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Cesaro a-Integrability and Laws of Large Numbers I

T. K. Chandra’ and A. Goswami'"’

For a sequence of integrable random variables, we introduce a new set of con-
ditions called Cesaro a-Integrability and Strong Cesaro a-Integrability and show
that, for a <3, these conditions that are strictly weaker than Cesaro Uniform
Integrability and Strong Cesaro Uniform Integrability respectively, are sufficient
for WLLN and SLLN to hold for a sequence of pairwise independent random
variables. For some special kinds of dependent sequences of random variables

also, Cesaro a-integrability for appropriate « is shown to be sufficient for
WLLN to hold.

KEY WORDS: Uniform integrability; pairwise independent; ¢-mixing sequence.

1. INTRODUCTION

In recent years, a uniform integrability condition of some kind has played
an increasingly important role as a key condition in proving laws of
large numbers for a sequence of random variables. In Landers-Rogge,®
for example, the authors considered a sequence of pairwise independent
random variables and proved that if the sequence is uniformly integrable,
then WLLN (weak law of large numbers) holds and that if the sequence is
strongly uniformly integrable, then SLLN (strong law of large numbers)
holds. Chandra® introduced the notion of uniform integrability in the
Cesaro sense or what has now come to be known as Cesaro Uniform
Integrability (CUI, in short). Since then, there has been a series of papers
establishing that CUI, instead of the stronger condition of uniform
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integrability, is just the correct condition in the context of laws of large
numbers. Chandra® and later Chandra—Goswami® improved the above-
mentioned result of Landers—Rogge.® They showed that for a sequence of
pairwise independent random variables, CUI is sufficient for WLLN to
hold and Strong Cesaro Uniform Integrability (SCUI, in short) is sufficient
for SLLN to hold. Recently, Landers-Rogge!” have obtained a slight
improvement over the results of Chandra® and Chandra—Goswami® for
the case of non-negative random variables. They have shown that in this
case, the condition of paiwise independence can be replaced by the weaker
assumption of pairwise non-positive correlation.

In this paper, we introduce a new set of conditions to be called Cesaro
a-Integrability (CI{a), in short) and Strong Cesaro a-Integrability (SCI(x),
in short) for a sequence of random variables. We show that Cl(«) for any «
is strictly weaker than CUI, while SCI(a) for any « is strictly weaker than
SCUI (Lemma 2.1 and Example 2.2).

Our main result in Section 2 is Theorem 2.2, which shows that, for a
sequence of pairwise independent random variables, the conditions Cl(«)
and SCI(x) for some « <3, are sufficient respectively for WLLN and for
SLLN to hold. Theorem 2.1, where we consider the special case of non-
negative random variables, comes as an intermediate step, but, in its own
right, it is an improvement over Theorem 2 of Landers—Rogge.”

In Section 3, we consider certain special kinds of dependent sequences
of random variables with suitable dependence structure and prove the
condition Cl(«) for appropriate a to be sufficient for WLLN to hold for
such sequences as well. Theorems 3.1 and 3.4 here are improvements over
Theorems 4 and 5 of Chandra®.

2. DEFINITIONS AND MAIN THEOREM IN THE INDEPENDENT
CASE

For the convenience of the reader, we start with the definitions of the
various existing concepts of uniform integrability.

Definition 1. Let @ = {¢: (0, 00) - (0, 0) [%2 t cvast ] o} and &, =
{ded 37, 4 <o}. For ¢ € D, we put ¢(0) = 0.
A sequence {X,, n> 1} of random variables is called

(i) Uniformly Integrable (Ul, in short), respectively Strongly Uni-
Jormly Integrable (SUI, in short), if there exists ¢ € &, respectively ¢ € &,
such that

sup E[$(1X,])] < co. (1)

nzl
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(i) Cesaro Uniformly Integrable (CUI, in short), respectively Strongly
Cesaro Uniformly Integrable (SCUI, in short), if there exists ¢ € &, respec-
tively ¢ € @,, such that

