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Abstract

We present a simple method to use an [n —d — 1, m, ¢ + 1] code to construct an n#-input, m-output, ¢-resilient function with
degree d > m and nonlinearity 2n—l _gn—d+1}/2] _ (4 4 1)2n—d~1 For any fixed values of parameters »n, m, ¢t and d, with
d > m, the nonlinearity obtained by our construction is higher than the nonlinearity obtained by Cheon in Crypto 2001.
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1. Introduction

Resilient S-boxes were introduced by Chor et al. [3]
and Bennett et al. [1]. The study of other important
cryptographic properties of resilient S-boxes such as
high nonlinearity and algebraic degree have been per-
formed in [2,6,7,9,12]. In [2], Cheon used an [n — d —
l,m,t + 1] code to construct an n-input, m-output,
t-resilient S-box with degree d > m and nonlinear-
ity (2"~' —2"=9=1|y/2"] +2"-9-2). The construc-
tion of Cheon uses the algebraic structure of linearized
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polynomials and the nonlinearity calculation is based
on the Hasse-Weil bound for higher genus curves.

In this paper we describe a simple construction of
nonlinear resilient S-boxes. Givenan [n —d - 1, m, t]
code we construct an n-input, m-output, f-resilient
S-box with degree d > m and nonlinearity 271 —
20~ 1@+D/21 . (m 4 1)27~9~1 | Further we prove that
for any fixed values of the parameters n, m,t and d
with d > m, the nonlinearity obtained by our method

is in all cases higher than the nonlinearity obtained by
Cheon’s method.

1.1. Work since the submission of this paper

After submitting this work to IPL, we continued our
study and applied more sophisticated techniques to ob-
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tain higher nontinearity. These rasults were recently
published in [5] and to the best of our knowledge pro-
vides the currently best known nonlinearity.

The motivations for the current paper and [5] are
different. The point of the current paper is that simple
techniques can give good results. The point of [5] is to
obtain the best possible nonlinearity through the use
of sophisticated techniques. Further, the gain in non-
linearity obtained in [5] over the current paper is not
by a large amount, so that there is really a trade-off
between simplicity and gain in nonlinearity.

2. Preliminaries

Let F5 = GF(2) be the finite field of two elements.
We consider the domain of an n-variable Boolean
function to be the vector space (F] , ®) over F,, where
@ is used to denote the addition operator over both F
and the vector space F . The inner product of two vec-
tors ¥, v € F; will be denoted by (u, v).

The Walsh transform of an m-variable Boolean
function g is an integer valued function W, : {0, 1} —
[—2™,2™] defined by (see [8, p. 414]) Welu) =
Yverp (~DEW®U) An m-variable function is
called r-resilient if Wy(u) = 0 for all u with 0 g
wt(u) < t [11]. The nonlirearity ni(f) of an n-vari-
able Boolean function f, is defined as

ni(f) =2""" — 5 max|W(u)|.
u€F;

A Boolean function g can be uniquely represented
by a multivariate polynomial over F;. The degree of
the polynomial is called the algebraic degree or simply
the degree of g and is denoted by deg(g).

An (n,m) S-box (or vectorial function) is a map
{0, 1} — {0,1}". Let f:{0,1}* = {0,1})™ be
an S-box and g:{0,1j™ — {0, 1} be an m-variable
Boolean function. The composition of g and £, de-
noted by g o f is an n-variable Boolean function
defined by (g o f)(x) = g(f(x)). An (n,m) S-box
f is said to be z-resilient, if g o f is f-resilient for
every m-variable linear function g (see, for example,
[6]). By an (n, m, r) S-box we mean ¢-resilient (n, m)
S-box. Let f be an (n, m) S-box. Then nonlinearity of
[ denoted by nl( f), is defined to be

ni(f) = min{n!(g o f): g is a nonconstant
m-variable linear function}.

Similarly the algebraic degree of f, denated by
deg( f), is defined to be

deg(f) = min{deg(g o f): g is a nonconstant
m-variable linear function},

It is easy to see that if f is an (n,m) S-box, they
deg(f) < n.By an (n,m, ¢} S-box (or (n, m, 1)-resil-
ient function) we mean t-resilient (n, ») S-box. Sim.
ilarly by an (n, m, t, d) S-box (ot (n, m, t, d)-resilient
function} we mean s-resilient (r, m) S-box with alge-
braic degree d.

We are interested in S-boxes (as opposed to Bool-
ean functions) and hence we will assume that m > 1,
Also we are interested in S-boxes for which d > m
and for resilient S-boxes it is known [10} that 4 « #.
So the following condition holds: 1 < m < d < n. This
implies that for the S-boxes in which we are interested,
the minimum value of # is 4.

