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Abstract

Ordinal categorical random variables are common in many studies. In different context it is important to
appropriately define and simulate from such ordinal categorical random variables with a desired pattern of
the correlation structure. This is an important problem in longitudinal studies as well as analyzing clustered
data involving ordinal categorical responses. The present paper deals with the theoretical presentation and
the construction of multivarite ordinal categorical random variables with some desired patterns of
correlation structure. Algorithms for generating samples for the AR-type correlation with particular
illustration of AR(1) and AR(2), and equicorrelation are discussed using some urn models.
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1. Introduction

Correlated random varniables with some known pattern of correlation structure are often
important in statistical study. In the recent years, with the revolution of longitudinal studies and
clustered analysis having mixed effects, theoreticians as well as practitioners are to deal with
different types of correlated ordinal categorical data. In several datasets involving pain, post-
operative condittons, etc., correlated ordinal random variables (classified as nil/mild/moderate/
severe, for example) comes under the purview of study. Some examples of correlated categorical
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random variables in the literature are due to Dale (1986), Klein et al. (1984), Koch et al. (1989)
and Molenberghs and Lesaffre (1994), among others.

Zeger et al, (1985) discussed the construction of AR(1) autocorrelation structure for repeated
binary data. Prentice (1988) dealt with correlated binary regression with common value of
pairwise correlations. Correlation structure for the multivariate binary data can now be easily
defined and represented by using the Bahadur representation (Bahadur, 1961; Prentice, 1988;
Lipsitz et al.,, 1991). But relatively little attention has been paid to polytomous categorical
variables. In the recent years, among the explosion of papers on repeated measurement problems,
models have been developed for modeling repeated observations of some ordinal categorical
response obtained over time on the same individual. One of the first approaches to the analysis of
repeated categorical responses is due to Koch et al. (1977). In such modeling, both the transition
models describing the probability distribution of subject’s future events given the subject’s prior
history and the marginal models utilizing various methodological strategies to account for the
correlation between repeated measurements can be employed (see Ware et al., 1988)
Consequently, there has been some attempts to model correlated ordinal responses. In practice,
we need a flexible model for such multivariate categorical responses. Based on the work of Dale
(1986), Molenberghs and Lesaffre (1994) used the multivariate Plackett distribution to explain
multivariate ordinal data. Note that none of the existing models for categorical responses
incorporate simultaneously a simple model for the conditional and marginal approach (see Ashby
et al., 1992). The present paper is motivated to fulfil that gap.

To study the performance of several concerned theory, one may need to simulate
random samples from a properly correlated setup. The latent variable approach is not
suitable as correlation between the derived categorical random variables are not of simple
form or of simple interpretation. The present paper provides some simple algorithms to generate
such random samples for some specific correlation structures. Consequently, one can write down
the joint probability mass function of such correlated categorical random variables which, of
course, may not have a simple form. But the sample generation technique is quite easy and
elegant. In Section 2, we propose our technique with the AR-type correlation with illustration
with AR(1) and AR(2) models. In Section 3 we deal with the equicorrelation structure. Section 4
provides the psuedocodes of the algorithms of Sections 2 and 3. Section 5 ends with some

concluding remarks.
2. Autocorrelation models

In the present paper, we discuss the AR(1) and AR(2)-type autocorrelation models. A general
AR(p)-type autocorrelation model can similarly be described.

2.1. AR(1) model

Suppose we need to generate Y, Y,,..., Y7, which are T identically distributed ordinal
random variables, longitudinally obtained at T successive time points and we are interested to
introduce a desired correlation structure within them. Suppose each Y; can take the possible
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values 0,1,...,k. Again, for known 4;(>0), j=0,1,...,k, we want to have
P(Y;=)) x a, (1)

where p; be the correlation coefficient between Y; and Y;. To achieve p; = p*/, for some

p= b/(Z,_o a; + b), we employ the following algorithm. The pseudocode of the algorithm is
presented in Section 4.

Algorithm Al.

