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Soldering formalism in noncommutative field theory: a brief note
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Abstract

In this Letter, I develop the soldering formalism in a new domain—the noncommutative planar field theories. The soldering
mechanism fuses two distinct theories showing opposite or complimentary properties of some symmetry, taking into account
the interference effects. The above mentioned symmetry is hidden in the composite (or soldered) theory. In the present work it
is shown that a pair of noncommutative Maxwell-Chern—Simons theories, having opposite signs in their respective topological
terms, can be consistently soldered to yield the Proca model (Maxwell theory with a mass term) with corrections that are at
least quadratic in the noncommutativity parameter. We further argue that this model can be thought of as the noncommutative
generalization of the Proca theory of ordinary spacetime. It i1s well known that abelian noncommutative gauge theory bears
a close structural similarity with non-abelian gauge theory. This fact is manifested in a non-trivial way if the present Letter
is compared with existing literature, where soldering of non-abelian models are discussed. Thus the present work further

establishes the robustness of the soldering programme. The subtle role played by gauge invariance (or the lack of it), in the
above soldering process, is revealed in an interesting way.
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In recent years, noncommutative (NC) field theo-
nes {1,2] and in particular NC gauge theories have
generated a lot of interest due to their appearance in
the low energy limit in a system of open strings end-
ing on D-branes, in the presence of a background
field. The D-branes inherit the noncommutativity in

the string boundaries. Thus the ficld theories living on

theory, the basic computational scheme remains essen-
tially the same as that of quantum field theory in or-
dinary spacetime, qualitatively distinct behavior is ob-
served in the former. Some of the novel features of NC
quantum field theories are UV/IR mixing [3] induced
by non-locality, presence of solitons [4] 1 higher-
dimensional scalar theories, dipole like elementary ex-

the D-branes can be described by NC field theories,
which can yield string theoretic results in certain him-
its. On the other hand, by itself NC field theory is a
fascinating subject. Even though in NC quantum field
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citations [5], etc. This motivates further study of dif-
ferent aspects of field theories in the context of NC
spacetime. In the present Letter, we will concentrate
on some specific models in (2 + 1)-dimensional NC
spacetime,

Investigations in the context of quantum field theo-
ries living in (2 4+ 1)-dimensional ordinary (commuta-
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tive) spacetime have proved to be rewarding in the past
[6-8]. There exist several physically relevant models,
such as Maxwell-Chern-Simons (MCS) model, self-
dual (SD) models, fermions in interaction with gauge
fields (massive Thirring model), that are closely inter-
related and enjoy non-trivial duality (or equivalence)
relations between operators of the respective theories.
The MCS and SD models, aloag with their dual nature,
have been studied exhaustively in [6]. Their connec-
tion with the fermion theories via bosonization (in the
large fermion mass limit) was elucidated in [7]. A uni-
fied analysis of all these models can be found in [8].

A number of works, spanning all the above top-
ics, pertaining to NC generalization, have appeared
recently [9-12). An NC generalization of the MCS
model, obtained by exploiting the inverse Seiberg—
Witten map [1] and its subsequent duality with the NC
SD model was shown by the author in [9]. In the above
mentioned NC SD model, the Chern—Simons term is
structurally identical to the Chern—Simons term in or-
dinary spacetime. Bosonization of the NC massive
Thirring model, in the large fermion mass limit, was
carried through in [10], which reproduced a variant of
the NC SD model, where the Chern-Simons term is
the NC Chern-Simons term. Hence it was concluded
(see Ghosh in [9]) that duality between the massive
Thirring model and MCS model (in large fermion
mass limit), a property valid in ordinary spacetime
[6,7], is lost in NC spacetime. However, later it was
shown in [12] that the above chain of duality can be
maintained in NC spacetime as well, provided one
considers an alternate version of the NC MCS model,
proposed in [11], consisting of NC Maxwell and NC
Chern—Simons terms. Interestingly, [12] shows that
this NC MCS model is actually dual to the model ob-
tained in [10] via bosonization, thereby completing the
chain of dualities. All the above results are valid for
the lowest non-trivial order in ¢,,,—the noncommuta-
tivity parameter.

