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analytically or numerically. Wang [20] further widened its horizon to study the
flow of liquid film on an unsteady stretching surface. In this study Wang restricted
the motion to a specified family of time dependence and reduced the boundary
layer equations to a nonlinear ODE involving by a non-dimensional unsteady pa-
rameter by using a special type of similarity transformation. Using this special
type of similarity transformation, Andersson et al. [21] have studied the unsteady
stretching flow in case of finite thickness for power-law fluid. Later on Andersson
et al. [22] and Dandapat et al. [23] extended Wang’s unsteady thin film stretching
problem to the case of heat transfer and Chen [24] explored the heat transfer in
power law fluid. In all the above studies [20–24], tacit assumptions were (i) the
film thickness is uniform at the onset of stretching and (ii) the thickness reduces
uniformly during the entire process along the stretching direction.

In this paper we analyze the motion of a film flow with non-planar film thickness
at the onset of stretching and the film thickness is allowed to vary with space and
time during the process. We have solved the Navier-Stokes equations analytically
by matched asymptotic method without searching for a similarity transformation.

2. Formulation

We consider a non-planar liquid film on a flat sheet as shown in figure 1. The
x-axis is chosen along the plane of the sheet and the z-axis is taken normal to
the plane. We assume that the surface at z = 0 starts stretching impulsively
from rest with stretching rate xf0, f0 being constant with dimension of [time]−1.
Further we assume that the end effects and gravity are negligible and the film
thickness h(x, t) is known at time t = 0, u and w are the velocity components
along x and z directions respectively and p is the pressure. Due to impulsive
stretching, the inertial force causes the fluid to move along its own plane. At the
initial stage, this motion is imparted from the plane to the adjacent fluid layer and
then gradually spreads out to the entire depth of the film by viscosity. As time
increases, the fluid continues to flow in the outward direction and the thickness
of the film gradually decreases resulting into an increase of viscous resistance so
as to balance the impulsive inertial force. At this stage the Reynolds number Re
(= u0h0/v) is of O(1) and the balance of aforesaid forces defines a characteristic
time scale tc given by

tc = v/h2

0
f2

0
, (1)

where h0 and v denote the initial film thickness of the liquid film at x = 0 and
kinematic viscosity of the fluid respectively. The characteristic velocity u0 is de-
fined as (L/tc), where L is the characteristic horizontal length scale of the film.
The ratio of the two length scales viz. h0/L(= ε) is assumed to be small but finite.
Assuming that no extra shear acts on the film surface due to the overlying gas and
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Figure 1. Schematic flow diagram

using the dimensionless variables as

X = x/L, Z = z/h0, H = h/h0, T = t/tc, U = u/u0,

W = w/εu0, P = ph2

0
tc/ρvL2,

(2)

we obtain the non-dimensional equations of motion and continuity as:

εRe
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∂U
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+ U

∂U

∂X
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∂U
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∂P

∂X
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∂2U
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, (3a)
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∂U

∂X
+

∂W

∂Z
= 0. (3c)

The corresponding initial and boundary conditions are:

At the initial stage (T = 0),

U(0, X, Z) = W (0, X, Z) = 0, H(0, X) = δ(X), HT (0, X) = 0. (4)

On the plane (Z = 0),

U(T,X, 0) = aX, W (T,X, 0) = 0, (5)

where a(= f0tc) is the measure of the impulsive stretching strength.

At the free surface (Z = H(X,T )),

−
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∂H

∂T
= −U

∂H

∂X
+ W. (6c)

Equations (6a), (6b) and (6c) represent the conditions for vanishing of normal
stress, shear stress and the kinematic condition at the free surface respectively.