1. We discuss the constructlon of Yy, Y3,..., ¥Yr successively with the help of T urns, labeled
1,2,...,T, each having Ej—o a; balls at the outset, a; balls of kind 4;,j=0,1,...,k. A ball of
kmd A represents the value of corresponding Y as ;.

2. At ﬁrst we take the urn labeled ‘1°, draw a ball from it and notice the kind of the drawn ball. If
the drawn ball is of kind A4;,, then the value of Y, will be j,. Then we add an additional b balls
of kind j, to the urn labeled ‘2’. This urn will now have a total of (E"_o a; + b) balls of which
(aj, + b) balls of kind 4;, and g; balls of every other kind 4;. This urn will now reflect the

conditional probability distribution of ¥, given Y. We now draw a ball from this urn to find
Y. Let the realized value of ¥ be j,.

3. We now take the urn labeled ‘3’, add new b balls of kind 4;, in it which makes the total number

of balls in that urn to be (3 j=0 8 + b), of which (a;, + b) balls of kind 4;, and ¢; balls of every
other kind 4;. We draw a ball from the urn to find Ys.
4. We continue thxs procedure up to the T'th urn.

Note that all the positive values of p are covered by this approach and an interval of the
negative values. From the urn model formulation (2), in order the right-hand side of (2) to be
nonnegative, we need > — min{a;}, and hence

[ min{a;) l] '

Y- a, — min{a;}’

Result 1. The observations {¥Y|, Y3,..., Y7} obtained using the Algorithm Al is such that

(a) The marginal distribution of any Y; is given by (1).
(b) Here p; = p" for p = b/(3_ a, + b).

Proof. (a) From the urn model formulation it is easy to note that from the composition of the urn
‘1” we have

P(Y|=))= , j=01,....k
u—O a,
Again, the conditional probability distribution of any Y;, i=2,3,...,T, given Y;_; is
a; + bI( Y,'_],j)

P(Yf=j|Yf—l)=W, i=0,1,...k, Q)
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where I(Y,)) is the indicator variable which takes the value 1 if ¥ = and 0 clsewhere. Taking
expectation in both sides of (2) with respect to Y;_;, noting that E(J(Y;_1,))) = P(Y;_) =j) =
a;j/ ¥ a,, the unconditional probability distribution of ¥; is given by (1).

(b) Let M and V be the expectation and variance of any Y, respectively, where

o)L i e) - (Zjaj)
ey

I;Toﬁr, the conditional probability distribution of Y, given ¥; can be obtained by taking
expectatlon over the distribution of Y, given Y;. Thus

a4 +bI(Y )
a+bP(Yiy1 =j|Y) _ Y +b( 'E"J"'b )

V=

P(Yu2=jl¥Y) = Yau+b - Soa,+ b
a,@ a, + b) + ba; + B I(Y,, ;)
(E a, + b)2

Proceeding in this way and takmg expectations recursively, we have for r = 1,2,...,
Ca, +0)"p " 4 BI(Y, j)
Ca,+b)
Consequently, the conditional expectation of ¥, given ¥, is
(o X Earts (ay + BB~ + ¥ T jI(Y . )
CCai+ by ’
Noting that E{¥,I(Y,))} = jP(Y; = j), we obtain
E(Y:Yiyt) = E{YE(Y el Y1)}
_ Cf L Ca+ 5 + ¥ (i)
) a+by

Then the covariance of ¥; and Y,.H is

coV(¥;, Yin) = i s (2 + ) + U () (zjaf)z

P(¥is =117 = H im0

EYudY) =

)3 a; + by 7
_ Y AN a) - (e[ g+ b)Y — (T al Tk (@ + 55" &
e a; + b)' '

Noting that

n—\
(C+DY'—CY_(C+Dyp~'~ = pr,
i=0
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the expression under (3) reduces to

(zo78)

