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SEPARABLE PREFERENCES, STRATEGYPROOFNESS,
AND DECOMPOSABILITY

BY MICHEL LE BRETON AND ARUNAVA SEN!

We consider strategyproof social choice functions defined over product domains. If
preferences are strict orderings and separable, then strategyproof social choice functions
must be decomposable provided that the domain of preferences is rich. We provide
several characterization results in the case where preferences are separable only with
respect to the elements of some partition of the set of components and these partitions
vary across individuals. We characterize the libertarian social choice function and show
that no superset of the tops separable domain admits strategyproof nondictatorial social
choice functions.

KEywoRDs: Strategyproof, social choice, product domains, scparable preferences, de-
composable.

1. INTRODUCTION

A sociaL cHoict FUNCTION OR SCF is a mapping which associates a social
alternative with every profile of individual preferences defined over a set of
social alternatives. The value of a SCF at any profile is to be viewed as the
“optimal” or “most desirable” outcome in that state of the world. A SCF is said
to be strategyproof if no individual can ever profit by misrepresenting his true
preferences. An issue of fundamental importance in incentive theory is the
characterization of strategyproof SCFs.

The classic result of Gibbard (1973) and Satterthwaite (1975) asserts that if
the domain of preferences is unrestricted, then the only strategyproof SCFs are
the dictatorial ones. The principle of dictatorship is obviously an unsatisfactory
method for the resolution of conflicts of interest; the Gibbard-Satterthwaite
Theorem can therefore be interpreted as an expression of the enormous cost
imposed on social decision problems by incentive considerations. A natural way
to avoid this powerful negative result is to put more structure on the data of the
problem, in particular on the set of social alternatives and the set of individual
preferences. This direction has been pursued in several papers. For example,
Groves and Clarke in their classic papers (Groves (1973), Clarke (1971)) con-
sider allocation problems involving one private good and one public good with
preferences assumed to be quasi-linear. Moulin (1980) considers an environ-
ment with one public good and single peaked preferences. In all these contexts,
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an important result is that it is possible to avoid dictatorship without losing
strategyproofness. Even though there is a price that has to be paid to get
incentives “right,” it is not maximal in terms of the allocation of decisive power.

In this paper, we pursue this line of research further. We assume that a social
outcome comprises several components, say M, with each component represent-
ing an aspect of the outcome. An important assumption is that there is no
interdependence between the choices over different components, i.e. the set of
social alternatives is a product set. Two well-known models are covered by this
assumption. The first is the “characteristics” or location model. Thus, in a
political theory context, a political platform is a description of positions taken on
a variety of separate issues. In a consumer theory setting, commodities are
viewed as bundles of attributes and can be represented as points in a general
attributes space. The second model that the product set assumption encom-
passes is the model of externalities first formulated in Sen (1970) in the context
of the debate on liberalism (see Wriglesworth (1985)). Here, the number of
components is equal to the number of individuals with the ith component being
a description of individual i’s personal issue.

Given this structure over the set of alternatives, we shall assume that
individual preferences are “separable” over subsets of components in an appro-
priate sense. Each individual is assumed to have a partition of the set of
components. By “separability” we mean that it is possible to unambiguously
define preferences over components that together comprise an element of the
partition. We refer to such preferences as preferences separable with respect to
the given partition and to the preferences induced on subsets of components as
marginal preferences. Examples of such preferences are those generated by
additively separable utility functions. The structure of the partition is presum-
ably determined by the degree of substitutability and complementarity between
components. If social outcomes consist of three components, the levels of public
expenditure on nuclear defense, conventional defense, and education, it would
be appropriate to group the first two together as a single element of the
partition. Separability would then mean that preferences over defense spending
are independent of the level of spending on education and vice-versa. We -note
that the assumption of such preferences is common in applied consumption
analysis. The reader is referred to Deaton and Muellbauer (1980, Chapter 5) for
a more complete discussion of this issue.

In this framework, we establish three different types of results. First, we prove
a very general decomposability result in the case where all individuals have
preferences that are separable with respect to a common partition of the set of
components.> We introduce the key notion of a rich domain within the set of
separable orderings. We show that a SCF defined over this domain is strate-

?For notational simplicity, we shall present the result in the case where individual preferences are
separable over all components.



SEPARABLE PREFERENCES 607

gyproof if and only if it can be decomposed into “marginal” SCFs defined over
appropriate marginal preference profiles. Richness of the domain is therefore a
sufficient condition for the decomposability of a strategyproof SCF. An attrac-
tive feature of the definition of richness is that it is extremely general; in
particular it assumes virtually nothing about marginal orderings. A special case
of a rich domain is the domain consisting of all separable orderings, in which
case the marginal domains are all unrestricted. Using characterization results
for the marginal SCFs we derive several general characterization results, includ-
ing the main results of Barbera, Sonnenschein, and Zhou (1991) (henceforth
BSZ) and Barbera, Gul, and Stachetti (1993) (henceforth BGS). We also
indicate how many new results can be obtained along similar lines.

We next consider the case where individuals have different partitions of the
set of components. The domain of a particular individual’s preference orderings
is the set of all orderings separable with respect to his partition. We prove that a
SCF is strategyproof over this domain if and only if it is a SCF where the “right
to choose” every component is assigned to some individual. Furthermore, this
rights assignment must be consistent with the vector of individual partitions in a
well-defined sense. An extreme case occurs when an individual is assigned the
right to all components. This is dictatorship and is, of course, strategyproof.
However, depending on the partitions, there are other nondictatorial strate-
gyproof SCFs. In fact, we use the general result to obtain a characterization of
the libertarian SCF where each individual is assigned the right to his personal
issue. We show however, that if SCFs are required to be efficient as well as
strategyproof, then we are left with nothing other than dictatorial SCFs.

Our third set of results is concerned with the largest preference domain that
admits nondictatorial strategyproof SCFs. We show that the characterization on
separable domains can be extended to a larger domain that we call the tops
separable domain. A tops separable preference ordering with respect to a given
partition allows the identification of a maximal element of the subset of
components that comprise an element of the partition. However, we prove that
if the domain is extended beyond the set of separable orderings, then strate-
gyproofness implies dictatorship. This result suggests that a minimal degree of
separability, in particular the property of being able to unambiguously identify a
maximal clement for some subset of components, is a necessary condition for
the existence of nontrivial strategyproof SCFs.

The results described so far depend critically on the assumption that admissi-
ble preference orderings are antisymmetric. In a companion paper, Le Breton
and Sen (1995), we explore the consequences of relaxing this assumption.

The paper is organized as follows. Sections 2 and 3 introduce the notation and
the central idea of a rich domain respectively. Sections 4 and 5 are concerned
with the main decomposability result and various applications. Section 6 pre-
sents characterization results when individual partitions differ. Section 7 consid-
ers the issue of the maximality of the tops separable domain. All the proofs are
gathered in Section 8.
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2. PRELIMINARIES

The set I=A{1,..., N} is the set of individuals. The set of social states
(outcomes) is the set A =A, X --- X A,,. We assume that A is finite.> Elements
of A will be denoted by a,b,c,d,x..., where it is understood that a is the
M-tuple (ay,...,a,) with a;€A; for all j=1,...,M. For any kc{l,...,M},
Ay =TI, A; and elements of 4,,_, will be denoted by ay,_,, by ... etc.

Let P(A) denote the set of all strict orderings (no indifference) of the
clements of 4. Each individual is assumed to have a preference ordering over 4
represented by an element of P(A). However, all elements of P(A) need not be
admissible. For all i €1, we denote by Z'(2'C P(A)) the set of admissible
preference orderings of individual 7.

An N-tuple of preference orderings P=(P',P?,..., PN) where P' €9’ for
all i € I will be referred to as an (admissible) preference profile.

A Social Choice Function (SCF) f is a mapping f: [1,.,2' - A.

A SCF f is nonimposed if for all a € A4, there exists a preference profile
Pell,.,;2' such that f(P)=a.

Throughout the paper, attention is restricted to nonimposed SCFs.