1 n
sup — 3. E[4(lX1)] < co. )

azl i=1

The notion of Uniform Integrability is classical and is usually defined
through the following equivalent condition

sup E[IXn|I{|X,|>l}]_'O as A—>00. (3)

nzl

The notion of Cesaro Uniform Integrability was first introduced in
Chandra‘® and was defined through the following equivalent condition

l n
sup — Z E[lX,l I{lxil>i}] -0 as Ao 0. (4)

nzl i

The equivalence of (1) for ¢ € @ and (3) is a well-known result of La Vallée
Poussin, while the equivalence of (2) for ¢ € P and (4) was proved in
Chandra-Goswami.® The advantage of formulations (3) and (4) for Ul
and CUI respectively, is that they are stated explicitly in terms of the
marginal distributions of the random variables X, and do not depend on
looking for an appropriate function ¢ € @ such that condition (1), respec-
tively condition (2), holds. In general, one may not have any clue as to how
to go about getting hold of such a function ¢.

For the notions of SUI and SCUI, however, there does not seem to
exist any equivalent formulations stated directly in terms of the marginal
distributions of the X,. The only way, therefore, to verify that a given
sequence {X,,n> 1} is SUI, respectively SCUI, is to prove that condi-
tion (1), respectively condition (2), holds for some function ¢ € @,.

We now introduce two new concepts which, just like the above con-
cepts, are again related to the tail probabilities of the random variables
{X,}, but in a different way.

Definition 2. Let xe(0,00). A sequence {X,,n>1} of random
variables is said to be Cesdaro a-Integrable (Cl(a), in short) if the following
two conditions hold:

sup L
nzi Bz

N
E[\X|]<oc and lim - Y E[X|[Iy.41=0. (5
1

rn-o N ;2
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The sequence {X,,n>1} is said to be Strongly Cesaro a-Integrable
(SCI(), in short) if

n oD 1
suplZ E[|X;]]<o  and ZI;E[IX,.II{IX,.:>»:'}]<°°- ©)

nx1 i=1

An easy application of Kronecker’s Lemma shows that (6) is indeed stron-
ger than (5). It is also clear from the definition that ClI(x), respectively
SCI(x), for some a > 0 implies CI(f), respectively SCI(f), for all > a. We
now show that CUI implies CI(«) for all « >0 and that similarly SCUI
implies SCI(x) for all a > 0.

Lemma 2.1, A CUI sequence {X,,n>1} of random variables is
CI{(a) for all a > 0. If, moreover, the sequence is SCUI, then it is SCI(a) for
all a > 0.

Proof. If{X,,n>1}isCUI thenusing(4),sup, » 1 ELIX Ty 5]
<1 for some A with 0 <A< 0. It follows that sup,,z1 ,‘,2,_1 E[|X.)]1<
A+1 < oo, Further, if {X,, n> 1} is CUI, then there exists a function ¢ € @,
such that (2) holds. Using the fact that ﬁ,ﬂ is increasing in ¢, we obtain that
for everyn = 1 and for a > 0,

E[IXII{IX,.|>:|}]\¢( 3 E[4(1X.D].
It follows that, foreveryn>1and a >0,
~ 3 EOE Iy 1< 2 3 2 ELHQXD].
n =, n /= ¢G%)
Since sup, ., ; >i., E[¢(1X;)] <0 and pro 0 as n— o0, one gets [see

Remark (i) below]

l n
lmi n .Zl EQIX;| Lyyy» 1= 0.

This proves that {X,, n > 1} is CI().
In case {X,,n>1} is SCUI then (2) actually holds for a function
¢ € @,. But if § € B,, then it is easy to see that for any 0 < a < 1, the series
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Il ;,::(—",5 is also convergent [see Remark (i) below]. Now for any
0 <a <1, we have, as before,

[ o]

—ENX Ly o] <
"gl [' I {1Xal }] ng nl u¢( a)
By applying Remark 3(ii) of Landers-Rogge” and using (2) and the above-
mentioned consequence of ¢ € P, it follows that the series on the right-
hand-side of the above inequality converges, thus proving that {X,, n> 1}
is SCI(a) for all 0 < a < 1, and hence for all « > 0. O

E[¢(1X.D].

Remark. (i) If {a,} and {b,} are two sequences of non-negative
reals such that lim,_ ., @, =0 and sup, 1 37_, b, < oo, then it is easy to see

that lim, , , 1 3°7_, a,b, =0.

