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Abstract

The Kalman filter is a very popular tool for estimation and prediction in the context of a
state-space model. Sometimes it is necessary to formulate the state-space model in such a way
that the model errors are correlated. The error dispersion matrix may even be singular, In this
paper we establish a connection between prediction in the state-space model in this general
set-up, and estimation in the general linear model. Subsequently we use the update equations
in the general linear model to derive a generalization of the Kalman filter.
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1. Introduction

The state-space model is a versatile model for a sequence of vector observations.
This model has many applications in such diverse areas as control theory, time series

analysis and sample surveys (see [3,6,22]). The model is given by the recursive rela-
tion

X = th;_l + U;, | (11)
2 = Hix; + vy, (1.2)

fort = 1,2, ... In the above, the state vector x; is unobservable, but the measure-
ment vector z; 1s observable. The error vectors u#; and v; have zero mean with
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Cov(us,u;) =Q,(s,t), s,t=12,...,
Cov(vs,v;) = 0,(s,1), s,t=1,2,...,
Cov(us, v;) = Q,,(s, 1), s,t=12,...

Typically the objective is to predict the state vector x, or the measurement vector
2:+1 by alinear function of the observations zy, 72, . . ., z; and the initial state xq. The
linear predictor should have the smallest possible mean squared prediction error. The
matrices 0, (s, 1), @,(s,¢t) and @,,(s5,1), s,t = 1,2, ... are assumed to be known.
The state transition matrix B; and the measurement matrix H,,t = 1, 2, ... are also
assumed to be known. The vector x¢ may itself be an estimate, where the correspond-
ing estimation error is absorbed in u,.

Note that the combined dispersion matrix of any subset of the errors u; and v,,
t =1,2,... may be singular. The singularity may arise not only in the case of accu-
rate measurement, but also due to the very nature of the application. See [7] for an
illustration where estimation of the parameters of an autoregressive moving aver-
age model is done by using a state-space representation of the model, with singular
0,6, 1.

The Kalman filter [11,12] provides a recursive solution to the prediction problem
in the special case

I ifs=zu, _ I ifs=1z,
Quy(s:) =0 V5,1, 0, (s,0) = {0 otherwise, Q.0 = {0 otherwise.

Nieto and Guerrero [16] derived a filter for the general case. Haslett [9] used updates
in the linear model to derive the filter in the case of non-singular error dispersion
matrix. In this article we strengthen a result due to Duncan and Horn {5] which
links prediction in the state-space model with estimation in the fixed effects linear
model. Subsequently we use this result, together with update formulae of the linear
model given by Jammalamadaka and Sengupta [10], to provide an intuitive deriva-
tion of the best recursive linear predictor in the state-space model in the most general
case.

The paper is organized as follows. Section 2 provides a summary of requisite
results on updates in the general linear model, which are already available in the
literature. Section 3 provides the explicit link between prediction in the state-space
model and estimation in the fixed effects linear model. Section 4 provides the optimal
prediction formulae for the general state-space model by building on the results of
Sections 2 and 3.

We use the following notations throughout the paper: given a matrix A, its
transpose, rank, column space and generalized inverse are given by A’, p(4), €(4)
and A~, respectively. The orthogonal projection matrix onto ¥(A) is denoted by
P4, while the notation P41 is used in place of I — P4, the orthogonal projec-
tion matrix onto €(A)L. We will use the number of observations explicitly as
a subscript when needed, but drop the subscript whenever there is no scope for
ambiguity.
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2. Updates in the linear model

Consider the general linear model (y, X8, aZV) where the model matrix X and the
dispersion matrix o2V are possibly rank deficient. The linear zero functions (LZFs)
of this model are functions of the form !’y having zero expectation. The character-
ization of the best linear unbiased estimators (BLUES) in this model as those homo-
geneous linear functions of y which are uncorrelated with all LZFs is well-known
(see [19]). Bhimasankaram and Sengupta [1] had used this fact to obtain a relatively
uncommon but explicit form of the best linear unbiased estimator (BLUE) of Xp.
The expression follows from an adjustment for the covariance of y, a linear unbiased
estimator (LUE) of XB, with Py, B, which is in some sense a generating set for
all LZFs. The precise nature of the ‘covariance adjustment’ [19] is given by the
following lemma.

Lemma 2.1 [1}. Let z = (&' : V'Y be a random vector having first and second order
moments such that E(v), the expected value of v, is contained in the column space
of D(v), the dispersion matrix of v. Then the linear compound u + By is uncorre-
lated with v if and only if Bv = —Cov(v, v)[D(»)]" v, where Cov(u,v) = E(uv') —
E@E(M).

By choosing # =y and v = Py.y, we have the following expression for the
BLUE of X§.