3. Asymptotic analysis

In order to obtain an asymptotic solution of the problem described by the equations
(3)-(6), the dependent variables in the system are expanded in powers of ε as
follows:

(UL,WL, PL) ≈ (UL0
,WL0

, PL0
) + ε(UL1

,WL1
, PL1

) + O(ε2), (7)

were subscript ‘L’ stands for long-time-scale analysis. Inserting (7) into the system
of equations (3)–(6b) and equating terms of like orders, we obtain several sets of
linear equations as usual. Solving the same up to O(ε), we get

UL = aX + εRea2X

(

1

2
Z2

− HZ

)

, (8)

WL = −aZ + εRea2

(

−

1

6
Z3 +

1

2

∂(XH)

∂X
Z2

)

, (9)

and PL = 0.
It is to be noted here that UL and WL represented by (8) and (9) respectively

do not satisfy the initial conditions (4) as they represent the long time solution.
Using equations (8) and (9) in condition (6c), we can obtain the long time

evolution equation for H correct up to O(ε) as

(HL)T +

[

aXHL −

εRea2

3
XH3

L

]

X

= 0. (10)

To solve the equation (10), we expand HL in powers of ε as in equation (7) and
then using the method of characteristics, we obtain

HL = C0e
−aT + εRea

(

C1e
−aT +

1

3
C3

0
e−3aT

)

, (11)

along with,
X = CeaT . (12)

The constants C, C0 and C1 are to be determined by matching the short time
scale solutions of the transient film profile with the long-term solution mentioned
above. The short time scale analysis can be done by just stretching the temporal
coordinates as τ = T/ε and keeping other variables same as stated in equation (2).
Under this temporal transformation, equations (3a) and (6c) respectively reduce
to

Re
∂U

∂τ
+ εRe

(

U
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= −
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and

∂H

∂τ
= ε

(

−U
∂H

∂X
+ W

)

. (13b)

Continuity equation (3c) and all the associated initial and boundary conditions
(4)–(6b) remain the same under this transformation. Expanding the newly scaled
dependent variables again in powers of ε (cf. (7)) and substituting them in short
time scale equations (13) and associated initial and boundary conditions, we get
separate set of equations of like orders. At the leading order, solutions of equations
(13b) and (13a) give

Hs0
= δ(X), (14a)

Us0
= aX

[

1 − 2
∑

n>0

sin(λnZ/δ)

λn
exp(−λ2

nτ/Reδ2)

]

. (14b)

Inserting (14b) into the continuity equation (3c) and integrating with respect to
Z and using the boundary condition (5) on W , we obtain .

Ws0
= −aZ − 2a

∂

∂X

[

δX
∑

n>0

cos(λnZ/δ) − 1

λ2
n

exp(−λ2

nτ/Reδ2)

]

. (14c)

It is to be noted here that transformed version of equation (3b) along with (6a)
gives pressure P = 0 up to O(ε). Finally we obtain the transient film profile up
to O(ε) as

Hs = δ(X) − a
∂(Xδ)

∂X
T

− 2aεRe

{

∂
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]
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λ3
n
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}

(15)

where, λn = (2n−1)π/2. Here subscript s stands for the short-time scale solution.
The matching condition that is derived from the requirement that the flow is

continuous from the start of stretching to all succeeding time suggests

lim
τ→∞

Hs(τ) = lim
T→0

HL(T ),

which implies

C = X(0) = ξ (Say), C0 = HL(ξ, 0) = δ(ξ) and C1 =
3

2
ξδ2δξ. (16)
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The composite solution that possesses features of both the time scales is given by

HC = δ(ξ)e−aT
− 4aξδξT

∞
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n
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)
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3
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)

]
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)
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(

3 + λn(−1)n−1
)

ξδ2δξ

}

]

, (17)

where δ(ξ) is the initial distribution of the liquid film and ξ is the initial lateral
position. In arriving at equation (16) we have used

2
∑

n=1

1

λ4
n

=
1

3
and 2

∑

n=1

(−1)n−1

λ3
n

=
1

2
.

Here we like to point out that Dandapat et al.[25] have also used the same method
to derive the composite height in connection with the development of thin film on
a rotating disk under axisymmetric case. It is to be noted here that the present
result is derived for asymmetrical profile.

4. Results and discussion

We begin our presentation first by focusing on the general features that can be
drawn from the present analysis. For large T , the short time solutions for Us and
Ws give the leading order solutions of the long time solutions for UL and WL,
respectively, as aX and −aZ. From equation (8) it can be seen that U depends
on X linearly up to the first order term, but does not depend on Z for the leading
order term. The fact that HL0

X = constant along X = ξeaT gives the equation
(9) in more simple form as

WL = −aZ − εRea2
1

6
Z3, (18)

for the first order approximation and is independent of X along the curve X =
ξeaT .