(@) If ¢ed,, then T2, ’Twi<°° for any 0 <a<1. For a=1,
there is nothing to prove. For 0 <a < 1, it just follows using the integral
test:

° 1 1 L e 1 o
Py n‘—“¢(n“)<¢(1)+,?;z e et
y L g L
¢(1)+°‘ I ¢(y)d” Sen Y A<

To get a feel for the conditions CI(«) and SCI(x), here is a simple
example.

Example 2.1. Let {X,,n>1} be a sequence of exponentially dis-
tributed random variables with expectations A;'. Then for any « > 0, easy
computation shows that for every n > 1,

« 1
ELX L) =" (7).

n

It can be easily verified that if, for example, 4, = fn~*logn, then the
sequence {X,,n>1} is Cl(n) if and only if #>a and in that case it is
actually SCI{x).

Lemma 2.1 should already indicate that a sequence {X,, n > 1} may be
CI(«), respectively SCI(e), for some a >0, and yet fail to be CUI, respec-
tively SCUI. Here is an example that confirms this.

Example 2.2. Fix any 0 <a<1. Let {X,,n>1} be a sequence of
random variables with X, taking the values 0, n* and n with probabilities
1—n"% n™*—n"? and n? respectively.
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We first show that this sequence is CI(a); in fact, it is SCI(«). First of
a]lsE[IXnI:I = 1+% (n_na)‘ Since:ls Z;‘l=l 112 (l_la) S% ?=1 %N % —0asn- QQ,
it follows that sup,,, 37, E[|X,|] <. Also, 3=, }E[|X,| Ty
<¥2_, 4 < oo, thus completing the proof that {X,,n> 1} is SCI(x).

We now show that {X,, > 1} is not even CUL Indeed, we show that
for any A>0, sup,,, s X7, E[|1X;| Iy >, 1= 1. Given any >0, In, <
no(A) such that ng < A < (n, +1)* But then, forany i > ny, E[|X}| Iy, ] =
E[X]=1 +§'f (i—i%) > 1.1t follows that forn > no, 2 7. E[1X;| Ljxn]>

n—

=, whence one obtains that sup,,, ; >7-; E[|X| Ijx,> 512 1.

Remark. If we slightly modify the random variables in Example 2.2
as follows: X, =1 and, for n> 2, X, takes the values 0, log nand » with
probabilities 1 —(logn)~', (logn)'—n=2 and n~? respectively, we get an
example of a sequence {X,,n > 1} which is SCI(a) for @/l a> 0 but not
CUL

We are now ready to proceed to our main results showing sufficiency
of Cl(«), respectively SCI(«), for some « € (0, 1) (instead of CUI, respec-
tively SCUI) for weak law of large numbers, respectively strong law of
large numbers, to hold. The first theorem concerns non-negative random
variables with non-positive correlation and, in view of Lemma 2.1 and
Example 2.2, is an improvement over Theorem 2 of Landers—Rogge.”

Theorem 2.1. Let {X,,n> 1} be a sequence of non-negative random
variables satisfying E[ X, X, 1< E[X;] E[X;]1Vi#j. LetS,=3%7_, X,.
(@) If{X,,n=1}is Cl{z) for some a € (0, ;), then
Sn _E[Sn]

- —0 as n— o0 in L, and hence in probability.

(b) If{X,,n>1} is SCI(«) for some a € (0, 1), then

S.~E[S,1

- 0 as n — oo almost surely.

Proof. (a) For each n>1, let ¥, =X, Iix, <ny and T, =37, V. It
suffices to prove that

%(S,,—];)—»O in L,, %(E[S,.]—E[IZ.])—W M

%(T},—E[I},]) -0 inlL,. ®)
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We first show (7). Since the X,,, # > 1 are non-negative, we have

ot

and the last expression above goes to 0 as n— oo, since the sequence
{X,,n>1}is CI(e).
Turning now to (8), we actually show convergence to 0 in L,. Since

=[5 6 -2 =1 5 Bxasm)

0<E| 3 T-EILY | 3 BV 4o, S (BIGT,~ELG] EL)),

iskj

it suffices to show that

1 n
7 L EIYi1-0, ©®)
and,
1 n
lim sup, _, ,, 2, Z E[YY,-E[Y;] E[Y;1]D <0. (10)
To obtain (9), we note that

