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NOTE

INTERCHANGING THE ORDER OF STOCHASTIC INTEGRATION
AND ORDINARY DIFFERENTIATION

By RAJEEVA L. KARANDIKAR
Indian Statistical Inatitule

SUMMARY Wo give condmonl undor which tho ordor of difforontiation w.rt. s
oad jon w.r.t. & i somimartingalo can b

intorchangod.
Suppose wo_have an observation (x(t) : 0 € ¢ < 1) on o process X known

to satisfy

X(0)=0

dX()) = f(0o, X(t))dt +dB(t)
for somo &, € 72, where B is o Brownian motion and f(0, ) is & known function.
In order to estimate tho unknown parameter ‘0’ using the well known
‘Maximum Likelihood’ method, we take C[0, 1] as the samplo spnace and g,
to be tho ‘distribution’ of X, on C[0, 1] (i.e. measuro induced by Xg) where
X, is the solution of

Xe(0) =10

dXo(t) = S0, Xo))de-+dp().
Under suitable conditions on f (o.g. f(0, *) is bounded for all 0), it is known
that y, hos o density w.r.t. the Weiner measure P given by

dlo

1 1 1 .
) = oxp[ f 100, w)dut—5 | 140, wityie]

whoro w(t) is tho co-ordinato process on C[0, 1], which is a Brownian motion

1
under P and [ f(0, w(t))dw(t) is interpreted as tho Ito integral. So to estimate
0

0, wo would like to know : under what conditions on f is } (0, wit))du(t) o
o

differentiable function of 0 and can we differentiate under tho stochastic
integral sign ?

In this noto, wo give simplo conditions under which this can bo done.
The main tool is & strengthened form of Iolmogorov’s theorem on existenco
of continuous modifications of stochastio processes. This has been used by
Kunita (1981) to provo vory strong rcsults on solutions of SDE's. Sco also
Stroock (1981) in this conneotion.
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We first state and prove the result under ‘simple’ conditions for tho Tto
integral, Later wo indieate how the techniques ured earlier give the ramo
result under more general conditions.

Let (Q, &, P) be a completo probability space, (Fhi » be an incrensing
family of sub o fiells of & such that F, contains all the P-nvll seta in &,
All the processes wo consider are (&) adapted. Lot (B4 »0 b6 &.5,- Brownian
motion.

The first lemma that wo state, without proof, is a generalisation of
Kolmogorov's theorem.  For o proof of this result, sce Stroock (1081).

Lenuma 1: Let B be a separable Banack space. Let [2(0):0 ¢ 724)
be @ family of B-valucd random varinbles suck that for C,a, p:0 < C < 0,
0<al p>dta

ENZ(0)—Z(0,)lIP < C|0,—0,]%+; 0,, 0, ¢ 74,

Then there exisls a ‘‘coltinuous version” Z\(f) of Z(0), i.e., P{Z(0) = Z,(0)
=1 for all 0, and for all we Q, 0 — Z(0,w) is a continuous map from FH
info B.

The next lemma is & form of Burkholder’s inequality. Seo Stroock
(1081) or Stroock and Varadhan (1979) for & proof of this,

Let £, Lo the collection of all progressively measurable procerses f on
1
[0,1) such that E [ f3(t,w)dt is finite.
[]

Lemma 2: Let p > 2. There exists a universal conslant Cg such that

Jor all f € oy,

E

¢ » 1
Jf(u.')dﬂ(fl)l < C,EJ 1w, )12 du.

8up
(>3
The next theorem, which is well known, is on existenco of continuous
versions of stochastic integral depending on a parameter,
Theavem 32 Let (9(0, +, +) : 0 & 728) C &£, be such that (C1) holda
There exist C, f,0 < C < 0, 0 < B £ 1 such that
(ct
190011, w)—5(0.,1, w)| & C|0,—0,], for all t,,0,,0,

Then there exisls a ‘continuons versions' X(0,1, +) of [ 9(0,u, Jdp(u), t.e.,
o

fof alweQ, 0 X(N,.,10) is u continunns map from 724 inlo G[M, 1] (equipped
with the sup norm.