For any preference profile P and any preference ordering P' €%, P|P!
denotes the preference profile (P',..., PI~ 1, P, P+, .. PN)

The SCF f is manipulable at P €T1,_,<" if there exists i €I and P' €9’
such that f(P|P))P'f(P). It is strategyproof if it is not manipulable at any
profile.

Let P'e2’. Then (P, A) is the maximal element in A according to P'.
Clearly, such an element exists and is unique.

The SCF f is dictatorial if there exists an individual / €I such that for all
Pell,., 2, f(P)=1(P', A).

The class of strategyproof SCFs clearly depends on the set of admissible
profiles. The classic result of Gibbard (1973) and Satterthwaite (1975) provides a
full characterization of this class where the domain is unrestricted.

THEOREM 2.1 (Gibbard (1973), Satterthwaite (1975)): Assume | A| > 3. Then a
nonimposed SCF f: [ P(A)Y — A is strategyproof if and only if it is dictatorial.

We now make precise the domain restrictions considered in this paper.

DEFINITION 2.1: The ordering P’ is separable if for all JE {1,..., M}, for all
a,b,€A; and for all x,_,yy_;€Ay_; (a;xy_)P'(b;,x,_;) implies
(aj’ yl\/[~j)P’(bj’ y/\/lfj)'

*This is a simplifying assumption in the sense that the results of this section remain valid if it is
assumed that a maximal clement of A exists for all preference orderings under consideration.
However, the requirement that orderings over A are strict sits uncomfortably with the notion that 4
is nonfinite. We therefore directly assume the finiteness of A.
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DEFINITION 2.2: The ordering P! is additively representable if for all j =
1,..., M there exist functions W]’: A; = R such that for all a,b € A(a #b), aP'b
if and only if £} W/ (a;) > XL W/ (b)).

We denote by & and 2 the set of separable and additively representable
preference orderings respectively.

REMARK 2.1: It is clear that &* C9. A separable ordering is not necessarily
additively representable (see Fishburn (1970) for a counterexample).

REMARK 2.2: Every P € induces an ordering P’ over A4; in a natural way:
for all a;,b; € A;,a;P'b; if (a;, x5 ) P'(b;, xp ;) for all Xy ;- The ordering P/
will be refelred to as the marglnal mdermg over A; induced by P

Given a marginal ordering P/ over A;, we denote by 7(P/, A j) the maximal
element in A; according to P/.

We note that every separable ordering induces a unique marginal ordering
over every component. However, the converse is not true as the following
example shows.

ExampLE 2.1: M =2, A, ={a,,b}, A,={a,,b,}. Consider the pair of
marginal orderings a,P!b, and a,Pib,. Any separable ordering which induces
these marginal orderings must rank (a,a,) first and (b,b,) last. However, no
restrictions are imposed on the relative ranking of (a,b,) and (b,a,). Thus, both
P’ and P' are consistent with P! and Pi where (a,a,)P'(a,b,)P'(b,a,)P(b,b,)
and (a,a,)P'(b,a,) Pi(a,,b,)P'(bb,).

3. RICH DOMAINS

In this subsection, we introduce and discuss rich domains, a concept that is
central to our paper. We say that a domain is rich if it satisfies two properties
called A and B which we describe below.

Let 9'ca. Let 9’ = {P 3P €9’ such that P' P} i.e., it is the set of
marginal orderings over component j induced by the orderlngs in 9.

Property A is a weak restriction on admissible marginal orderings. It requires
that every element in every marginal component set be maximal according to
some admissible marginal ordering.

DEFINITION 3.1: The domain &' c satisfies Property A, if (i) for all a; € A,
there exists P/ €2/ such that 7(P/, 4)) =a,.

Property B is the heart of the richness condition. It says the following.
Consider an arbitrary collection of admissible marginal orderings, one for each
component. Pick a component, say j. Then there exists an admissible ordering
(of the elements of A), such that the induced marginal orderings over every
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component coincides with the ones in the arbitrary collection. Moreover, com-
ponent j lexicographically dominates all other components in this preference
ordering. In other words, the preference relation between any two elements in
the set A4 that differ in their jth components, is determined completely by the
ranking of these distinct clements in the jth component set, by the induced
marginal ordering on the jth component. This is the content of part (i) of
Property B. Part (ii) of the Property requires the existence of another ordering
whose induced component orderings agree with the ones in the arbitrary
collection we started with, but with the property that component j is lexico-
graphically dominated by all other components. Thus, in the ranking of two
clements in the set A, the values of component j “matter” only in the event
that the values of all other components are the same.

DEFINITION 3.2: The domain 2'c2 satisfies Property B if, for all
(Pi,...,P{) el 2! for all j=1,..., M, there exists P', P'e’ with P} =
Py=Py forall k=1,..., M, such that: _

() Forall x,y€eA, [xj#yj]—i[xP’y exj{’j'yj]. R

(i) For all x,y €A, x#y, [xP'y and x;P.y;] - [either x, Ply, with x, #y,
for some k #j or xy_; =yy_;]

DEFINITION 3.3: A domain &' CJ is rich if it satisfies Properties A and B.

REMARK 3.1: Richness imposes no restrictions on admissible marginal do-
mains other than the extremely weak Property A. Richness requires instead that
available marginal orderings be combined in specific lexicographic ways. We
shall see in the next subsection how this lack of association between richness
and the marginal domains increases the applicability of our main result.

We now give some examples of rich domains.

ExamPLE 3.1: Let 9;, j=1,..., M, be an arbitrary set of marginal orderings
satisfying Property A. Let 2" ={Peg|P/ €9/, j=1,..., M}. In other words,
2" is the largest set of conditional orderings that induces marginal orderings
in the given sets 9]’ We shall refer to the set & W as the closure of the sets of
marginal orderings &/, j = 1,..., M. It is perhaps the most natural example of a
rich domain and it highlights a feature of rich domains that we have noted
before, viz. rich domains can be constructed from arbitrary marginal orderings.

EXAMPLE 3.2: The domains & and & * are rich. In each case the associated
set of marginal orderings over component j consists of all orderings over 4;.

ExamPLE 3.3: Once again, let 9;, J=1,..., M be an arbitrary set of marginal
orderings satisfying Property A. Let &% denote the set of all lexicographic
orderings, the set of whose induced marginal orderings over component j is &},
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j=1,..., M. In other words, let P/ €, ! for all j and pick a strict ordering of the
set {1,..., M}, say 1>2> - >M— 1 > M. There exists P' €L such that
I3j"=l’j’,j=l,...,M, and component k dominates component k+ 1 lexico-
graphically, k = , M — 1. Thus, aP'b (a # b) if and only if a;P/b, where j is
the lowest 1ndex such that a; # b;. It follows immediately that 9’ L is rich.
Moreover, 2% is a subset of the closure of the marginal orderings 9’,
j=1,...,M. In the specral case where M =2, @"! is the set of all separable
ordermgs that induce &, j = 1,2.

EXAMPLE 3.4: Let A; be strictly ordered by >,, j = s M. Forall a;,b; €
, let B(a b) {c €A, Ib >ic > a} The ordermg Pj' is single peaked (on

Component i) it for all a EA b EB(T(P A),a) = bPla;. Let 27", j=
, M, be the set of all smgle peaked mdermgq over 4; and let 23" denote

the closure of these marginal orderings. Clearly, 25" is rlch

We note an important feature of the domain 2°” that is relevant to
subsequent discussion.

DEFINITION 3.4 (BGS): The ordering P’ is multi-dimensional single-peaked, if
for all a,b €A, [b, EB(T(P' Ap,ap) forall j=1,. M- bPia.

Let I%" denote the set of all multi-dimensional single-peaked orderings. We
claim that 25" c23" and the inclusion is strict. Let P'€235”. Since P’ is
separable, it follows immediately that P’ is multi-dimensional single-peaked.
However, the converse is not true. To make matters simple, assume M = 2. Let
P’ be an ordering such that the ordering induced on component j depends on
the value of the other component, i. Assume, however that all these orderings
are single-peaked and have a common peak. It is easy to check that P €Z*",
but P ¢ D5" since it is not separable.