1 & 21 1 & 1 &
EDE e aER Nz ER

which is of the order of % and hence goes to 0 (as n — o0) since a < 3.
To prove (10) now, we use the facts that the X, n > 1 are non-negative
and E[ X, X,;] < E[X;] E[X,] for i # j to obtain

Lj=1
isj

n 1 n
_‘2. ¥ (BLYY-EXIEID<; ¥ (ELXX,-EIX]EL]1D
iy

<2 ¥ (ELX,) BLX,]-E[%] ELY,)
l,':]?:jl

LS (E[x1ELX,1-E[Y] E[Y,])
i,j=1

n-;

_lii (BLX,1—ELYD ELX,]+-; 3 2 ELY)ELX,1~EL%))

1
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- (4f vt 00

=1

1 1¢
+('"' E E[Y;] ;J;l E[XJI{XPJ“}])

f=1

<2 (;l’- ‘):::1 E[X:I{x.w“}])(; i E{X)] )’

j=1
and this last expression goes to 0 as n — oo because {X,,, n > 1} is CI(®).
(b) We define ¥, =X, Iix ¢ and T, =3/, ¥,, for each n> 1. The

argument proceeds essentially along the same steps as in the proof of
Landers—Rogge,” Theorem 2(ii). We prove

 (BLS,1-E[L]) -0 an
3, P, #1,} < (12)
and
1;._—5@_,0 almost surely. (13)
These will imply that
S,—ELS,]

" — 0 almost surely.

For proving (11), we note that, since the X, are non-negative,

E[S,]1—E[T,]
n

E[S,]-E[T.] _1¢
_E[S.]-E[ ]=’_“§l E[X Iy 0],

n
which goes to 0 as n— oo, since {X,} is SCI(x) (and hence CI(x)) with
a<j.

Condition (12) follows because

2 P{Xn¢Yn}= Z _P{X“>’n}s Z E[Xa";{z,,>u}]s Z E[anifn)nu}]
a=1

n=1 nm] n=1

and the last sum converges because {X,, n > 1} is SCI(a).
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To verify (13), which is just SLLN for the sequence {Y,}, we observe
that, since sup, ;7. E[¥,]<sup, i3I, E[X,] <oo, we have only to
prove that

where p,; = [cow(Y;, ¥,)]* [ see, for example, Chandra-Goswami,® Theorem 1,
and Chandra-Goswami for its corrected proof].
First note that

Y ?E[Yﬂ = Zl pE[X:I{x.su“}]+ 21 ?E[Xil{n'<1'.<n}]

n=1
© 1, &1
< Z ?ﬂ + 2 _E[an{n‘<X,.<n}]
n=1 n=1 7
A | =1
< Z =t Zl ;E[XHI{X,,>u“}]s

2
n=10

and both the sums above converge—the first sum converges because a <},
while the second converges because {X,,, n> 1} is SCI(x).

This means that 32, ;‘, p: < oo and therefore it suffices for us to show
that

i—-1

ad 1
i=2 j=11

Since the X; are non-negative with E[X,X;] < E[X,] E[X,]Vi#j, we
have, for i # j,
py < (ELX.X;]-E[Y.] E[Y;])* < E[X,] E[X;] - E[Y;] E[Y}]
= (E[X,]—E[Y;]) E[X,]1+E[Y, J(E[X;]-E[Y}])
SE[X)1E[ X1y, 3 ]+ E[X,] E[ X115, 5]

To prove (14) therefore, it suffices to prove that

i=1 1 w i-1 l

Y ¥ HEX]EXdysyl<co and 3 ) 5 E[X]E[X Iy ,] <co.

i=2 j=1 =2 j=1
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The convergence of the first series follows from the fact that

o 1—11

3 T 3B EXixzg )< 3, Bl ] ] 3 LK

iI=2 =1 [

1
<sup — Z E[X;]- Z - E[X Iy, . 4]
n By i=11

| - 1
< sup ;!;ZI ELX;] "El 7 ElXi x> ],

while for the convergence of the second, we note that

1 e 1
—2 E[X;] E[X,J{XPJ}] = Z E[le{xjw}] Z l—zE[X:]