Thus the correlation between ¥; and Y, becomes
corr(Y, Y.) = py = p',

with p=8/Q_a;+b). O
The joint probability mass function of ¥q,..., Y7 is

b a +bI(yny1—1)
PY =y,...,Y =y)=( )||(”—).
: ! r=7r o a,+b

i=2

2.2. AR(2) model

Here, we want to achieve p;;,, = (bp; 1, ) + €P;4r—2)/Q_au+ b+ ¢) with p); =5/ a6, +

b+c).
Algorithm A2,

1. Here, as earlier, we start with T urns, initially each having ) a, balls, a; balls of kind 4;.

2. We draw a ball from urn ‘1’ to find Y. Suppose the observed value of ¥ is j,. We add (b + ¢)
balls to the second urn, (b + ca;, /3 a,) balls of kind 4;, and cq;/ 3 a, balls of every remaining
kind 4;. Now this urn ‘2’ will have a total of (3_ a, + b + ¢) balls of which (a;, + b + ca;,/ Y a,)
balls are of kind AJ,I and all the remaining kind 4; have (@; + ca;/ 3_ a,) balls.

29

Here, at the rth time point, b balls reflect the mﬂuence of Y,_, and c balls reflect the influence
of Y,—2. Att =2, thereisno ¥,_, to add ‘¢’ balls to the urn model. Hence, by convention, we

distribute these ¢ balls according to the weights of the possible (k + 1) values.
3. We draw a ball from this urn to get Y», let it be j,. From the third urn onwards, for any urn
labeled ‘7, we add (b + ¢) balls to the urn, b balls of kind j,_,, the realized value of ¥,_;, and

also add c balls of kind j,_,, the realized value of ¥;_,.
4. We continue this procedure up to the T'th urn.

Result 2. The observations generated using the Algorithm A2 are such that

(a) The marginal distribution of any Y; is given by (1).
(b) Here

b
plz_zau+b+c

(4)
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and all other correlations satisfy the recursive relation

bpijrit +€pijpen
Pt = TS bt ®

Proof. (3) From the above urn model we observe that the unconditional probability distribution
of Yiis

.
PY =)=t j=0,1,... .k

Ya
the conditional probability distribution of Y, given Y, is
Py, =) =2 WD Fa gy g ©)

Eau + b +c

and, for i = 3,4,..., T, the conditional probability distribution of Y; given Y., and ¥Y;_, is
vy GBI ) + cI(¥ica,))

P(Yf-JlYt—bYt—-Z)"‘ ):a,,+b+c »

Taking expectations in both sides of (6) with respect to ¥ and in both sides of (7) with respect to
Yi-1 and Y;_», we find that Y¥;’s, i =1,2,..., T, are identically distributed as (1).

(b) Clearly, the expectation and variance of any Y; will be M and V, respectively. From (7), for
any i 4 >3, taking expectations on both sides, we get the conditional probability distribution of

YH..; given Y;as
— av. a; + bP(Y iy =jIY) + cP(Yipe2 =i Yr)
P('Yi+l'—]|Y!)—' Zau+b+c

Consequently, the conditional expectation of Y, given Y; is
Ela + bE(Y i41-11Y:) + cE(Y i11-21 Y )

i=01,.. .,k )

Jj=0,1,...,k.

E(Yiu |Y) =

Say+b+c
yielding
S 4 BE(Y Yip1m0) + (Y, Vied)
E(Yl YH'I) - Zau + b + ¢
Consequently, we find
beov(Yi, Yiyr—1) 4+ ccov(Yy, Yy 2)
Yis i =

and hence (5) follows. Using the same technique, one can easily obtain (4). O
We can use the recursion relation (5) to find several correlations provided we know p,,. It can
be observed from (5) that for any other pair (i,i + 1) except (1,2), we have
b + cpr—l i

Pl = m
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which also holds for p,, if we define p,;, =0. In that case (5) holds for any (i,f):i=
L,2,...,T-1;t=1,2,...,T — i. Again, from (4), we can argue that (b + ¢) should be at least as
large as — min{a;}.