4. DECOMPOSABILITY RESULTS

Our objective in this section is to establish a fundamental connection between
strategyproofness and decomposability, a property we introduce below.

DEFINITION 4.1: Forall i€ 1, let 2'cZ. The SCF f: I1,.,2' > A is decom-
posable if, for all j=1,..., M, there exists a strategyproof SCF f;: T, , 2/ — A,
with the following property for all PeIl,_,2"' and for all a €4, f(P) —a
implies that a; = f,(P).

If f is decomposable then the SCF f;: I1, . ,9 — A; specified in the defini-
tion of decomposability will be referred to as a ma;gmal SCF.

Let P be an admissible preference profile such that each P’ is separable. We
know that P induces marginal preference profiles P, for all je{1,..., M}. If f
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is decomposable, then the jth component of f(P) is the value of a strategyproof
SCF f; at the marginal preference profile P;. Thus each component of f(P) is
determined by a strategyproof marginal SCF.

THEOREM 4.1: Let &' CZ be rich for alli € I. A SCF defined over the domain
[1,.,9' is strategyproof if and only if it is decomposable.

The Theorem says that strategyproofness over a rich domain of separable
preferences is sufficient to “separate” the choice over different components.

REMARK 4.1: Papers such as (BSZ) and (BSG) establish separability results
for particular domains where strategyproofness also implies a “tops only”
property. In the domains that they consider, if a SCF is strategyproof, then it
depends only on the maximal element of each individual’s preference ordering.
Theorem 4.1 and our formulation of the richness condition (in particular, the
fact that marginal domains are virtually unrestricted) makes it clear that the
decomposability issue and the “tops only” issue are logically independent. We
can always find domains where strategyproof SCIs are decomposable but the
marginal SCFs (and hence the SCF itself) are (is) not “tops only.”

REMARK 4.2: The notion of rich domain that we have is somewhat stronger
than what we require for Theorem 4.1. Our proof of the result uses only the
property described in Lemma 1 together with part (i) of Property B. It is
possible to combine these two requirements and obtain a strictly weaker notion
of richness that also yields decomposability. We believe, however, that this
notion is less transparent than the one we have; in our presentation, we choose
therefore to sacrifice a little generality in the interests of clarity.

REMARK 4.3: We have assumed at the outset in this paper that preferences
are separable with respect to every component. We could be more general in
this regard and assume only that preferences are separable with respect to some
partition of the set {1,..., M}. Thus, marginal preference orderings can only be
defined for various elements of the partition rather than for each component
separately. For example, components / and j may be “close substitutes” and it
may only be possible to define marginal orderings only over i and j lumped
together. Redefining richness appropriately, Theorem 4.1 can then be restated
in terms of decomposability across elements of the partition.

REMARK 4.4: One may wish to impose ethical requirements on the SCF over
and above strategyproofness. Suppose we require, for example, the SCF to be
anonymous and strategyproof. We can show quite easily (using Theorem 4.1)
that the SCF must be decomposable and that each marginal SCF must be
anonymous. Similarly, if we introduce a neutrality over components require-
ment, then the marginal SCFs must all be identical.
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5. APPLICATIONS

In this subsection, we provide several applications of Theorem 4.1. In each
case we impose some structure on admissible marginal domains and invoke
decomposability.

Consider the case where @' =2 for all i €I and |A,-| >3, j=1,...,M. We
know from Theorem 4.1 that the jth component of f is determined by a
strategyproof SCF f;: I1,.,2/ > A;. The domain &/ consists of all strict
orderings over A;. Since |4, >3, the Gibbard-Satterthwaite Theorem applies
and we have a dictator for every component. We therefore have the following
result.

THEOREM 5.1: Assume that | Al =3 forallj=1,..., M and that &' =2 for all
i €1. The SCF f: [Z 1N — A is strategyproof if and only if for all j €{1,..., M} there
exists o (j) € I such that f(P) = ((Py D, A),...,7(P5), A,) forall P[]V,

Now consider the case where A4; = {aj, bj} forall j=1,...,M and @' =92 for
all i1 for all i €. Applying Theorem 4.1 and a well-known result in social
choice theory, we deduce that each marginal SCF must be a voting by committee
rule.

DEFINITION 5.1: A committee is a pair C = (I,W) where W is a nonempty
collection of nonempty coalitions of I satistying the following property: U € W
and UcC U’ implies U' € W.

The following result is the main result of (BSZ).

THEOREM 5.2 (BSZ): Assume that A, ={aj,bj} for all j=1,...,M and that
D'=D for all i €1. The SCf f: [ 21N — A is strategyproof if and only if for all
jell,..., M} there exists a committee C = (1, Wj) such that for all P € 21V and
forallje{l,...,M}, f(P)=a; if and only if (i € I|a,P/b} € W.

REMARK 5.1: (BSZ) prove their result in a different though equivalent setting.
In their model, there is a set of voters /={1,..., N} and a set of issues
K={1,...,k}. Each individual has separable preferences (>,, > It etc.) over all
subsets of K including ¢. Thus > is separable if for all BCK and x & B,
B U{x} > B if and only if {x} > ¢. A voting scheme associates a subset of K
(possibly ¢) with every profile of separable preferences. The set of maximal
.elements according to > is denoted by B(>). A voting scheme f is voting by
committees if for each x € K, there exists a committee C, = (1, W,) such that for
all profiles (>, ,..., >y), x€f(>,,..., >y ) if and only if i eI|lx € B(>,)}
W,.. The main result is then the following: A nonimposed voting scheme is
strategyproof if and only if it is voting by committees.

In order to translate this into our model, let A4 i= {0,1} for all issues j K.
The set A=A, X -+ XA, contains a description of all the subsets of K. For
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example, G C K can be represented by a €A as follows: if issue j € G, then
a; = 1; otherwise a; = 0. A separable ordering > induces a separable ordering
over A. The marginal preference ordering over component j induced by > is
given by the following relationship: “1” P.“0” if and only if {j} > ¢. Observe also
that j € B(>) if and only if {j} > ¢. The equivalence of Theorem 5.2 and the

(BSZ) result is now transparent.

We turn now to a consideration of the domains described in Example 3.1. We
have noted that the domain Z*" is rich. It follows from Theorem 4.1 that in
order to characterize strategyproof SCFs over the domain [25”]", we need only
to characterize SCF over the single component domain [st PN, Following the
work of Moulin (1980), BGS provide a complete solution to this problem. They
show that a strategyproof SCF over this domain must be a generalized median
voter scheme (GMVS). The reader is referred to their paper for a precise
definition of this concept. An important feature of the SCF is that it is “tops
only,” i.e. its value depends only on the profile of individual peaks.

THEOREM 5.3: A SCF defined over the domain [ 25”1V is strategyproof if and
only if it is decomposable. Moreover, each marginal SCF must be a GMV'S.

BGS show that the decomposability result extends to SCFs defined over the
domain [Z"]V. We have noted that % contains orderings that are not
separable. The domain [25”]V is therefore, not rich and Theorem 4.1 cannot be
invoked directly. However, [257]Y c[2°"]Y and we know from Theorem 5.3,
the class of strategyproof SCFs over [Z*”]". Using these facts, it is easy to
extend the characterization result to the domain [Z237]V. The details are to be

found in the Appendix.

THEOREM 5.4 (BGS): A SCF defined over the domain [ 25" 1V is strategyproof if
and only if it is decomposable. Moreover, each marginal SCF must be a GMVS.

The results in this subsection illustrate the wide applicability of Theorem 4.1.
Several new results can be obtained by imposing specific structure on the
marginal domains and appealing to existing results on strategyproofness- on
these domains.

6. VARIABLE INDIVIDUAL PARTITIONS

In the previous section we analyzed the case where individual preferences
were separable with respect to all components. In this section, we turn to the
problem of characterizing strategyproof SCFs in a natural generalization of this
model. We shall assume that each individual has some partition of the set of
components and that her preferences are separable only with respect to each
element of the partition.