D>

Z E[XjI{xj,,}] -sup — Z E[X,]

i=1

[see Remark 3 (111) of Landers—Rogge"]
1 & = 1
<2-sup - ), E[X,] ) —E[ XLy 1]
n NBica j=1171
This completes the proof of the theorem. O

Remark. It may be worthwhile to note that our proof of Theorem
2.1(a) shows that WLLN holds for a sequence {X,, » > 1} of non-negative
random variables with property Cl(«x) even if we replace the condition of
non-positive correlations by the weaker condition that

Y. (E[X.X;]-E[X,]E[X;])<0 forall .
"j=l
ij

For a general sequence {X,, n > 1} of random variables, noting that if
{X,,n=1} is CI(w), respectively SCI(x), then both {X},n>1} and
{X .»n=1} are ClI(x), respectively SCI{x), and applying Theorem 21 to
the sequences {X;,n>1} and {X;,n > 1} separately, we get the following
result, which is an improvement over Chandra® and Chandra—Goswami.”

Theorem 2.2. Let {X,,n>1} be a sequence of pairwise independent
random variables and let S, =3'7_, X
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@@ If {X,,n>1}is CKa) for some a € (0, 1), then

Sn -E[Sn] =0

- as n— ooin L, and hence in probability.

(b) If {X,, n> 1} is SCI(x) for some a € (0, 1), then

S» — E[S,]

" -0 as n— oo almost surely.

3, SOME DEPENDENT SEQUENCES

In this section, we show that even for certain kinds of sequences of
dependent random variables with suitable dependence structures, similar
truncation technique, as used in the previous section for pairwise indepen-
dent sequences, can be applied to derive WLLN under the condition CI(cx)
for appropriate «. In view of the fact that CUI is strictly stronger than
CI(a), these results improve Theorems 4 and 5 of Chandra.®

Theorem 3.1. Let {X,,n>1} be a martingale difference sequence of
random variables with respect to a non-decreasing sequence {#,,n>0} of
o-fields. If {X,,n> 1} is Cl(x) for some ax e (0, 2), then %2+ 0 as n~ o0 in
L, and hence in probability, where S, = 37_

Proof. Foreachnz>=1,letY, = X,,I{,ans,,a} and Z,=Y,— E[Y,|%,_,].
Then, using the martingale difference property of {X,, n > 1}, it is easy to
see that

Sy 1 & 1 &

—=- Z +‘ Z Xilyy>m—= Y ELXT s | B0 1.

n n; i= |= n i=1
Since {X,,n>1} is Cla), it follows that both ;37 , X;[ix .~ and
Iya E[X Tyxy >y | %i_,] converge to 0 in L, as n— oo, the latter using
Jensen’s inequality for conditional expectations.

To complete the proof, we now show that 1¥7_,Z >0 in L, as
n— 0.

We actually have convergence to 0 in L,. This is because

f[(54) |-t <

L

1
—2

the equality in the first step being a consequence of th.e cht that {Z,, n> 1}
is a martingale difference sequence and the inequality in the second step
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following from E[(Y,—E[Y,|®,_,1)*]=E[Y;]—-E[(E[Y;|%,-,1)*]- But
the fact that 5 37_, E[Y7] - 0 is just (9) in the proof of Theorem 2.1(a).
(W

Theorem 3.2. Let {X,, n> 1} be a “pairwise” m-dependent sequence
of random variables, that is, X, and X, are mdependent whenever
In—n'l>m. If {X,,n>1} is Cl(z) for some a € (0, ;), then SoBLB) L0 as
n — oo in L, and hence in probability, where S, = 3/, X;.

Proof. Foreachn>1,letY, =X, [ <.y and T, =3/, Y;. Then, as
in the proof of Theorem 2.1(a), we need to prove that

ls-Tys0 L, SESI-ELD-0 49
L (G-E(LD-0 I, (16

Since {X,, n > 1} is CI(a), (15) follows because
1& 12
'_lizl E[|x;-Y]] = ‘21 EN\X | Iygy>m 11— 0, as n-— .