Again, the short time solution (15) indicates that the inertial effect resists film

from stretching, because the terms proportional to e−λ2

n
T/H2

0
εRe

−1 are very small
at the beginning. The composite solution has both the features viz. initially it
behaves as short time solution whereas at subsequent times it behaves as long time
solution.

In figures from 2a to 2d, we have plotted the transient liquid film thickness for
various kinds of initial film profiles taking a = 1. As it can be seen from these
figures, in most cases, the film profile becomes planar around T = 2.5 (This is
true for the asymmetrical case, figures 2b as well). The transient film thickness
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Figure 2. a) Variation of composite height HC with X for several time steps. Here δ = 1 − ξ2,
εRe = 0.1. a = 1.

Figure 2. b) Variation of composite height HC with X for several time steps. Here
δ = 1 + 0.3 sin(ξ), εRe = 0.1. a = 1.
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Figure 2. c) Variation of composite height HC with X for several time steps. Here
δ = exp(−(ξ − 1)2), εRe = 0.1. a = 1.

Figure 2. d) Variation of composite height HC with X for several time steps. Here
δ = 1.089ξ2 exp(−ξ0.76), εRe = 0.1. a = 1.
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Figure 3. Variation of composite height HC with X at different times (T = 0.5 dash-dot and
T = 2.5, solid lines) for a = 1 (marked A) and for a = 1.5 (marked B) . εRe = 0.1.

Figure 4. U Versus Z at X = 0.1 for different time steps. δ = 1 − ξ2, εRe = 0.1. a = 1.
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Figure 5. W Versus X at Z = H for various time steps. εRe = 0.1. a = 1.

Figure 6. H′(= HC
− δe−aT ) Versus X at different time steps. a = 1
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is about 0.08 at this time. This can be estimated by inserting T = 2.5 into the
leading order solution (equation (11)), i.e. e−aT (note, here we have taken a = 1),
which give 0.0821. For those that possess very thin initial film thickness at X = 0
(Figures 2c and 2d), small slopes can be seen even at T = 2.5, but we can expect
from the figures that these slopes eventually diminish as well.

Figure 3 shows the variation of HC with X for different values of a at different
time stage. It is clear from the graph that as a increases HC decreases, implying
faster stretching causes quicker thinning of the film.

In order to see the dynamics occurring in these film flows, we take δ(ξ) = 1−ξ2

as a representative initial film thickness and we take a close look for its velocity
distributions and additional effects on transient film thickness. In figure 4, U is
plotted for various time steps against Z at X = 0.1 for the initial distribution
δ(ξ) = 1 − ξ2. The inertial effects evident from the figure are as follows. As Z
increases the rate of change in U decreases in the initial stages. U eventually
becomes constant throughout all the regions of the film at T = 2.5 and the film
thickness reduces to Z = 0.0821.

Figure 5, depicts W against X for various time steps at the free surface Z = H.
The velocity distribution becomes flattened as time elapses and the film profile
becomes flattened as well. From equation (9) we obtain Z = C0e

−aT at the
interface, and comparing the result with equation (11), we see that at the leading
order, we can estimate W ≈ −aH This is also evident by comparing the figure 5
with fig. 2a for a = 1.

In figure 6, H ′
≡ HC

− δeaT is plotted as a function of time taking a = 1. This
result reveals how the secondary effects affect the transient film thickness. Inertial
effect is evident from this figure as H ′ takes positive value initially, implying
resistance on film thinning. The contribution of this term eventually diminishes
as time elapses (around T = 2.5) and ultimately we obtain a uniform thin film.

5. Conclusion

Previous works on stretching sheet problem were solved by the use of similarity
transformation on boundary layer equations, but in the present study, we have
employed both the method of matched asymptotic expansions and the method of
characteristics to solve the full N-S equations. It has been shown, how a transient
non-planar film thickness changes subsequently to a planar film in due course of
time. Further it is observed that a faster stretching causes quicker thinning of the
film on the stretching surface.
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