Let Q c{l,..., M}. We shall let Ay and Ay, refer to the sets [T, , 4; and
IT;; o A; respectively.
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‘DEFlNlTlON 6.1: Let =’ be a partition_ of the set {1,..., M}. The ordering
P'e P(A) is separable with respect to 7' if, for all Q € 7', a,,b, €A, and
Xm0 Yu-0 €Ay g:(ag, Xy o )Pby, xy_ o) implies (ag, vy - )P (bys Yas— o)

Let 2(7') denote the set of all orderings separable with respect to 7', Let 7"
denote the partition {{1},{2},...,{M}}.

REMARK 6.1: 9 =2(7"). (Recall that 2 is the set of separable orderings.) In
a manner analogous to Definition 2.2, we can define an ordering that is
additively representable with respect to the partition 7. We shall let 2 *(s")
denote the set of all such orderings.

REMARK 6.2: The set of additively separable orderings & =2 "(x"). The
following two properties also hold:

(i) For all partitions 7', Z(7") co(m").

(i) For all partitions 7', 24w ") c2 *(x").

Properties (i) and (ii) play a crucial role in the proof of Theorem 6.1. It is
important to note that 2 (") cZ(7") does not hold.

We now introduce another domain restriction.

DEFINITION 6.2: The ordering P' is tops separable with respect 1o ' if, for all
Qem',ap€Ag, Xy_0)Yu—g EAMAQ,(aQ,xM;Q)P’(bQ,xM,Q) forall b, €A,
implies that (a,, yy,— o) P'(by, yy o) for all by € Ay,.

Let 27(w) denote the set of all tops separable orderings with respect to .
REMARK 6.3: For all partitions 7/, Z(7") c27 (7).

REMARK 6.4: For any Q € ' and P'€2(w’) or @'(w'), we can extract
marginal orderings over the set A, as before. We shall denote this marginal
ordering by Pj. Likewise, if P'€27(7') and Q € @', we can unambiguously
define a maximal element 7(P‘, 4,,) over the set A,,.

We observe that if individual partitions differ, it is no longer possible to define
marginal preference profiles unambiguously. Consequently, decomposability is
no longer well-defined and the results of the previous section cannot be
extended. In order to make progress we need to impose more structure on the
marginal preference domains. We assume that these domains, defined appropri-
ately according to individual partitions, are unrestricted. This allows us to obtain
- sharp characterization results.

DEFINITION 6.3: A Rights Assignment Map (RAM) is a function o: {1,..., M}
-1,

For all partitions 7' and components j, let #(j, ) denote the element of 7'
to which j belongs.
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Given an N-tuple of partitions (7!,...,7"), a RAM o is consistent with
(w',...,aN)if for all jke{l,...,M}, k€t(j,«#7) implies o (k)= o (j).

In other words, if o(j)=1/and k €{1,..., M} is such that j and k belong to
the same element of the partition 7/, then it must be the case that o (k) =1
The definition will be further clarified by the example below.

EXAMPLE 6.1: Let 1=1{1,2,3}, M=4, 7' = ({1},{2),(3)), 72 = ({1,2}{3,4}) and
7 = ({1,3),{2,(4)). Then o() =1, ¢(2)=3, and ¢(3) = (4)=2 is a RAM
consistent with (7!, 72, 7). Another one is o(1) =0(2) =0(3) =0 (4) =1.

DEFINITION 6.4: Let o be a RAM. The SCF f is o-maximal if for all P in the
admissible domain, f(P)=a implies that a; =b; where b =7(P7, A) for all
jell,...,M)}.

If f is o-maximal then the jth component (j=1,..., M) of f(P) is the jth
component of the maximal element of P7%) in the set A.

THEOREM 0.1: Assume that A is finite and IAjI >3 foralljef{l,...,M)}). Let
(w',...,7mN) be an N-tuple of partitions of {1,..., M}. Let f be a nonimposed SCF
over T1,c, D (x"). Then f is strategyproof if and only if it is o-maximal for some
RAM o consistent with (!, .., 7).

The next result says that the same characterization of strategyproof SCFs
remains valid when the domain is extended to include tops separable prefer-
ences.

THEOREM 6.2 Assume that \A;| =3 forall j€{1,..., M}. Let (7', ..,7"N) be
an N-tuple of partitions of {1,...,M}. Let f be a nonimposed SCF over
[1,.,27(ar"). Then fis strategyproof if and only if it is o-maximal for some RAM o
consistent with (zr',...,7N).

We note that a sufficient condition for a RAM o to be consistent with .an
N-tuple of partitions (7',...,7") is the constancy of o over the partition
7= A, ,m'* Furthermore, this condition is necessary, when all the partitions
are the same. Thus, in particular if 7/, 7/ = 7° for all i,j €1, then w= 7 and
we obtain Theorem 5.1; in that case every RAM is consistent with (7!,..., 7).
More generally, if 7' = 7/ = 7* for all i,j €I then a RAM o is consistent if
o(j)= o(k) for all j, k belonging to the same element of the partition 7*. So,
in the extreme case where 7' is the trivial partition {1,..., M} for all i 1, the
only consistent RAMs are the constant ones. Of course, a SCF which is
o-maximal where o is a constant RAM, must be dictatorial. Observe finally that
constant RAMs are consistent with every N-tuple of partitions (7',..., 7).

;< ;7! denotes the infimum of the partitions (71), ., in the usual lattice of partitions.
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This is a restatement of the obvious result that dictatorial SCFs are always
strategy proof. In sum, the characterization of strategyproof SCFs in separable
and tops separable domains is closely related to a particular combinatorial issue
in the lattice of partitions.

DEerINITION 6.5: Let f be a SCF over some admissible domain. Then f is
efficient if for all admissible profiles P and for all a € 4, if f(P) # a, then there
exists i € I such that f(P)Pa.

What is the class of SCFs that is both strategyproof and efficient? The next
result addresses this question directly.

THEOREM 6.3: Assume that A is finite and | A>3 for all j €{1,...,M}. Let
(m!,...,7N) be an N-tuple of partitions of {1,..., N}. Let f be a nonimposed SCF
over T1; o, 2(ar"). Then f is strategyproof and efficient if and only if it is dictatorial.

REMARK 6.5: Theorem 6.3 remains valid when the SCF f under consideration
is defined over the domain IT,_,2"(#'). This is completely obvious in view of
Theorem 6.3 and the definition of efficiency.

Theorem 6.3 and Remark 6.5 confirm a recurrent feature of incentive theory:
“first-best” efficiency cannot be achieved when there are incentive constraints.
In our model, the incentive constraints are of the strongest variety, viz.
truthtelling must be a dominant strategy. It is perhaps not surprising therefore,
that the incentive constraints and efficiency cannot be simultaneously satisfied
except by dictatorship.

We now consider an important application of the resuits of this section.

DEFINITION 6.6: Assume M =N and let f be a SCF defined over some
admissible domain of preferences. Then, f is lbertarian if for all admissible
profiles P and for all a € 4, if f(P) =a then a; = b, where b = 7(P', A), for all
iel

Consider a model where A; is the set of personal issues of individual i. A
social state is merely a description of the personal issues of each individual.
Individuals are not assumed to be selfish and they may be sensitive to the
specification of the social state for other people in society. A SCF is libertarian
if the ith component of the optimal social state is the ith component of the
maximal element in A4 according to individual i’s preferences. Loosely speaking,
each individual gets to “choose” his own personal issue.

It was pointed out in Sen (1970) that the libertarian SCF defined over the set
of separable preference profiles with respect to the common partition 7? is
inefficient. Since then several papers have been written on the subject. The
primary objective of this literature has been to reconcile the desirable ethical
features of libertarianism on the one hand and its inefficiency on the other. Our
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aim is to show that the imposition of the axiom of strategyproofness leads to a
very natural characterization of the libertarian SCF.

For all i €1, let 7' be the partition ({N — {i}}, {i}). If individual i’s preferences
are separable with respect to 7', it means that his preference over his personal
issues are independent of what happens to the others.