The joint probability distribution of Y,..., Y7 can be written as

P(Y1=.V1,...,YT=J’T)=( Gy, )(“yz+bl(.”2=}’l)+c“yz/zau)

x ﬁ(ay, 60, = 22102 9)
=3 SYay+b+c

3. Equicorrelation model

Equicorrelation structures are important in cluster analysis, where the random variables have
equal correlation among them due to some random effect. To obtain equal correlation,
/> a, + b)?, for correlated ordinal categorical random variables we proceed as follows.
Suppose, in a clustered analysis, a random effect is affecting each of ¥, Y3,..., Yr in the same
way. Our object is to model that effect of the random component and obtain the correlations
between any two Y’s.

Algorithm A3.

1. Suppose the random effect is denoted by Y which is also ordered categorical, taking values
0,1,....k with (Yo =))=a;/ 3 a..

2. We start with T urns for generating Y,..., Y, each with a; balls of kind A4; at the outset.

3. If the realized value of Y is j, we add b balls of kind 4;, in each of the T urns. Each of the urns
have now (3 g; + b) balls in total, (a;, + b) balls of kind 4;, and g; balls of all the remaining
kind A;.

4. Then generate Yy,..., Y by drawing one ball from each of the urns.

Result 3. For the observations {Y, Y5,..., Y} generated using the Algorithm A3, we have

(a) The marginal distribution of any Y, is given by (1).
(b) The correlation coefficient between any ¥; and Y is given by

b 2
pis = (Eau +_b) .

Proof. (a) From the urn model, we have for i = 1,2,..., T, the conditional distribution of Y;

given Yy is
_avy_ G+ bI(Yo,))
P(Yl —JIYO)_ Eau+b >

whence taking expectation we get the unconditional distribution as given by (1).
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(b) Taking conditional expectation of the above, we get
>oJja;+ b3 jI(Yo,j)
E a; + b

E(Y{Yo) =

and consequently,
(Ejaj)z +b3 jq

BT = ) e +5)
yielding
b
Poi = Sa+b

with p,; being the correlation between Yy and Y;, Exactly in the same way we find

e ai +bP(Yy =jiY;)
= Y_g = A
L EY=j S a+b

and, consequently,
= ()= (mam) O
Pe=\Ta+5)" " \Sa+0

Note that the random effect Yy is affecting all the ¥;’s in the same way, and as the correlation
between Y,’s are through this random effect, we get a positive correlation in this case, which is the
case, in general, in any random effect model. The joint probability distribution of ¥i,..., Y7 in
this setup can be written as

k T b . ==
PYy=y,...Yr=yp)= Z{H(aﬂ Eiﬁ'bm))}zfyo

yo=0 | =1 u=0 u

4. Implementation

In this section, we provide the pseudocodes of the Algorithms A1-A3 in the spirit of Paatero
(1999).
Pseudocode of the Algorithm Al

1. Initialize the probability distribution of Y.
LL Set pV = P(Y) =) =a,/T oy, s=0,1,... k.
2. Drawing random sample from the probability distribution of Y.
2.1. Find the cumulative probability distribution of ¥, as 0 = P(¥,<s) = Y045}, s =
0,1,...,k
2.2. Set @) = 0.
2.3. Draw a random number r| between {0, 1].
24. Forj=0,1,....k, if 0¥ <r < 0", then ¥, =3



A. Biswas [ Statistics & Probability Letters 70 (2004} 25-35 33

3. Drawing random sample from the probability distribution of Y¥,, t =2,3,...,T.

3.1. Find the probability distribution of ¥,,t=2,3,..., T, as follows. If Y,_; = Z, then p¥ =
PY,=Z)=(az+ b)/(z;‘=0 ai+b); and pP=P(Y, =3)= a,/(Z}‘:o ai+b) for s=
0,1,...,k, but s# 2.

3.2. Set the cumulative probability distribution of ¥, as Q¥ = P(Y,<s) = E}f:(, p}", s=
0,1,... .k

3.3. Set @) =0.

3.4. Draw a random number r; between [0, 1].

3.5. Forj=0,1,....k, if 0 <r,< 0", then ¥, =]

Pseudocode of the Algorithm A2:

1. Initialize the probability distribution of ¥;.

LL Set pV =P(Y1 =95)=a,/S 5 ya,s=0,1,...,k.