As far as O(f) computations are concerned, both
the above definitions of NC MCS theory in [9] and
[11] are equally viable-but distinct alternatives, with
[11] probably being the more popular one. On the
other hand, the issue of NC extension of the SD
model is tricky. If we follow the approach of the
Seiberg—Witten map (1], our way of defining the NC
SD model in [9] appears to be the natural one since
in the absence of any (manifest) gauge invariance,

the Seiberg—Witten map should not come in 1o the
picture. Since the SD model in ordinary spacetime is
a quadratic theory with no gauge symmetry, there will
be no significant effects of noncommutativity. This is
because the 0-dependent term will come only from
the x-preduct of two operators. These contributions
are ignored assuming that total derivative terms can be
dropped from the action. Hence the model in question
in [10,12], consisting of a mass term and NC Chem—
Simons term, should not be thought of as NC SD
model. In the present Letter, our reasoning will be
corroborated further in the context of another model
of a similar nature—the Proca model.

It is now time to put our work in its proper per-
spective. The soldering formalism [13-15], to be ex-
plained below, has been used extensively (see [16] for
an updated review and references therein), in the con-
text of theories in ordinary spacetime. We demonstrate
that it is adaptable to noncommutative spacetime as
well, leading to interesting and non-trivial results. The
present work is concemed with O(8) modifications
only. The noncommutativity brings in additional fea-
tures which can be directly related to similar behavior
in soldering in non-abelian gauge theories in ordinary
spacetime [17].

Furthermore, the noncommutative soldering, in the
present case, generates a particularly simple model,
which we would like to interpret as the Proca model
in NC field theory framework. We will argue that the
NC version of the Proca model should contain the
mass term and ordinary Maxwell term (with possible
0(6*) corrections, 6, being the noncommutativity
parameter), and not the NC Maxwell term, for reasons
exactly similar as above. In the NC theory considered
here, the NC Proca model appears in an exactly
apalogous situation where the Proca model emerges in
ordinary spacetime. Our framework in demonstrating
the above will be the soldering formalism.

Let us briefly introduce the idea of soldering for-
malism [13]. Combination of two distinct models to
construct a single composite model is interesting, es-
pecially if both the initial and final theories are phys-
ically relevant. The above result clearly shows a di-
rect connection between the parent and daughter the-
ories. However, pursuing this idea in a generic case,
in a systematic way, is indeed non-trivial. The sol-
dering formalism precisely does this job for a par-
ticular class of a pair of models, which manifest the
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dual aspects of some symmetry, such as chirality, self-
duality [14], etc. The soldering procedure can be car-
ried through for such a particular pair in a well defined
manner and the resulting soldered model, in a certain
sense, hides the above mentioned symmetry. In fact,
{he above mentioned equivalence between the parent
and daughter theories is quite deep rooted. This can be
established [15] in an alternative canonical transfor-
mation scheme, whereby in a Hamiltonian framework,
the soldered model can be broken up into the parent
dual models. Hence, the soldering formalism and the
canonical transformation prescription are complimen-
tary to each other.

1 start by introducing the SD-MCS duality in
conventional spacetime. For convenience we follow
the notations and metric (g*¥ = diag(l, —1,-1))
of [6]. The self-dual (or anti-self-dual) Lagrangians,
consisting of the ordinary and topological mass terms
are

Lsp= zf”fu * —f “PY fudp fy- (1)

These two models can be generated via bosoniza-
tion [7] (in the large fermion mass limit), from two
distinct fermion theories of mass M, having opposite
chiralities. On the other hand, the (corresponding dual)
MCS models [6] are described by

1 M
CMCS = ’—ZFaﬂFaﬂ + ?eaﬁyAaaﬁAy,
Fop=3uAp — 85A4. )

Note that total derivative terms in the Lagrangian
will be dropped throughout the present (classical)
discussion. Clearly, Eq. (2) is invariant under the
gauge transformation

Ay—= Ay + 9,2, 3

whereas no such manifest symmetry exists for {1).
However, one can solve the equations of motion and
constraints for both of the above models and show that
there exists the identification [6],

fu= euurauAT,

that reduces one model to the other.