COROLLARY 6.1: Assume that A is finite and lAjl >3 forallje{l,...,M}. Let
f be a nonimposed, nondictatorial SCF defined over the domain 11, _ ;2 (i"). Then
f is strategyproof if and only if it is libertarian.

The proof of Corollary 6.1 is an immediate consequence of Theorem 6.1—just
observe that the only RAMs consistent with (#',..., 7 ") are either constant or
of the form o (1) =i for all i €. Since f is assumed to be nondictatorial only
the latter RAM is admissible. However, Theorem 6.1 now implies that f is
libertarian. We note that Corollary 6.1 would go through if f were defined on
the larger domain [T, ,27(#").

The implication of Corollary 6.1 is that the only SCF that satisfies incentive
constraints over an appropriate domain (and subject to some mild ethical
conditions) is the libertarian SCF. This can also be reformulated according to an
implementation theory perspective. The libertarian SCF is the only SCF whose
outcomes can be achieved in a decentralized fashion in the presence of informa-
tional asymmetries between the individuals and the planner.

7. MAXIMAL DOMAINS

We know from Theorem 6.2 that tops separable domains of preference
profiles admit nondictatorial strategyproof SCFs. In this section we investi-
gate whether such SCFs exist over larger domains. Of course, the Gibbard-
Satterthwaite Theorem tells us that we cannot go all the way to the unrestricted
domain of all strict orderings. But can we extend the tops separable domain “a
little further” without losing either the strategyproofness or the nondictatorship
property? We shall, in fact answer this question in the negative.

DEFINITION 7.1: Let 7' be a partition of {1,..., M}. The domain &' C P(A)
is composite with respect to 7' if it satisfies the following two properties:

(i) 27(7") is a strict subset of 2.

(i) Let Q be a strict subset of {1,..., M} such that Q = Q'UQ*u --- U QX
where Q',0%,...,0% € 7. There exists a,,b, €Ay,(ag #by)cy o, dy o €
Ay_o and P'€Z' such that (ay,cy )P (xg,¢y o) for all x, €4, and
(by,dy )P (agy,dy o) ’

Thus, @' is composite with respect to 7 if it is a strict superset of the set of
all tops separable orderings with respect to ', Moreover, it is not tops
separable with respect to any nontrivial partition that is coarser than 7'. We
illustrate this notion by means of a simple example.
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EXaMPLE 7.1: M =2, A, ={a,,b\}, A,={a,,b,}, and 7= ({1},{2}). In this
case the set of separable orderings and the set of tops separable orderings
coincides. This is the set of the following eight orderings:

(1) aa,Pab,P'b,a,P'bb,, (2) a,a,P'b,ayP'ab,P'bb,,

(3) b,b,P'b,a,P'ab,Pla,a,, (4) bb,Pab,P'ba,Paa,,

(5) a,b,P'b,b,Paa,P'ba,, (6) ab,Paa,P'bb,Pba,,

(7) b,a,Pa,a,P'bb,Plab,, 8 ba,P'bb,Paa,Panb,.

An example of a composite domain is the domain consisting of these eight
orderings together with the ordering a,b,P'b,b,P'a,a,P'b,a,. We note that
this domain is strictly smaller than the domain consisting of all strict orderings.
(The former has nine orderings and the latter, twenty-four.)

REMARK 7.1: It is always possible to construct a composite domain by adding
a single additional ordering to the set of tops separable orderings. More
formally, for all partitions 7, there exists a composite domain @' with respect
to 7 such that |2'|=|27(x)|+ 1. We omit the proof of this claim.

THEOREM 7.1: Assume that A is finite |A,|=3 for all jE{1,...,M}. Let
(mw',...,mN) be an N-tuple ofpartmons of {1,...,M}. Forall i 1, let D' be a
domam composite with respect to a'. Let f be a nommposed SCF over I1,.,9'".
Then f is strategyproof if and only if it is dictatorial.

Theorem 7.1 establishes that the tops separable domain is the largest domain
that admits nondictatorial strategyproof SCFs. An alternative interpretation of
Theorem 7.1 is that a necessary condition for the existence of a nondictatorial
strategyproof SCF in a domain that includes separable orderings is that it has a
minimal degree of “separability” between components.

We conclude this section by making a brief comment on a certain feature of
the definition of a composite domain &' with respect to a partition 7'. We
require that @' include orderings that are tops separable with respect to any
nontrivial partition coarser than 7'. Suppose Z' was not tops separable with
respect to 7' but was so with respect to some nontrivial partition 7' coarser
than 7', The domain of profiles would then remain tops separable although with
respect to a different N-tuple of partitions. Theorem 6.1 would still apply and
the existence of a nondictatorial strategyproof SCF cannot be ruled out.

8. THE PROOFS

In this section we gather the proofs of the main results of the paper.

PROOF OF THEOREM 4.1: Sufficiency—Let f be a decomposable SCF, i.e., for
all je{1,..., M}, there exists a strategyproof SCF f;: I1,c,2/ — A, with the
following property forall Pe[l,.,2"' and a €4, f(P) =a 1mplles that a; =
f;(P,). To show that f is strategyproof, consider P €1, 7' i€l and P! E,Z’
and let us show that f(P)P'f(P|P'). Suppose on the contrary we have a =



620 M. LE BRETON AND A. SEN

f(P|P) # f(P)=b and aP'b. Since P' is separable with respect to {1,..., M},
there_must exist j&{1,..., M} such that a;P/b. Since f is decomposable
fi(P, |P)) = a; and f(P)= b However, this contradicts the assumption that f; is
strategyproof Slnce P P! and i were chosen arbitrarily, the proof is complete

Necessity—We proceed in a sequence of lemmata. According to Lemma 1 rich
domains permit a certain “lifting property” that is used repeatedly in subse-
quent arguments. '

LEMMA 1: Let @' be rich. For all P'€9', forallj=1,..., M and b € A, there
exists P €D’ such that
(1) PI I
(i) b = T(P,& A,) forall k +],
(iii) bP ¢ = bPic for all c € A.

PROOF: Since 9" satisfies Property A, there exists P! such that 7(P}, A,) = b,
for all k #j. From part (ii) of Property B, it follows that there exists P’ €9 i
such that P} =P for all k], P’ P/, and such that for all x,y €A, x+y,
[xP'y and X; P ;] = [either x, #yA and x,‘PkyA for some k #j or iy =V il
Pick c €4 such that b + ¢ and bP'c. Since b, Pjc, for all k +, b;P/c; implies
that bP'c. Suppose that ;P b and cP'b. Therefore, c,, i =by But then bP'c

implies that b, P]cj Wthh contradlcts the assumption that P’ = P/. Therefore,

bPic and P’ satlsﬁes properties (i)—(ii). Q.E.D.
Lemma 2 expresses a positive association property.

_ Lemma 2: For all P11, ;2" and a € A, if f(P) =a, then f(P)=a for all
Pell;.,2' such that aP'b — aP'b for all i € I and for all b € A.

PROOF: We first claim that f(P|P')=a. Suppose on the contrary that
f(PIP")=c +a. Then, either cPla or aP'c. In the first case individual 1
manipulates at P. If aP'c, then aP'c by hypothesis and 1 manipulates at P|P".
Thus, f(P|P") = a. Applying this argument repeatedly we conclude that f(P) = a.

0.E.D.

Lemma 3 asserts that f must satisty a conditional unanimity property.

LEmMMA 3: Let je{l,...,M} and let P T1

D' be such that 7(P/, A;) =a,
foralli €l Then f(P)=a,.

iel

PrOOF: Observe first that the nonimposition of f and Lemma 2 together
imply that f satisfies unanimity; i.c. if a = r(P', 4) for all i €1, then f(P)=a.

