Some Applications of Covariance ldentities
and Inequalities to Functions of
Multivariate Normal Variables
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We apply general covariance identities and inequalities to some functions of multivariate normal variables. We recover, in particular,
a recent covariance identity due to Siegel and provide simple estimates on the variance of order statistics. We also present some

computations.
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1. INTRODUCTION

The main purpose of this article is to point out some con-
sequences and particular cases of the covariance identities
and inequalities obtained by Houdré and Pérez-Abreu (1995)
and Houdré and Kagan (1995). The framework of these
papers was rather general and abstract, and it is felt that
isolating some important particular cases is worthwhile. This
is particularly true in view of potential consequences in sta-
tistical theory, as illustrated by results of Siegel (1993). Mo-
tivated by the analysis of futures contracts, Siegel found a
simple expression for cov[X;, min(X|, ..., X,)], where
(X, ..., X,)is multivariate normal. This covariance is the
numerator of the hedge ratio Ry, = cov[X;, min(X|, ...,
X,)]/var[min(X, ..., X,)], which quantifies the amount
to trade to minimize the financial risk. Aside from recovering
Siegel’s result, our approach also provides a simple upper
bound for var[min (X}, ..., X,)], and hence a lower bound
for the absolute value of R;,. Although an exact expression
for var[min(X|, ..., X,)] is known (see Afonja 1972), the
complexity of this expression makes it difficult to handle,
and our simple upper bound will provide a useful estimate.
Another advantage of our approach comes from its gener-
ality. It applies not only to the minimum but also to any
order statistic, thus providing, for example, identities in-
volving the median price in futures contracts or estimates
on Ryeq = cov[ X, med(X,, ..., X,)]/var[med(X,, ...,
X,)]. Moreover, we also give upper estimates for the variance
of order statistics of a multivariate normal vector (X, ...,
X,,) which should prove useful in other statistical contexts.

To focus on the most important distribution, we deal here
only with normal variables. Similar results hold for the Pois-
son distribution or the uniform distribution on the circle. In
fact, properly modified, these results hold for any infinitely
divisible distribution, because the main identity (eq. (1) in
Sec. 2) on which they are based has a version for such dis-
tributions (see Houdré, Pérez-Abreu, and Surgailis 1994).
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After submission of this article, we received a technical
report (Liu 1994) in which Siegel’s result was obtained and
extended via Stein’s identity. This technical report and the
present article have some overlap. Also, Anderson (1993)
presented a multivariate version of Stein’s identity from
which Siegel’s formula follows. The identity presented by
Anderson is a particular case of Equation (1) when ® (de-
fined in Sec. 2) is a linear function. Also, Rinott and Samuel-
Cahn (1994), following Siegel’s method, established the co-
variance result where the minimum is replaced by any order
statistic. As already indicated, our method also gives these
results for order statistics.

2. BACKGROUND

Let X = (X, ..., X,) ~ N(u, 2) be an n-dimensional
real normal vector with covariance matrix 2 = (o;;); j=1,..n-
Let &, ¥ : R” — R” have a sufficient number of square-
integrable (with respect to the Gaussian measure of co-
variance ) derivatives and let COV(®(X), W¥(X))
= (cov(¢;(X), ¥i(X))); j=1,...,p> denote the covariance ma-
trix of ®(X) = (¢1(X), . . ., (X)) and of ¥(X) = (Y1(X),

., ¥(X)), where ¢ denotes transpose. (Throughout, COV
and VAR are used for matrix arguments and cov and var
are reserved for scalar ones.) Let V be the gradient operator;
that is, if ¢ : R” = R, then Vo = (d¢/dx,, . .., d¢/dx,),
whereas for ® = (¢y,...,¢,) :R"=>R”, V&= (Vg,,...,
Ve,)!. Finally, for k = 2, let V¥ be the iterated gradient
operator; that is, for ¢ : R” > R, V¥¢ is the n* row vector
Vko = (8VF'e/dx,, ..., 0V ¢/dx,), whereas for &
=(@1,...,¢,)" : R" > R? VP is the p X n* matrix V@
= (Vkp,, ..., Vkp,)". Then Houdré and Pérez-Abreu
(1995, sec. 3) showed that

COV(<I>(X ), ¥(X))

- z ”k“ E{(V8(X))Z*(VXU(X))"} + Ry,

N=1, (1)

where E is expectation and 2% is the kth Kronecker product
of = with itself. The form of the remainder term Ry in (1)
is not important for our present considerations; let us just
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say that it is an expression involving the gradients of order
N+ 1.