3. Construction of (n, m, t)-resilient S-box with
degree greater than m

We will be interested in (2, m) S-boxes with max-
imum possible nonlinearity. If n =— m, the S-boxes
achieving the maximum possible nonlinearity are
called maximally nonlinear [4]. If » is odd, then max-
imally nonlinear S-boxes have nonlincarity 27! ~
20=1/2 For even n, it is possible to construct (n, m1)
S-boxes with nonlinearity 2"~ — 2%/2, though it is an
open question whether this value is the maximum pos-
sible [4]. The following result is well known (see, for
example, [6]).

Theorem 3.1. Let C be an [n,m,t + 1] binary lin-
ear code. Then we can construct an (n, m, t)-resilient
funetion.

The following result is a slight generalization of
Theorem 3.1.

Lemma 3.1. Let f:{0, 1}" — {0, 1} be an S-box and
fis fas ..., fm are the component functions. Let C be
alp,m, t + 1] binary linear code. We can construct d
t-resilient S-box h: {0, 1}"7 — {0, 1}"™ with compe-
nent functions hy, ha, ..., hy, where nl(h) = 2Pnl(f)
and algebraic degree of h(x) is same as algebraic de-

gree of f(x).
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Proof. A binary linear code [p,m,t + 1] is a vector
space of dimension m over F. Let {C},C3,...,Cpn)
be a basis where C; = (c;,¢p,..-,¢1,) € Ff. We
construct the S-box A:{0, 1}"*? — {0, 1} as fol-
lows. For 1 <i < m, we define,

hi(xl----sxmxnﬂu---,xn+p)
=.ﬁ'(xl’ ...,x,,)GB(C,-,(x,,+1,xn+2....,x,,+p)).

Let b’ be any nonzero linear combination of the
component functions kjp, ..., iy. So A’ can be written
as b =dih & --- @ dyh,y for some nonzero vector
(di,...,dn) € F;". Hence

K=dfi® ®dnfm
@(dlcl D edmcmv(xn+ls---,xn+p))
=d[fl @"‘$dmfm @(C’|(xn+l,---’xn+p)),

where C' =d|C} & --- ® dCr,. We have weight of
vector C' >t + 1 since C isa [p, m, t + 1] linear code.
Hence k' is ¢-resilient and so (x|, ..., Xn, Xnt1.--»
Xn+p) is t-resilient. As we are adding p new variables,
nl(h) =27nl( f). Clearly deg(h) =deg(f). O

The next result provides a simple method to con-
struct a (d + 1, m) S-box with degree d and very high
nonlinearity,

Theorem 3.2. It is possible to construct a (d + 1, m)
S-box with degree d > m and nonlinearity nl(h) >
ad _ old+D/2l __ (m+1).

Proof. Let f be a (d + 1,d + 1) maximally nonlin-
ear S-box whose component functions are fi, f2,...,
Jfa+1- We construct a (d + 1, m) S-box h with compo-
nent functions &, 43, ..., hy in the following manner.
For 1 € i < m, define

Mi(Xp, ooy X4 1) = X100 Xi= 1 Xi+ ] - Xd+is

and

Ri(xg, .., xd+1) = filx1, ..., Xd+1)
S pi(x1, ..., Xd+1).

By construction algebraic degree of S-box A : {0, 1}4+!
— {0, 1} is 4. Itis known that ni( f) > 29 — 21@+1)/2]
[4]. We show that ni(R) 2 nl{f) — (m + 1). Let
¢; be the identity vector which has a one at the
ith position and zero elsewhere. Let 1 = (1,...,1).

From the definition of w; it is clear that Sup(i) =
{1, xa41): i, xa41) = 1) = {L, &)
A nonzero linear combination &’ of the component
functions A1, ..., i, can be written as

W=fi&-©f om0 u,,
for some {iy,is,..., i} S {1,2,...,m}.

We have | ), Sup(pi;) ={1,¢;,..-, 8.} and so the
weight of the function p;, ®--- @ p;, isat mostr + 1.
Hence ni(2") = ni(f) — (r + 1). Since r < m, it fol-
lows that nl(h) = nl{f) — (m + 1) which gives us the
required result. O

Now we are ready to describe our construction
method.

Construction-I.

1. Input: Parameters n,m, t and d with d > m.
2. Output: An (n, m, ¢, d)-resilient function.

Procedure.

1. Constructa (d + 1, m) S-box using Theorem 3.2.

2. letCbealn—d—1,m,t + 1] code. If no such
code exists, then stop. The function cannot be con-
structed using this method.