Suppose Lemma 3 is false. It follows that there exists je{1,..., M}, and
PeTl,.,;2' such that 7(P/, A)=a, for all i€l but f(P)=b where b, #a.
Applying Lemma 1, there ex1sts Pi 69 " such that

@ P/ =P,

(ii) T(P’ A) (a;,by_;), and

(iii) bP'c — bPic for all ¢ € A.
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Applying unanimity, we have f(P)= (a;, by,_;). However, since f(P)=0b, it
follows from (iii) and Lemma 2 that f(P) =b. Since b; # a; by assumption, we
have a contradiction. Q.E.D.

Lemma 4 says the following: pick j € {1,..., M} and consider two profiles that
induce the same marginal preference profile over j and that are unanimous over
the components M —j. Then f must take the same value at the two profiles.

LEMMA 4: Let je{1,.. M} For all i1, letA_f;", Plea' be such that (i)
P’ P! and (i) x},_; =yl ;=ay_; where x' = 7(P', A) and y' = 7(P', A). Then
f(P) f(P)

PROOF Let f(P)=b and f(P) = c. It follows from Lemma 2 that b,
Cpr—j=ay—;- We first claim that f(PIP") = f(P) Suppose on the contrary that
f(PIP )—(d ay ;) where d; +# b;. Either b;P!d; or d;P'b; must hold. In the
first case 1 manlpulates at PIPl since (b}, @y, ])P (dj,ay_ ,) In the second case,
we must have d P! b, since le P' and 1 manipulates at P since

(d;,ay_ ,)P( ;). Therefore d; —b Repeated application of this result
ylelds f(P) = f(P) Q.E.D.

Let a €4 and j€(1,..., M}. We denote by 9, m—; the set of P'in 9' that
(P, A) = d implies that dM j=dy_; We define the function foii i, 9/ -
A; as follows: for all P€I1,c,2, ,,_;,f(P)=>b implics that f, j(P) b, We
descnbe this construction more informally. Consider P; €1, ;. Now, pick a
profile P I1,.,2' such that :

() P’ P for all i €1 and

(i) T(P’ A) (dj,ay ;) where d} = T(P Ay forall iel
Suppose f(P)=b. Then fu AP = b

We make two important obsewatlons regarding the function f, ;. First, it
follows from Lemma 3 that the function is well-defined. Second, since 2
satisfies 4 it must be the case that for all P’ in 9’ there exists P’ E@a’ M-
such that P’ P/ so that the domain of the functlon is indeed IT, . , 2}

We now estabhsh a crucial property of the function f, .

LEMMA 5: Forall a € A and j €{1,..., M}, the function f, ; is strategyproof.

PROOF: Plck PEI_I,E,@’ and P/ €9} Let f, (P)=b; and f, (PIP)=c;.
Suppose ¢;P j b ie. f, ; is manlpulable Slnce 9'is rlch for all / €1, there ex1sts
PeTll,.,2' such that

(i) P/ = P/ for all I€1, and

(ii) T(P[ A) = (dj,aM ;) where d’ = 7-(Pj[, A) forall I 1.

Also since I " is rich, there exists P'eg’ such that:

() P’ 13/ and

(i) T(P’ A) —(d’ Ay j) where d’ = T(P’ A, )
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From the definition of f, ;, we deduce that f(P) = (b, ;> @y ;) and f(PIP) =
(¢j,ay ;). Since ¢; ij], it follows immediately that f(PIP YPI(P), ie. [ is
manipulable. Therefore it cannot be the case that ¢, P/b,. Since P, P! and i

J
were chosen arbitrarily, f, ; is strategyproof. Q.E.D.

LEMMA 6: For all PET11,.,9', foralla€ A, foralje{l,...,M}, f(P)=a
——)fﬂj(Pj) =a;. .

PROOF: Suppose not. Let P T1,.,9',a €A and j €{1,..., M} be such that
f(P)=a,but f, (P)+a; Since ' s rich for all i € I, there ex1sts Pell,.,2'
such that:

Q) P’ P/ forall iel,

(i) aM i d}w ; where (P, A)=d' for all i €1, and

(iii) aPic — aPic for all ¢ €A and for all i € 1.

Since f(P)=a, we deduce from (iii) and an application of Lemma 2 that
f(P)=a. It now follows from (i) and (i) and the definition of f,  that
fu (P =a;. We have a contradiction. Q.E.D.

LEMMA 7: Forallj €{1,..., M} and a € A, the function f, ; is independent of a.

PROOF: Suppose not. Let j€({1,..., M} and a,b €4 be such that f, (P)+
[y, j(P) for some P, €11, ,9. Smce 9’ is rich there exist P, P €11, ,9 such
that forA all iel,

o) Pl=P/ =P,

(i) aM i= fw where ' "= (P!, 4), and

(i) by _;=1vy,_ where o' =1(P', A),

(iv) for all x,y EA such that x; #y;, xP'y if and only if x;P y], and

(v) for all x,y €4 such that XY, xP'y if and only if xJPj V-

From (i), (i), and (iii) above, we obtain that f(P)= (cj,ap_;) and f(P)=
(d;, by,_;) where f, (P)=c; and f, (P)=d,. Let I be the smallest value of
iel such that ¢, # z, where z = f(P|P°,.. P ). Here we adopt the convention
that f(P|P°)=f(P). Such an [ must exist since f(PlP0 LPY)=f(P)=
(d;, by, - J) and ¢, #d; by assumptron Either z; P ¢; or chj z; must hold. Suppose
that it is the case that ch Applying (1V) we have z=f(P|P°,..., P

PIf(P|PY, .. P’ N =(c;"). Therefore lmampulates at (P|P°,..., P!~ l) Sup-
pose that ¢, P 'z s true. From (D), we have ¢;P/z;. Using (v), we deduce that
(c,, )= f(PIP0 ., PI"H)PIF(P|P",... P )—z Therefore [ manipulates at
(P|P°,..., P"). In both cases, we contradict the assumption that f is strategy-
proof. Q.E.D.

We are now in a position to conclude the proof of Theorem 4.1. Consider
jef{l,..., M} and two profiles P, P€I1,.,2' such that P = P Suppose f(P)
=a and f(P) =b. We have to show that a; = b;. From Lemma 5 we deduce that
fo(P)=a; and f, (P)=b;. But since P P we deduce from Lemma 7 that
fa. j(P) fb J(P). The proof is complete. Q.E.D.
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PrOOF OF THEOREM 5.4: We prove only the necessity part of the Theorem.
Let f: [Z571V — A be a strategyproof SCF. Since @57 c”, we can define the
restriction of f on the domain [Z5F]Y. This SCF must be strategyproof;
applying Theorem 5.3 we conclude that it must be decomposable with each
marginal SCF, f;: [ 9” —A;, j= ., M being a GMVS. We have noted
that a GMVS is a “tops only” SCF The proof is completed by showing that, for
all P[5IV, there exists P <[22V with (P!, 4A) = 7(P, A) for all i €1,
such that f(P) = f(P).

Let Pe[PSP]V and denote 7(P', A) by m'. Let Pe[251N be such that
(P, A)=m' for all i €. Let f(P)=a. Assuming w.Lo.g. that a,>; m; for all
J=1,...,M. Let J be a set of those components for which a, #m Pick
5,0< 6<(M— /M. Let U’ A - 0,11, j=1,..., M, represent a smgle-
peaked ordering on 4; normahzed so that the maximum and minimum ele-
ments are assigned values 1 and O respectively. Assume, in addition, that
U/ (a )=386/(M—1) and for all j €], U/ (r(a ) > 8M /(M — 1) where i(a ) is the
element immediately preceding a; accordmg to >;. Let P! be the strict
ordering represented by the ut111ty function X, ;U J W1th ties broken lexico-
graphically according to some fixed ordering of the components. It is casy to
verify that P’ is separable.

Let W(a) = {b € Alb,>, ¢; for all j €J}. We claim that bPla for all b & W(a).
Pick b & W(a) and observe that there must exist k €J such that a, >, b,. Now,

Y Ui(b) = Y Uia) =Ui(b) —Uia )+ ¥ (U/(b) — Uia))
JEJ JjEJ jeJ—{k}
= Ui(r(a)) ~Uila) — ¥ Yla)

jel—{k}

Since P’ is separable, aPic for all ¢ € W(a). Since P! is multi-dimensional,
single-peaked, aP'c for all ¢ € W(a). Therefore, aP'c — aP'c for all c €4 and
i€l Since f: [Z571N - A4 is “tops only,” f(P) =f(P) =a. Applying Lemma 2,
we conclude that f(P) =a. Q.E.D.