In particular, from (1) and for & = ¥, we get the following
inequalities (we are comparing p X p matrices, and for such
matrices, A < B will mean that the difference B — A is a
positive semidefinite matrix):

2N (_ 1 )k+1

z k!

k=1

< VAR{&(X)}

E{(V'®(X))Z®(V*&(X))'}

2N-1 ( 1 )k+l

= 2

E{(V*®(X))Z®K(Vke(X))'}. (2)
The inequalities (2) were already obtained in the univariate
case by Houdré and Kagan (1995), whereas the right side
of (2), for N = 1 and for univariate variables, can be found,
for example, in the work of Chernoff (1981).

3. DEVELOPMENT

Inequality 1 of this section is a consequence of (2) when
N = 1. Before proving it, we make a remark and set a con-
vention. In what follows, the maximum is only a.s. differ-
entiable, since Lipschitz, but an approximation argument
will give the right side of (2), for N = 1 and for Lipschitz
functions. Furthermore, we also assume that the X;, i = 1,

, n, are distinct. If such is not the case, then P{maxX
= X, } should be divided by the number of elements in the
various distinct classes. A similar remark and convention
(properly modified) apply throughout the article, when
needed.

Inequality 1.
Then

,,,,,,

Var{maxX } = Z var{X; } P{max X = X; }

i=1

(3)

< max var{ X; }.

I<i<n

Proof- The right inequality is clear. To prove the left
one, we apply (2) to the function ® : R” = R defined via
®(x1, ..., Xx,) = max(xy, ..., x,). Because max(x, ...,
Xn) = 27t X:14,(x), where 4; = {max(x,, ..., X,) = X; }
and x = (x;, ..., X,), then V®X) = (I,,(X), ...,
I,,(X)). Thus by the right side of (2) with N = 1,

var{max X;} < E{(L4(X), ..., L (X))
I<i<n
X 2Ly, (X), ..., 14,(X))'}
=22 ai,jE{IA,-(X)IAj(X)}

=1 j=1
= E O'i,iP{maXX = X,’}.
i=1
The inequality var { max;.;., X; } < max,.,var{X;} is
known (see, for example, Cirel’son, Ibragimov, and Sudakov
1976). Only the first inequality in (3) appears to be new.
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The estimates obtained in (3) are of course mainly interesting
for dependent variables, and they extend (via an approxi-
mation argument) to Gaussian processes { X, },cr, where T
is a metric space with a dense countable subset. Estimates
of the type (3) continue to hold for any multivariate vector
X for which var { ®(X)} < CE{(V®(X))Z(V¥(X))'}, for
some constant C independent of ® : R” — R.

The inequalities just obtained also provide a “law of large
numbers” for the maximum of normal variables. If { X, } ,en
is a sequence of univariate normal variables such that
lim,.., 27 var{X;}P{max, ., X; = X;} = 0, then
lim, 1 (max,<;, X; — E max;.;-, X;) = 0 in probability.
This is in particular the case if lim,,,, max,.;<,var{ X; }
=0.

If the X; are replaced by | X;|, which by our convention
are assumed distinct, then the following inequality is ob-
tained.