2. Drawing random sample from the probability distribution of ¥,.

2.1. Find the cumulative probability distribution of ¥, as O{ = P(¥Y,<s) = E}Lo p}l), 5=
0,1,...,k.

2.2. Set o) = 0.

2.3. Draw a random number r) between [0, 1].

24. Forj=0,1,....k if &2 <ri<QP, then ¥; =j.

3. Drawing random sample from the probability distribution of Y.

3.1. Find the probability distribution of Y, as follows. If ¥| = Z, then pg) =PY,=2)=
@z +b+ caz/Yr o a)/(Thoa+b+ o) and PP =PYr=9)=(a+
caz/Yk_, @)/ 0@+ b+ ) fors=0,1,...,k but s#Z.

3.2, Set the cumulative probability distribution of Y, as Q_(f) = P(Y,<8) = Z?,;o pj.z), 5=
0,1,...,k.

3.3. Set g% =0.

3.4. Draw a random number r, between [0, 1).

3.5. Forj=0,1,....k, if 2 <r<0?, then ¥, =j.

4. Drawing random sample from the probability distribution of ¥, t = 3,4,...,T.

4.1. Find the probability distribution of Y, r = 3,4,..., T, as follows. Denote Y,.; = Z and
Yio=W. If Z£W, set p2 =P(Y,=Z)=(az + DY/(Xioa +b+c) ply = P(Y, =
W) =(aw+ C)/(Z,";o a+b+¢); and pO=PY, =95 = a,/(zj-;o ai+b+c) for s=
0,1,....k, but s#Z, W. If Z=W, set pg) =P(Y, =2)=(az + b-l-c)/(Ej:oaj +b+
c); and p) = P(Y, =s) = as/(ijzuaj +b+e)fors=0,1,...,k, but s Z.

4.2. Set the cumulative probability distribution of ¥, as 0 = P(¥,<8)= Y3 ,p", s=
0,1,....k.

4.3. Set Q(_")1 =0.

4.4. Draw a random number r; between [0, §].

45 Forj=0,1,...,k, if Qj(ﬂl <n< J(.", then Y, = .

Pseudocode of the Algorithm A3:

1. Initialize the probability distribution of Y.
L1 Set p = P(Yo =5) = a,/Y sy a1, s =0, 1,..., k.
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2. Drawing random sample from the probability distribution of ¥y.

2.1. Find the cumulative probability distribution of ¥ as 0 = P(Yo<s) =¥ ;o o, 5 =
0,1,...,k.

2.2. Set Q‘“’ =0.

2.3. Draw a random number ro between [0, 1}.

24. Forj=0,1,...,k, if Q(_l<rosQ( then Yy =j.

3. Drawing random sample from the probablhty distribution of ¥,, ¢ =1,2,...,T.

3.1. Find the probability dlstnbutlon of ¥, t=1,2,...,T, as follows. If Yo = Z, then p
P(Y,=2)=(az + b/, @+ b); and p(’) = P(Y =35 = a,/(zj_o aj+by for s=
0,1,...,k,but s#Z.

3.2. Set the cumulative probability distribution of Y, as Q' = P(Y,<s) =3 op}", 5=
0,1,...,k

3.3. Set ", =0.

3.4. Draw a random number r, between [0, 1].

3.5. Forj=0,1,. klfQ(l<r,$Q( then Y, =.

S. Concluding remarks

The proposed models have quite a large number of potential application in problems regarding
multivariate ordinal data. The immediate applicability of the present model is to the analysis of
longitudinal data where covariates are not time dependent and also to the analysis of clustered
data. As our intention is to provide a theoretical model only, in the present paper we are not going
for any real data analysis. Also the present algorithm can be used to study the properties of
different inferential approaches concerning correlated categorical random variables.

One obvious but nontrivial generalization could be where the marginal distribution of Y;’s are
different and also the case where the number of categories can vary for different ¥;’s. The present
method cannot be directly applied in that situation. The situation is under study and we hope to
pursue some results in a future communication.
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