PrOOF OF THEOREM 6.1: Sufficiency—This is an easy consequence of the
sufficiency argument of Theorem 6.2 which we will describe in detail later. Let f
be a SCF over [1,.,27(w") and let f be o-maximal where o is a RAM
consistent with (7!,...,7"). In the proof of Theorem 6.2, we show that f is
strategyproof. Since 2(7') c27(x?) for all i, the restriction of f to the domain
I1,c,2(xr") must also be strategyproof. To complete the proof, observe that this
restriction is also g-maximal.

Necessity—We proceed once again in a sequence of lemmata, building on
Theorem 4.1. Let f be a SCF. For all P11,.,2(x") and i € I, we denote by
B'(P) the set {x € A| f(P|P") =x for some P' €2 "(x")}. We note that the set
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Bi(P) differs from individual i’s option set as defined in Barberd and Peleg
(1990) since individual i’s preferences are restricted to lie in the set ("),
rather than the individual preference domain 2(w").

In all subsequent lemmas used in this proof, f and f* are strategyproof SCFs
over the domains I, . ;2(x") and T1, . ;2 (r").

LEMMA 7: Forall Pe1],. ;247" andi €1, f4(P) = r(P', B'(P)).

PROOF: Suppose the lemma is false. Let P€T1,.,2(x") and i €I be such
that a = f(P) # (P, B'(P)) = b. Either bP'a or aP'b must hold. Suppose that
the former case applies. Since b € B(P), there exists P! €2 *(w°) such that
fCPIP") =b. Since 9*(7") c2*(w"), individual i will manipulate at P. Sup-
pose aP'b holds. Let Pl e (%) such that a;= T(P‘ A forall jefl,..., M}.
Clearly, a = 7(P, A). It follows from Lemma 1 that f A(PIP )=a. Accordmg to
the definition of the set B(P), a € B'(P). However, this contradicts the initial
supposition that b = 7(P’, B'(P)) since aP'b. Q.E.D.

We denote by f,o the restriction of f to the domain [Z (7 "]V, This is
meaningful because of Remark 6.2.

LEMMA 8: There exists a RAM o consistent with the N-tuple (7',...,7") such
that for all P € [ (w")I", f,«(P) = a implies that a; = b; where b = 7(P7V), A))
forallj=1,...,M.

PrROOF: Since f is strategyproof, f,_o must be strategyproof. It follows that
there exists a RAM o such that for all P[24(#)]Y we have: f «(P)=a
implies that a, = b, where b= 7(P"Y), 4)) for all j=1,..., M. To conclude, it
remains to prove that o is con51stent w1th (w7 Assume on the contrary
that it is not, i.e. without loss of generality there ex1sts i, ke{l,..., M} such that
a(j)=1, ket(j,rrl), and o(k)=2. Let Q={1,...,M}\{j,k} and let #!=
({1} S, k... {M}). Observe that 24#)co(w!) (Remark 6.2). Pick

b EAj and ak,bk €A, such that a; # b; and a; # b,.

Now let PegU#) X[ xO)PV! be such that:

() 7(P!,A,)=c, for all r€Q when [ =1,2 and for all r €{1,..., M} when
[=3,...,N;

(i) (b ay, Xg)P*(b;, by, xo)P*(ay, ak,xQ)P (a;, by, xy) for all x, €A4,; and

(iii) (a ak,xQ)P (b; bk,xQ)P (a b, xp)P'(bj,a,, xp) for all x,€A4,,.

(Observe that P! 6759(770))

Let f* be the restriction of f to the domain [N, Let P egaA(w?)
be such that a; = r(P!, A, jand a; = (P}, 4,). Since o(k) =2, a, = 7(P}, A,),
and o(j)=1, we conclude that fA(PIPl) (a;,a;,cy). Therefore, (a;,a,,cp)
e BY(P). Since (a , Ay, cQ) = (P!, B{(P)) it follows from Lemma 7 that f(P)=
(a;,a,cp). Let P2 €2 (x°) be such that b, = 7(P?, A,). It follows that for all
Pleg(x?), fA(P|P', P*)=x implies that x, = b,. Clearly, (P!, B\(P|P?))=
(b, by, cp). From Lemma 7, we infer that fA(PI}_’Z)=(bj, by, cp). Therefore,
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(b;, by, cp) € BA(P). Since (b}, by, cy)P*(a;,a,,c,) we deduce from Lemma 7
that fA(P)— (P2, B*(P)) is dlfferent from (a;,a,,cy). We have a contra-
diction. Q.E.D.

We now conclude the proof of the Theorem. From Lemma 8 we know that
there exists a RAM o consistent with (7!,...,7#%) such that for all P&
[24xO]Y, f(P)=a implies that aj=7(Pj"(f), A)) for all je{1,..., M} It
remains to show that f satisfies the same property when P is chosen arbitrarily
from[1;.,2(x"). Forall i €1, let a' = 7(P', A) and let T' = {k € t(j, w")}. Pick
Pleg4(#') such that:

(i) (P, A) =c where ¢, =al;

(ii) the minimal element in 4 according to P is d where d,, = al, i

(iii) for all x,y €A such that x,,_ ;i #yy,_ 76, XP'y iff X3 7iPyy_7iVyy_ g

Since 24(w') is rich, such an ordering can be found. From Lemma 8§,
f(P)=(aki,a%,...,a¥x) =a. Now, suppose aPz for some z€A. It follows
from (iii) that z,, 7 =a, . If zP'a, then there must exist Q €M such that
T'>Qex' and z,P)a,. However, this is impossible since a, =af, and a' =
7(P', A) by assumption. Applying Lemma 1, we have f(P) = a. This implies that
f is o-maximal. The proof is complete. Q.E.D.

PROOF OF THEOREM 6.2: Sufficiency—Let ¢ be a RAM consistent with the
N-tuple of partitions (7,...,7"). Pick i€l and let Q={j €{1,..., M}la(j) =
i}. Since ¢ is consistent with («/,...,7"), Q=Q'UQ?U - UQX where
Q0',0%...,0%ew’. Pick PeTIl;.,2"7(w") and let ay=17(P', Ay) for all
I=1,...,K. Let f be o-maximal. Then f(P)="(a,,x, ) for some x,_, €
Ay o where ay =(ag,...,ay). Let P'e@’(7"). It follows from the definition
of f that f(P|P")=(by, xy ) for some by € A,,. Since ay = 7(P’, Ay) for all
I=1,...,K, therefore, (ay, X, o) P'(by, X3y ) and i does not manipulate at P.
Since P i and P! were chosen arbitrarily, the proof is complete.

Necessity—Let f:T1,. ;27 (") - A be strategyproof. Let g be the restriction
of f to the domain IT,_.,2(w’). This is meaningful in view of Remark 6.3.
Clearly, g must be strategyproof. It is easy to verify that since f is nonimposed,
so is g. Applying Theorem 6.1 we deduce that there exists o consistent with
(m',...,w") such that g is o-maximal. We show that f is o-maximal as well.

Suppose not. Assume that there exists P [1,.,27(x") and i €I such that
f(P)=a, 7(P', A) = b, but a, # b, where Q ={j €{1,..., M}|o(j) =1i}. Since
is consistent with («',..., 7 "), by = (P, 4,). Let P! 69’4(#‘) be such that:

) b PQaQPQcQ for all ¢, eAQ\{aQ, Q}

(i) ay,_ QPM QcM o forall ¢y p €A, 5\{ay_p}, and

(ii) for all x,y €A such that x, , #yy, o, xP'y if and only if
RITE QPM oYm-0

Consider x EA \{a}, such that xP'a. In view of (i)- (iii), it must be the case
that x, =b, and x,_, =ay o. Since by = 7(P', Ay, x = (by, ay_,)
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P'agy, ay_p) = a. Therefore, aP'x — aP'x for all x €A\ {a}. For all
leI\{i}, let P'€z(n") be such that (P, 4) =a. Now consider the profile
Pell,.,2%x"). Since f(P)=a and aP'x — aP'x, it follows from Lemma 1
that f(P) =a. But f(P)=g(P) and g is o-maximal. Therefore, ay =b, and we
have a contradiction. Q.E.D.