Before discussing the role of soldering in the
Present context, let me introduce the soldering mech-
anism [14] in an explicit way for a generic situation.
Here an iterative Noether procedure is exploited to lift

the global symmetries of the constituent models to a
local symmetry in the composite model. The general
prescription is to express the variations of the actions
of the models, .A*(A) and .4~ (B) (that are to be sol-
dered), in the following form:

SA*(A)= ] &x IH(A)dka,
SA-(B) = f d*x 7 (B)d3*a, @

where J.F(A) and J(B) denote the generic Noether
currents corresponding to the global invariances under,

$A=8B=a. 5

Next, one introduces an auxiliary field C, with a
particular local transformation

6C =~ fla), ©6)
such that the following action

A(A,B,C)=At(A)+ A" (B)+W(A,B,C), (7)

is invariant under the local transformations given in
Eqgs. (5), (6). The last term in the action, W(A, B, C),
incorporates the interference effects. It is of such a
form that the variational equation of motion for C is
an algebraic one for €. Thus C can be eliminated
classically from (6), thereby yielding the cherished
action A5 (G) for the soldered model, where the fields
A and B occur in a gauge invariant combination G =
A—B,G=0.

In ordinary spacetime, application of the soldering
mechanism for the self and anti-self-dual models (or
there MCS versions), induces the Proca model [14],

2
L(G) = —iFW(G)FM(G) +2-6"G,,

1
7—5 (A,u - B#)- (8)

As mentioned before, we will concentrate on the anal-
ogous phenomenon in the context of noncommutative
field theory.

The NC spacetime is characterized by
[x?, x%) = i6%° ©®)

The *-product is given by the Moyal-Weyl formula

G“=

i
p(x) *4(x) = pq + 50 8,pdsq + 0©hH. (10)
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All our discussions will be valid up to the first non-
trivial order in 6.

The NC extension of the Chern—Simons action has
been derived in [18]. The NC MCS model is defined
in the following way [11):

l ~ A
M ~ A 2 ~ : =
oM A xa,di+ A4 Avrdr )], QD
) 3
where

F““v =auAAv - 39‘&# - iju ¥ A“p +i1€v % AIJ"

The structural similarity with corresponding expres-
sions of non-abelian gauge theory is very much ap-
parent. It will be revealed subsequently that the con-
nection goes deeper.

Utilizing the Seiberg—Witten map, to the lowest
non-trivial order in 4,

Anu = Au +90pAp (agAp, - %3“/‘0),
ﬁ‘p = Fy,p +9pa(FupFuo- - Apaa Fﬂu),

A=)~ %a*’" ApdoA, (12)

(where i and A are infinitesimal gauge transformation
parameters in NC and ordinary spacetimes), we arrive
at the following O(9) modified form of the NC
MCS theory, expressed in terms of ordinary spacetime
variables,!

- l
AL o= f d*x [—Z(F“"F,,,.,
1
+29,00' (F'uvaa'F#u - ZFWF“VFMU))
+ %e“““A”a,A,\], a13)
where F,, = 9, A, — 8, A, It should be remembered
that under the Seiberg—Witten map, the NC Chern—

Simons term exactly reduces to the Chern—Simons
term in ordinary spacetime [18] to all orders in #. In

} It should be kept in mind that in the conventional Hamiltonian
form of the field theory in (13), only spatial noncommutativity is
allowed. But this is not of direct concern to us in the present analysis.