Inequality 2. Let X ~ N(u, Z). Then

var{maxlX [} < Z var{X; } P{max|X | = | X;|}
i=1
< max var{X;}. 4
I<i<n
Proof. Because max |X | = max ., |X;| = 211 X I,

(X) = 2% XiIc(X), where B; and C; are the events
{X; =0,max|X | = | X;|} and {X; <0, maxle =X},
i =1, ..., n, we have V max .-, X;| = (Ip,(X)
— Ic(X), ..., I5(X) — Ic(X)). By (2), it follows that

var{max | X;|}
l<i<n

||M=

Z Gi,jE{(IB,-(X) - Ic,(X))
X (Ig(X) — I(X))}

o E{(I5(X) — I,(X))*}

=|Xi|}

Of course, if L : R” = R” is a nonsingular linear trans-
formation, then LX ~ N(Ly, LZL’) and

var { max(LX); }

I=<i=n

< Zn: var {(LX); } P{max LX = (LX), }
i=1

< max var { (LX), }. (5)
I<i=n
In particular, if S; = 2i-; X and if S = (Sy, ..., Sy),

then var{max,;<, S;} < 27 var{S;} P{max S = S;}
< max,,var{sS; }.



Houdré: Covariance Identities and Inequalities

Contrary to the normal distribution, the Poisson distri-
bution is not preserved under linear transformations. But
inequalities similar to (5) remain true and can be proved
directly by the methods of proof of Inequalities 1 and 2,
combined with the version of (2) for Poisson variables ob-
tained by Houdré and Pérez-Abreu (1995).

Another instance where (2) is potentially useful is to give
variance estimates on nonlinear transformations of multi-
variate normal variables (e.g., order statistics); for example,
for the median. Indeed, let X(;) < X(5) < + + + <X, where
Xy is the ith order statistic of the random sample X, .. .,
X,. Assume that 7 is odd and let med X = X{(,+1)/2;. Then
the following holds: var{med X } < 2}, var{X; } P{med
X = X; }. (To prove this last inequality, it is enough to write
med X in the form med X = 27_; X;/(meax-x; and to pro-
ceed as in the proofs of Inequalities 1 and 2.) In that context,
we can talk about the “universal domination” of the maximal
variance in that var { X;,} < max,g;c,var{X;}.

More refined inequalities can be obtained. For instance,
and still assuming that the | X;| are distinct, we have the
following.

Inequality 3. Let X ~ N(0, Z). Then

n 2 n n O :
var > | X;| <= Z > cr~,~arcsin[ b ] (6)
i=1 7!' i=1 j=1 Y bo-i,io'j,j
Proof. 2Z7-i | X;i| = 211 Xilixp0y — Z7=1 Xil{x<0-
Hence
V&(X) = (Iix20y — Iix<0)> - - - » Lx,20y — I x,<0})
and
var 2 | X;|

=1

n n
<2 2 0i;E{(Ixz0y — I{x<0))(i{x20) — I (x=0) }
i=1 j=1

I
M
M =

0l
~.
i

01/ (2E{I xz0)1x0) }

+2E{I x<0d(x<0y} — 1)

n n 1 1 .
=>>0 ( +— arcsm[ Tij }
i=1 j=1

0i,i0j,j

+ ! +larcsin[ 47 ] - 1)
2. Voiio,

n n o ;

> > ai,jarcsin[ = } ,
==l Voiioy;
where in obtaining the second equality of (7) we used a so-
called orthant probability formula (see, for example, Johnson
and Kotz 1972, pp. 93-95).

To this point, we have dealt only with the simplest case
of (2); that is, with one derivative and the upper bound
estimate. We now present an identity where a bit more of
the complexity of (1) is used. In what follows, we again as-

(7

967
sume that the X;,i=1, ..., nare distinct and that » is odd,
and we note that the median is a Lipschitz function.

Identity 4. Let X ~ N(u, Z). Then,

cov(é X, medX) = é é o;;P{med X = X;}. (8)
i=1 j=1

i=1

Proof. Because ®(X) = 2L, X;, and because ¥(X)
=med X = 2/ X;I{meax-x; is a Lipschitz function, we
have

Ve(X)=(1,...,1)
and
V¥(X) = (I{meax=x,}s - - - »

Hence, applying (1) and taking into account the fact that
the higher derivatives of ® are zero, we get

cov(R(X), ¥(X)) = E{(VR(X))Z(V¥(X))"}
_ E[

1

I{ medX =X,} ) .