3. Apply Lemma 3.1 on 4 and C to construct the re-
quired S-box g

Theorem 3.3, Ifan [n —d — 1, m, ¢ + 1} code exists,
then Construction-I constructs an (n,m,t,d) S-box

g with nonlinearity 271 — 2¢~[@+D/2] _ (4. 1) .
2n-—d—l. : .

Proof, By Theorem 3.2, ni(h) = 24 — 21@+D/2] _
(m + 1) and deg(k) = d. By Lemma 3.1, g is ¢-resil-
jent, ni(g) = 2""4"Inl(h) = 2"~! ~ 2n-T@+D/2 _
(m + 1)2"~4-1 and deg(g) =deg(h) =d. D

4. Comparison

In [2, Theorem 5], Cheon proved the following re-
sult.

Theorem 4.1. For any non-negative integer d, if there
exists [n —d — 1,m, t + 1] linear code then there exists
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a (n;m, t)-resilient function with degree d and nonlin-
earity (201 — n—d=1 | /27| 4 20 ey,

The nonlinearity calculation in the above theo-
rem is based on Hasse-Weil bound for higher genus
curves. Till date, this is the only construction which
provides (n, m, ¢) nonlinear resilient S-boxes with de-
gree greater than . In the next thecrem we prove that
nonlinearity obtained by Construction-T is higher than
nonlinearity obtained by Cheon’s construction. First
we need the following result.

Lemmadl. Forn2d+4, and2<m<d <n we
have (2*2) > 1 + (m 4 1) +216@+D72),

Proof. We have to show
|_2"/2J = % + (m 4 1) + 2Ld+12) 1)

Since l2n/ZJ > 2n/2 —1 and 2(d+l)/2 > 2[(d+l)/2_]’
Eq. (1) holds if

2215 Lm0 4206402, @
Sincem <d, wehavem < d — 1 and Eq. (2) holds if
215l f(d 14 1)+ 204D, 3)
Again since # > d + 4, we have that Eq. (3) holds if
2(d+4)/2 -~ % +d+2(d+!)/2. )
Thus, Eq. (1) holds if

224 - V2> 3 +4d. (5)

Clearly, Eq. (5) holds for all d > 2. Hence the
proof. O

Theorem 4.2. Let f be an (n,m, t, d)-resilient Sfunc-
tion f withd >~ m and nonlinearity ny constructed by
Cheon’s method. Then it is possible to construct an
{(n,m, 1, d)-resilient function g with nonlineqrity n,
using Construction-1. Further ny > n;.

Proof. As{n,m, t)-resilient function [ 1s constructed
by Cheon’s method, there exists an [n — d — 1,m,
£+ 1] code. Construction-I can be applied to obtain an
(n,m, t)-tesilient function g with degree d and non-
linearity

ng) =ny = o=t _ gn—[d+1)/2) _ (m + 1)27—4-1

It remains to show that ny > n;, which we show
now. Recall ny = 2"~1 —2%=4~1) /an)  on~d-2 3.
maximum possible degree of an S-box is (n ~ 1), g
d<n-1.Ford=n—1,n-~2andn -3 the requireg
codes are [0,m, 7+ 1], [1,m, ¢ + 1] and (2, m, r + 1.
Since 2 £ m (see Section 2, last paragraph) the firsy
two codes do not exist and so Cheon’s method cannot
be applied for d =n — 1 and r — 2. The third code ex-
ists only for m = 2 and ¢t =0, in which case the code
is a [2, 2, 1] code. In this case,n — d — 1 =2, m=2,
d >3 and so n > 6. Also, for this case, n; > n) if
4 x (|277%] — 2l=D/2)y - 14 This condition holds
forn > 6. Hence, n3 > n, ford =n — 3.

Now we consider the case d < n — 4. We have ny —
n = —an=Td+1)/2 4.gn—d-1 Lﬁj —pn—d-2 —(my
1)2"~91, Thus we have ny > ny if 2"~9=1(27/2) 5,
2=TE@+D/0) 4 an=d-2 4 (4 4 1)27~4-1 The last con-
dition holds if and only if |2"/2] > % + (n + 1) +
2lE@+D/2 Since 2 < m < d < n (see Section 2, last
paragraph) and r 2> d +4 we apply Lemma 4.1 and get
n2 > n|. This completes the proof of the result. O

Remark. We note that Cheon’s method does not pro-
vide any nonlinearity for d < 25!, whereas Construc-
tion-I provides positive nonlinearity for 4 > 2.

5. Conclusion

In this paper, we have presented a simple construc-
tion of nonlinear resilient S-boxes with algebraic de-
gree greater than m. We proved that for any fixed
values of the parameters r,m, ¢ and d, with d > m,
the nonlinearity obtained by our simple construction
is higher than the nonlinearity obtained by the more
complicated algebraic construction of Cheon [2] in
Crypto 2001.
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