Proor or THEOREM 6.3: The sufficiency part of the theorem is obvious. We
consider only the necessity part. Let f be a strategyproof SCF over the domain
I1,.,2(m"). We know from Theorem 6.1 that there exists a RAM o consistent
with (7',...,7") such that f is o-maximal. Suppose f is nondictatorial, i.e.
there exists j,k €{1,..., M} such that o (j)+ o (k). We will show that f is not
efficient.

Consider P € [2(7 D] such that:

@) for all I=I\{c ()}, (P, A,)=a, for all re{l,...,M}\{j,k} and
(a5, a )P} (a;, b )P (b, a, )P (b;,by) for arbitrary a, b €A such that a, #b,.

(i) 7(P7D, 4,) =a, for all re{l,...,M}\{j,k} and (b}, b)P7P
(aj, bk)l)jfrk(j)(bj, ak)l)j’lTk(j)(aj’ ak)‘

Since f is o-maximal, f(P)=(b,ay,ay_,; ). However, (a;, by, ay_ )
P(bj,ax, ay ) for all [ € I. Therefore, f is not efficient. Q.E.D.

Proo¥ Or THEOREM 7.1: Once again, we consider only necessity since suffi-
ciency is obvious.

Let f be a nonimposed strategyproof SCF over I, ,2' where @' is
composite with respect to 7' for all i € I. By assumption, 2(7") c2T(w") co'.
Let g be the restriction of f to the domain IT,.,2(w"). It follows from
Theorem 6.1 that g is o-maximal for some RAM o consistent with (z!,..., 7").

LEMMA 9: The RAM o is constant, i.e. g is dictatorial.

PROOF: Suppose the Lemma is false. Assume that there exists i €I such that
the set Q={j €{l,..., M[o(j) =i} is a nonempty strict subset of {1,..., M}. It
follows from the consistency of o with(z',...,#V)that 0 =Q' U Q?*U --- U Q¥
where Q',0%,...,0% € /. From (ii) of Definition 7.1, we deduce that there
exists ay, by €Ay (ay #by), cpy_g,dy g €Ay o, and P €D’ such that
(aQ,cM,Q_)Pf(xQ,cM,Q) for all x, €A, and (by,dy_ )P (ay,d,, ,). For all
j#i,let P/, P/ €2(x®) be such that:

() P} =P}, A

(i) cp- g =up o where u=1(P/, A),

(iii) dy_ o =vy_o where v=7(P’/, A), .

(iv) for all x,y €A such that Xo #Yos xljfy if and only if xQI_’éyQ,

(v) for all x,y €4 such that x, #y,, xP’y if and only if x,P}y,,.

We first claim that f(P)=(ay,cy_o). Suppose f(P)=w # (agy,cy_ o). Ei-
ther (ay,cy_o)P'w or wP'(ay,c), o) must hold. Suppose the former is true.
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Let P1ea(w®) be such that r(P', 4)=a. It follows from Theorem 6.1 that
f(P|P! ) =(ag,cy_p) so that i will manipulate at P. Suppose wP'(ag,cy_ ).
Let P1e2(m®) be such that r(P), A)=w. It follows from Lemma 1 that
f(P|P)) =w. Since P'€2(="), Theorem 6.1 applies to the profile P|P?, so that
Wyr— o = Cy—o- Therefore, (wy,cy_o)P(ay, ¢y ), which contradicts an as-
sumption regarding P

Let P'= P Our second claim is that if f(P)=z, then Zy—o=dy_o and
zp#ay. Let f(P)=z and let P'e€2(n") be such that (P, A)—Z From
Lemma 1, we have f(P|P’) =z. Applying Theorem 6.1 to the profile (P|PY), we
deduce that Zy- g =dy-o- Suppose f(P)=(agy,dy_g). Let P'ea(n®) be
such that b= (P, A). Applying Theorem 6.1 again, f(PIP)~(bQ,d,V, 0)-
Since (by, dy— o)P(ay,d,y, ) by assumption, i will manipulate at P.

Let f(P)=(z,,dy ). Let r be the first integer in the sequence {i, 1,2,.
—1,i+1,..., M} such that f(P|P),P',...,P")=w and W, # ag. Since by pro-
ceeding to the end of the sequence we obtaln (zg,dy_o) and since we have
proved z, #a,, we are assured of the existence of r. Moreover, r+1i since
P'=P'. Therefore, P',P'€Z(x"). Either w,P,a, or ayPiw, must hold.
Suppose the former is true. Applying (iv), we have wP a. Therefore, r manipu-
lates at the profile (P[P, P',..., P"~ ). In the latter case, we have agPiwy
using (i) and aP’w using (v). Therefore r manipulates at (P|P', P',..., P").
This proves the lemma. Q.E.D.

We now complete the proof of Theorem 7.1. Assume without loss of general-
ity that o(j)=1for all j €{1,..., M}. We claim that individual 1 is the dictator
over the entire domain [1,.,2'. Suppose the claim is false. Assume that
there exists PT1,.,;2' such that a =f(P)+ 7(P', A)=b. For all i+ 1, let
Piea(w®) be such that 7(P), A)=a. It follows from Lemma 1 that
f(P',P%...,P")=aqa. Let P'€z(x") be such that 7(P', 4)=b. Since Pe
[2(xON I, ,2(x"), we have f(P)=g(P)=b, from Lemma 9. Since bP'a
by assumption, individual 1 will manipulate at (P', P2,..., PV). This completes
the proof. Q.E.D.

GREQAM, Université de la Mediterranee, Aix en Provence, France, and CORE,
Louvain la Neuve, Belgium
and
Indian Statistical Institute, 7, Sansanwal Marg, New Delhi 110016, India

Manuscript received 1992; final revision received September, 1997.

REFERENCES

BARBERA, S., F. GUL, AND E. STACHETTI (1993): ““Generalized Median Voter Schemes and Commit-
tees,” Journal of Economic Theory, 61, 262-289.

BARBERA, S., AND B. PELEG (1990): “Strategyproof Voting Schemes with Continuous Preferences,”
Social Choice and Welfare, 7, 31-38.



628 M. LE BRETON AND A. SEN

BARBERA, S., H. SONNENSCHEIN, AND L. ZHOU (1991): “Voting by Committees,” Econometrica, 59,
595-609.

CLARKE, E. H. (1971): “Multipart Pricing of Public Goods,” Public Choice, 2, 19-33.

DEATON, A., AND J. MUELLBAUER (1980): Economics and Consumer Behaviour. Cambridge: Cam-
bridge University Press.

FISHBURN, P. (1970): Utility Theory for Decision Making. New York: John Wiley.

GIBBARD, A. (1973): “Manipulation of Voting Schemes: A General Result,” Econometrica, 41,
587-601.

GRoOVES, T. (1973): “Incentives in Teams,” Econometrica, 41, 783-811.

LE BRETON, M., AND A. SEN (1995): “Strategyproofness and Decomposability: Weak Orderings,”
Mimeo.

MOouLIN, H. (1980): “On Strategyproofness and Single Peakedness,” Public Choice, 35, 437-455.

SATTERTHWAITE, M. (1975): “Strategyproofness and Arrow’s Conditions: Existence and Correspon-
dence Theorems for Voting Procedures and Social Welfare Functions,” Journal of Economic
Theory, 10, 187-217.

SEN, A. K. (1970): “The Impossibility of a Paretian Liberal,” Journal of Political Economy, 78,
152-157.

WRIGLESWORTH, J. (1985): Libertarian Conflicts in Social Choice. Cambridge: Cambridge University
Press.