M:

n
> Ui,jl{medx=x]}]
j=1

1

Il
M =
\ZE]

a,-,jP{medX=Xj}. (9)

[

1

As already noted by Houdré and Pérez-Abreu (1995), the
form of the identity used in (9) is Stein’s identity. On the
other hand, applying this method to ®(X) = X, and ¥(X)
= min,.;., X; does yields the results of Siegel (1993)—
namely, cov(X;, min X) =2}, ¢;; P{min X = X; } . More-
over, in view of the method of proof of inequality (1), we
get

~.
I

|cov(X;, min X)]|

var {min X }
- '21";1 al,,-P{minX :Xi}'
a 2?:] a,-,iP{minX = X,}

|Rmin' =

(10)

By now, it is clear that estimates similar to (10) also hold
when the minimum is replaced by any order statistic or
by certain functions of order statistics. For example, for
n odd and if the median is defined as previously, we
have

|cov(X;, med X)]|
var{med X }

- |Z?=1 Ul,iP{medX =X,'}l

- E?:] O'i,,'P{mCdX = X,}

lRmed' =

(11)

On the other hand, if » is even, let med X =
+ Xiwm/2)+11}/2. Then med X is no longer
statistic but rather a function of order statistics. However,
still writing ¥(X) = med X = § 27, X{I{X<,,/z) X3
+ I(X[(n/2)+x]=Xi}}’ we get V¥(X) = 2(I{X(n/2) X1}
+ I{X[(n/2)+l]=xl}’ T I{X(n/2)=Xn} + I{X[(n/2)+11‘Xn}) Thus via
Equation (1), cov(X;, med X) = 5 2% o1 {P{ X2
= Xi} + P{Xiw/2+1 = Xi } }, and via (2),

{Xw/2)
an order
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Table 1. Comparisons of the Right Side Inequalities in (2) for N = 1 and N > 1
and Some Specific Functions

f(x) E|f'(X)]?
x° 27
x5 2,625
ax’, r odd a-r?2.1.3.5...(2r - 3)
V3
P(x) on
-2
sin x ! +2e ~ .5676

2N-1 —1 +1E f(k) 2
S (CENF9X)|

1 k!

15

945

a3 (1PN, KP(1-8-5- - <N — k) — 1)
k=1 k!

~ @ (.8915)
67 P e

2 e+ (=)

251 T .4323

|cov(X;, med X)|
var{med X }
lzxr"=1 Ul,i{P{X(nn) = Xi}
+ P{Xins2)+y = Xi } }|
D b

'Rmedl =

=

(12)

where the denominator D is equal to

n

2 0ii{ P{Xwm2) = Xi} + P{Xiw2)+y = Xi } }

i=1

+22 2 0,iP{ X2 = Xis Xiw/2yen = Xj} -

i=1 j=1,j#i

It is also clear that expressions similar to (12) continue to
hold for, say, the range { max X — min X } or the midrange
{max X + min X }/2 of the random sample.

We next present some computations comparing the sim-
plest cases of the inequality (2). Table 1 (kindly provided
by Michael Hernandez) lists some functions f: R — R and
the upper bounds on the variances of these functions when
X is a univariate standard normal variable. The table also
compares the estimates E|f’(X)|? and

(=D EIfOX)|?
k! '

2N-1

z

k=1

In general, the second estimate gives a sharper upper bound.
Of course, for polynomials, and N large enough, the variance
is completely recovered. In Table 1, ®(x) is the standard
normal distribution.

4. CONCLUSION

We have presented a method to estimate the variance or
the covariance of functions of multivariate normal variables.
In particular, our method gives rather simple estimates for
the variances of order statistics. As an example, we also
showed how our method yields the covariance formula of
Siegel (1993).

[Received November 1993. Revised December 1994.]
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