For (16), we actually prove convergence to 0 in L, as in the proof of
Theorem 2.1(a), by showing that

lzZ E[Y}]1>0 as n-oo, (17)
and,
hmsup Z Cov(Y;Y;) <0. (18)
n-»c0 i] i
i<j

The proof of (17) is exactly that of (9) in the proof of Theorem 2.1(a).
As for (18), we use the hypothesis of pairwise m-dependence and the
inequality Cov(Y;, ¥;) < 4i%j* Vi # j to note that

n—k

Y Cov(Y;, Y,.s)

1 i=1

n

1 1
3 Z CO"(Yan =3

TMa

n—k n
Y i +k) < —”2’ y =

1 i=1 i=1

4
n

A

TMS

which is of the order of - =" and therefore — 0, since a < 1. 0




Cesare a-Integrability and Laws of Large Numbers I 667

Theorem 3.3. Let {X,,n>1} be a ¢-mixing sequence of random
variables, such that forsome 0 <f<landr>1,

n-? nf (¢(k))'=0 as n—-co. (19)
E=1

If {X,,n>1} is Cl(x) for some a e (0, ] where f =132, then as n - oo,
5= Fl%) E[S"] — 0in L, and hence in probability, where S, = 3'"_

Proof. LetY, and 7, be as in the proof of previous theorem. Noting
that 0 <« < f <3, the proof proceeds exactly as in the previous theorem
until it comes to proving (18). For proving (18), we use the fact that
Cov(Y,, ;) <2i%j°¢(j—i) Vi <j, [see Lemma 2, p. 171 of Billingsley®] to
obtain

n n—-1 a~k n-1 n
nlz jzl Cov(Y,, Y)) —lzkzl Z] Cov(Y, Y1) < 22 Zl Zk (i +k)* ¢(k)
[ =1 j= k=1 i=1
n—1 n—k
<275 i) < 2t z: (n—k)** §(k).

Now, if the condition (19) holds for r = 1, then from the above inequality,
we get that

n n-1
-y z Cov(¥,, ¥) <2021 Y. 4(k)
k=1

n-1 n—1
2?1y dky=2n"°Y P(k)->0 as n— oo,
k=1 k=1

On the other band, if the hypothesis (19) holds for some > 1 and if s> 1
is such that r ' 4+57! = 1, we then have, by Holder’s inequality,

n—1 n—~1 L sp-1 1
_ e+l {a+1)s ! r Y

n-1 1

< (n(a+l)3+l)% (kzl (¢(k))r)’

n—1 1
— na+l+}( Z (¢(k))r)”
k=1
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so that,

n n—1 %
L3 coum, <ot (T @@ )

R =1
i<j

(5 o)
<2 (% (¢(k))')
n-1 1

=2(n T GWY) -0 as nme,

by the hypothesis (19) and the proof is complete. O

The proof of the above theorem actually allows us to have the follow-
ing slightly modified version of the theorem.

Theorem 34. Let {X,,n>1} be a ¢-mixing sequence of random
variables and assume that there exist 0 <8 < 1 and r > 1 such that

i nf (¢(k))" =0 as n-—»oco.
k=1

Let B, =sup{’32:0<f<1,r>11im,  n? 3 i} (¢(k))" =0}. If {X,,
n>1} is Cl(x) for some a e (0, §,), then 585 ,0as n— oo in L, and
hence in probability, where S, =3"7_, X]

Proof. Since a < f,, there exist 0 <6 < 1 and r > 1 with 122> a, such
that lim,_, n? 372} (¢(k))’=0. Now the proof can be completed as
above with § =132, O

Th1s last theorem has the following corollary that says that for
¢-mixing sequences with exponentially decaying ¢, the condition CI(«) with
a < 3 suffices for WLLN to hold.

Corollary 3.5. Let {X,,n>1} be a ¢-mixing sequence of random
variables with ¢(k) <ap*Vk where @ and p<1 are constants. If
{X,.n>1} is CI(x) for some a € (0, 1), then SLf[—] —-0asn->oco0in L, and
hence in probability, where S, = 37_, X..

Proof One needs simply to observe that for any § > 0 and any 7 > 1,
n Y (@R <a’pn!(1—p"™* D) (1—p")' >0 as n— oo, so that, in
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this case, we have f, =sup {7°:0>0,r > 1} =1. Hence the result follows
from Theorem 3.4. O
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