| - [ pin+ By atx|=
unless we set B, identically to zero. But then, left fermions cannot be consistently described. Thus
the crisis of a global ambiguity regarding the signature of the square root of det (iD+ gB) never
arises; whereas if B, =0 one gets [det iD(A)]"?=—[det. iD(AY)]"? as stated in Eq. (45) resulting
in a global anomaly.

In Refs. 1 and 2, the term —f iy d*x has been employed as an exponent and integrated
over Dirac path measure diy di. The result obtained is [det iD(A)]. As the operator iD(A) is
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Hermitian and anticommutes with 7s, it is clear that we will in general have a large number of real
positive as well as negative eigenvalues in the spectrum of iD(A). Corresponding to any eigen-
value \, realized in one eigenspace {¢,} there will be another eigenvalue —\, realized in the ys
transformed eigenspace {ys¢,} and vice versa. This argument effectively brought us to the front
door of the crisis when we integrated over Weyl path measures and as a result got the factor
[det iD(A)]"2. It may be observed that no such room exists in the present formalism where the
geometry (topology) of the Weyl fermions have an SL(2,C) gauge field (B,) description to start
with. This leads us to consider the operator iID(A)+ gB instead of iD(A). But then i)+ g B is not
necessarily Hermitian. Thus while considering the factor det[iD(A)+gB], we cannot make
simple conclusions in the same line as mentioned above in the context of the factor det[iD(A)].
The extra additive factor g B associated with the Hermitian differential operator iD(A) leads to an
inhomogeneous eigenvalue equation. It seems that the eigenvalue network actually is planar if one
considers the B, fields. Hence, one cannot easily conclude about rearrangement of eigenvalues
within the eigenvalue network without choosing some specific B, configuration.

V. DISCUSSIONS

Very recently, it has been argued by some authors? that the global SU(2) anomaly is due to the
contribution of the zero modes of the Dirac operator and hence the inconsistencies are basically of
nonperturbative origin. However, since the zero mode contribution is just the m — 0 limit of the
conventional mass term, the present formalism suggests that this limiting value is just determined
by the topological properties on the boundary of the upper and lower half planes corresponding to
massive fermions and antifermions. Thus the zero mode contribution is actually absorbed in the

quantities J f‘ and J ﬁ when we take the boundary values. In Ref. 2 it is stated that the zero modes

of the Dirac operator iD(A) actually save the SU(2) global anomaly crisis. In our formalism zero
modes do not enter unless we put B,=0. But physically this will mean that we are admitting
ambiguities in the very definition of a Weyl fermion. Eventually, it is this shortcoming which
manifests itself in the form of the ambiguities discussed in Refs. 1 and 2. However, from the above
analysis, we note that as in case of Dirac fermions, massless SU(2) Weyl fermions can also be
thought of as free from anomaly when the residual topological property giving rise to the fermion
number is taken into account.
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