2+ 1 dimensions, (13) further simplifies to
- 1 M
+
Ames = f &x [—ZF H P £ € 4,0,4,
1
- ‘s'opanaFquuv]- (14
The equations of motion are

3. (F* £ Me** ;) = 0(9), (15)

where explicit form of the O(@) term in the right-
hand side is not required for our present analysis. The
change in A,

Ay =ay, (16)
induces the following changes in the actions:

8 A5 4cs = [ Px{(I5 +19)4a", a7
where

I3, =—Fu £ Me* 4, (18)
79 = -%(F 20,0 +2(8 . FYF,,). (19)

A short-hand notation 0“YF,, = 6 . F has been
adopted.

Now the auxiliary variable C,, is introduced in
the action via the background interaction and contact
terms

- . 1 1
A=A—f5[(1+ﬂ‘”).c+5cz]. (20)
The transformation® of C,,,

8Cpy =y, — dya, — 819, Q1)

together with transformation of 4, in (16), changes
the actions by

- M
$A% 05 = f d’x [:i:?C"“’e#vla"
1
+o(-F E Me“”"AA)SJﬁ?]. (22)

The idea behind introduction of the fine tuned Cpy-
dependent counterterms in the two actions (that are to

2 We have checked that keeping 5Cyy = duay — dvay and
introducing more interference terms in the action does not solve the
problem at hand.
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pe soldered) is that the variations in the two actions
will be of opposite signature. This feature will give
rise to the invariance in the soldered action. In the
present instance, this is true for 6,,, = 0 but this does
not quite happen for non-zero 6, since the F,,-
term appears With the same sign in variations of both
the actions. However, notice that considerations of
the equations of motion (15) reveals that the factor
(~FB & Me** 4,) itself in (22) is of O(8) and
s0 4 (—F* & Me#* 43)8J) in (22) will contribute
1o 0(6%) correction. Thus, this term in the variations
of the actions in (22) can be ignored in our present
discussion. The rest of the variations in (22) are of
the form that is amenable to soldering. In fact, the
variations are same (up to O(@)) as their ordinary
spacetime counterpart,

Let us pause for a moment to appreciate the close-
ness of our analysis with existing results in the context
of soldering of non-abelian self dual models [17]. First
of all, the Euler kernel, that is the Noether current re-
ceives non-linear contributions as a result of noncom-
mutativity (or non-abelian nature [17]), which is quite
nataral. However, it is striking that the auxiliary field
Cyv ceases to transform in the conventional way and
the more involved transformation (21) is clearly “iden-
tical” to its counterpart in the non-abelian context [17].

We introduce the auxiliary C,,, field and write
down the total action as

A=A*(A,C)+ A7 (B.0)
=At(A)+ A (B)

- %[[CZ +{JH (A + I (B)
+ 7€) +19(B)} . C]. (23)

The C,,, field is constrained by the relation

1
Cu =5 (JHA) + I(BY + DA + D (B)).
(24)

This allows us to replace By, in favor of the basic
dynamical variables and we obtain the soldered La-

grangian,

A 1
£ - —grﬂ“m — B)F,y(A— B)

2
+ MTm —B*(A—B),

1
— gl(-FA" + M 4;)
+ (—F**(B) — Me*** By)]

X [F2(A)8uy +2(0 . F(A))Fpn(A)
+ FX(B)8,y +2(6 . F(B))F,u(B)]. (25)

It should be mentioned that the above step is somewhat
formal since the theory is obviously not Gaussian.
However, this is legitimate as far as classical consid-
erations go. Similar steps have also been performed in
(171

Note that the #-independent part of the action in
(25) is in the form that was advertised at the beginning.
In fact, this part is identical to the ordinary spacetime
result [14]. The remaining part of the action L5 in
(25) is once again dropped since it is of 0(4%). The
argument is exactly the same as the one given below
(22). Hence, the soldered theory is the Proca term with
0(6*) modification,