4-18
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Proof : Choose p > 2 such that pf > d.

o

Il
Lot 2(0,1) = [ g(0,wMdp(w). Then by Lemma 2
0

B up |20,0-20.012< C5F { 190, 1—g(0,, 01> du
& Cp.C|0,—0,|%8.
Now, the asscrtion follows from Lemma 1.
Theorem 4: Let [f(0,+9): 0cRIC L, be such thal for all
1w, ‘I—jf((), 1, w)=['(0,1, ) evists and [['(0,+,.):0¢ ) C &£, Further,

assume that (C2) holds :

There exist constants C, By, f; 0 < C < 00,0 < f, € 1,0<£,<1
such that

(2 1110y, b )= [0 t, w)| < C10,—09] "
1£00 1, 0)—f (01, 0)] & C10,—0,] ™

1
Then, there exists a version X(0,¢,+) of [ f(0,%)dB(n) suck that for all
0
w, ;0 X(0,1, w) is differentiable in 0 and

d
70 X(6,¢.) = jj‘(l?, w, )dp(u).

(In other words, we can differentiate under the stochaslic infegral sign.)

Proof : Tirst choose & continnous version Xy(0,1) of j' 9, w)ap(u).
This can Lo done as (C2) implies (C1). ¢
Tet
Xuthy, t, w)—X,(0s. 8, ) i€ 0, +£ 0
1 2

Y(0,,0..1, w) =
11—

]
= [ L0, w)p(n) i 0,0,
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We will show that ¥ has a ‘continuous version’. As.Y is continuous on
[(01, 021 : 0, # 02) and any two continuous versions agree outside a null set,
this will imply that outside a null set N, X (0, ¢, 1) is & differentiablo function
of 0 for all . The result follows from this by putting X(0,¢, w) = 0 on this

null set ¥ and equal to X,(0, ¢, w) elzewhere

Now, observe that for all 0, 0,,

)
Y@ 00,0 = § [ S00H1=2000 3,000 ipta)

40, 00, 10) = § f0+(1= N0y, 0, wIA.
[
Then

1901, 0, 1, w)—g(0y, 0y, u, w)|
< J‘ 17000+ (1 =)0, w, w) = (A0y+(1 =)0, u, w) | dA
0
<O 120+ (1=A)0y—A0,—(1—2)0, | A
1)

’< C'.(|0r-0a|’+ Iaz_ol |’)

< CA16,—0, |2+ 10,— 0, %P7,
where Oy, C, are some constants.

This in view of Theorem 3 implics that Y has a continuous modification,
which completes the proof as remarked carlier.

Remarks: Thooroms 3 and 4 were presented here in a very simple case,
Wo had considered processes on [0, 1), but the results easily extend to cover
processea on [0,00). Tha constant ‘Q” appearing in conditions (Cl) and (C2)
ean bo replaced by a loeally bounded process by using a ‘looalisation’ procedure,
The integrator ‘Brownian motion’ can be replaced by o ‘continuons semi-
marbingale’ by using L® catimates on stochastic integrals. Wo stato the
results in goneral form without proof as tho main idea of the proof is con-
tained in tho wimple caso presonted enrlier.
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Say that [5(0, «, «) : 0 € 728) satisfics (C3) if:
For all n3» 1, thero exist constants C,, a,; 0 <C, <o,
0 <a,§ 1, stop times Ty, such that
(i) 7, increases to co.

) .
@ (i) 1g(0, &, )| p<Teto) S Cn

(i) [9(00), &, w)—9(0s b, W) Vr<Tato 'S Cnl6y—0,] ™
if 0] €, [0] <2

Theorem 5: Let S be a conlinuous semimartingale and [f(0,.,+) 10 € y@)
be a family of progressively bl
(L) If (f(0,.,): 0 e 78] satisfies (C3), then there exisls a conlinuous

cersion X(0,4,) of of 100, v, YS().

(2.) If g(0, ¢, w) =(%f(0+/\e, {, w)| e exisle for all 0, wheree e 7N,
and [g(0, .,.) : 0 € 728) satisfies (C3), then there exisls a version N(0,1,.) of
oj' (6, u)dStu) such that

Y01, 0) = {% X(O+e,t, 10)] 30
exisla, and

Y(0,1, w) = j g(0, u, .)dS(n).
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