E(S) = -—%F#V(A - B)F,uv(A - B)
M? 2
+ A= BY(A - B), + 0(6%)
- —%F“"(G)F#u(G)

M2 2
+ TG“Gy +0©%), (26)

where, in keeping with our earlier notation in (8),
G = A — B. Thus, our major obsetvation is that, to
the lowest non-trivial order in @, soldering of the NC
MCS models is indeed possible and consistent. The
whole process is clearly reminiscent of the similar
phenomenon [14] in ordinary spacetime, with the
noncommutativity introducing a non-abelian flavor.

We are now faced with the question that how far
is it justified to identify the above massive vector
model, whose kinetic part is identical to the ordinary
spacetime Maxwell term, and not of the NC Maxwell
form, as the NC generalization of the Proca model, up
to O(6). Our views, favoring the above identification
are presented below.

There are some points in the present Letter that
need to be stressed in the perspective of the recent
paper [12]. First of all, in the present Letter, we have
taken the noncommutative generalization of MCS
theory that has been suggested in [11] and advocated
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in [12). To 0(6), we recover the action that is same as
that of the ordinary spacetime Proca theory. We claim
this to be the noncommutative generalization of the
Proca theory as well. Our contention is that since there
is no gauge invariance in the Proca mode! which is a
free theory having only quadratic terms in the action,
there will be no effects of noncommutativity, at least
0 0(9), assuming that total derivative terms in the
action need not be taken in to account. This ties up
very nicely with our previous work {9], where similar
reasonings were put forward for the noncommutative
extension of the self-dual model. This idea is firmly
based on the basic premises of the Seiberg-Witten
map where non-trivial nature of the mapping comes
in to play only in the presence of gauge invariance.
This means that, to 0(8), the model in (26) can be
elevated to the action of the corresponding NC model,

89 = [ a5 2
3 1 LY ¢ A = A
= d°x —§F (G) * Fu(G)
2

+ %—G“*Gﬂ), 27N
with the identification G = G, F**(G) = 946" -
8'G*, since there is no non-trivial Seiberg-Witten
map for non-gauge theories. Thus 9-dependent terms
in (27) can only appear from the »-products. However,
the theory being quadratic, the (@) contributions

coming from the #-products are total derivatives and
will vanish in the action and we are left with

&(5) 3 Lo o oy MEa,
S = d’x —‘S‘F'u (G)Fﬂv(G)"‘TG”Gu

+06%
1 M?
= fa'3x (—gF"v(G)Fuu(G) + TG'“G",)
+ 069, (28)

where in the last step we have recovered (26). Hence,
Eq. (27) (or effectively (26)) is the cherished form of
the noncommutative self-dual model.

Furthermore, from the soldering point of view, the
above criterion corroborates with the ordinary space-
time result where self-dual and anti-self-dual models
can also be soldered to generate the Proca model. This
has to be the case since the self-dual models are dual

to the MCS models, respectively. In the present Let-
ter, we have demonstrated the noncommutative coun-
terpart of MCS-Proca soldering. On the other hand
we can consider the noncommutative generalization of
the soldering of NC SD models to generate NC Proca
model. But, as we have argued, to O(8) there will be
no changes in any of the models participating in the
soldering process, since all of them are quadratic the-
ories and none of them are gauge theories, Hence, we
will reach the result, identical to the ordinary space-
time one, which also agrees with the conclusion pre-
sented here. This demonstrates the robustness of the
soldering programme as well as consistency in our
way of defining noncommutative generalizations of
self-dual or Proca theories.

Indeed, it would be interesting if the noncommuta-
tive soldering can be performed consistently for the
parent and daughter models where all of them are
gauge theories. Such a problem has been discussed
in [14] in the context of electromagnetic duality. ks
NC extension is under study.
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