XB=[I—-VPy.(PysVPy.1} PyL]y. (2.1)

Note that this expression is invariant under the choice of the generalized inverse,
as Py.y almost surely belongs to the column space of its dispersion matrix, and
the latter coincides with the column space of Py. V. Searle {20] arrived at a similar
expression for the BLUE from other considerations. Formula (2.1) lends itself to
simple derivation of some results such as (2.4) and (2.5). For the present article
however, the method of covariance adjustment with LZFs is more important than the
expression of Xf obtained by it.
The dispersion matrix of the BLUE of (2.1) is

DXp) = o2 [V — VPy1{Py VPy1) Py V]. (2.2)
If the residual y — fi? is denoted by e, its dispersion matrix is
D(e) = a*VPy [Py VPy1} Py.V. (2.3)

The expressions of the dispersion matrices given in (2.2) and (2.3) do not depend on
the choice of the generalized inverse, as the column spaces of Py1 VPy: and Py, V
are identical. The column spaces of the two dispersion matrices are as follows [1]:

G(DXP)) = €(X) NE(V), (2.4)
€(D(e)) = €(VPy1). (2.5)
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Jammalamadaka and Sengupta [10] derived updates in the linear model corre-
sponding to data and mode} changes, using LZFs and the principle of covariance
adjustment. Following their notations for data addition, we will explicitly use the
number of observations as a subscript. Let us denote the model with n observatio-s.
by Mp = (¥, XnB, ?V,)). f n =m + [ with [ > 0, we can partition the matrices
and vectors of 4, as follows:

_{¥m _ m — Vi Vi
) ) - %)

Consider the ‘initial model’ .#,, = (¥,,, XuB, 0*Vy,) which is augmented by the
observation y, to produce the ‘augmented model’ .#,. Each LZF in the model .#,,
is also an LZF in the model .#,,. The number of uncorrelated LZFs exclusive to
the augmented model, which are all uncorrelated with the common LZFs, is [p(X,, :
Vn) — p(Xa)) — [p(Xn : Vi) — p(Xn)]. The clue to the update relationships lies
in the identification of these LZFs. This number can be written as [; — /5 where
h=pX,:V,)—pXp, : Vi) and I = p(X,,) — p(X,,), the latter being the num-
ber of estimable linearly independent linear parametric functions (LPF) which are
exclusive to the augmented model such that no linear combination of these LPFs is
estimable in the initial model. Note that 0 < I, < 1; < /. The following cases can
arise.

A. 0 < I =1, that is, there are some additional estimable LPFs in the augmented
model, but no new LZF.

B. 0=1§ <, that is, ¥(X}) € €¢(X],). This case corresponds to some additional
LZFs in the augmented model, but no new estimable LPF.

C. 0 =1, = [}, that is, there is no new LZF or estimable LPF.

D. 0 < {3 <, that is, there are some additional LZFs as well as additional estima-
ble LPFs in the augmented model.

In Case B there is a vector w; of LZFs in .#,, such that (i) it is uncorrelated with em
and (ii) every LZF of .4, is a linear function of e,, and w;. The dispersion matrix of
this vector must have rank /; — I;. A choice of w; is

Wi =y, —XiBp — VoV O — XmbB,,). (2.6)

The expression on the right hand side is invariant under the choice of the generalized
inverse, as y,, ~ X, §,, almost surely belongs to the column space of its dispersion
matrix, and the latter contains the column space of V,,;. The vector w; can be inter-
preted as (i) the prediction error of the best linear unbiased predictor (BLUP) of y,
based on the model .#,,, and (ii) an unsealed recursive group residual for y; in the
model 4, (see [4,13]).

The update equations of the BLUE of X,,$ and its dispersion in the different
cases are given in [21]. A summary of the relevant results is given in the following
theorem.
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Theorem 2.1. Under the above set-up, let X, ffm and X, B, denote the BLUEs of
X p under M, and M, respectively. Then

@ In Case A, Xu B, = XmB,, and D(XmB,) = D(XpB,,). The BLUE of X, under
M, and its dispersion are

XiBy =3 — Vim VO — XmBr).
DXiB,) = 0™V —~ ViV DOy ~ X B) Vi V.

(b) In Case B,

XnB, = XmB,, — Cov(XpB,., w)[ D) Wy,
D(XpPB) = DX mBy) — Cov(Xn B, WD W)~ Cov(Xpm B i) .

©) In Case C, XuB, = XmB,, and DXmp,) = DXnB.,).

In Cases B and C, (X)) = ¥(X),). Therefore, Theorem 2.1 can be used to obtain
the update of the BLUE of any estimable LPF and its dispersion. In Case D, the
elements of y, can be permuted (together with those of X;, V;, and V) in such a
way that the data augmentation can be split into two stages, corresponding to Cases
A and B, respectively. Thus, Theorem 2.1 can be used to handle this case too.

The explicit algebraic expressions for the updates are given by Pordzik [18] and
Bhimasankaram et al. [2]. These expressions are somewhat complicated. Simpler
expressions can be found in some special cases (see {8,14,15,17]).

3. Link between state-space and linear models

Duncan and Horn [5] showed that the minimum mean squared error linear pre-
dictor of x; in the state-space model (1.1) and (1.2) is given by the BLUE of a vec-
tor parameter in a fixed effects linear model. We now prove a stronger result with
possibly singular dispersion matrices.

Theorem 3.1. Let b be a known non-random vector and x and z be random vectors
following the model

(:) - (Z)” (:) E (:) =00 (:) =V 3.1

where F, G and V are kﬁown matrices which may not have full row or column
rank and €(G') € €(F'). Then for an arbitrary matrix C of appropriate dimension
satisfying €(C") € €(F")
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(a) a minimum mean squared error linear predictor of Cx having the form A h +
Az + a3 must be unbiased in the sense that the expected value of its prediction
error is zero for all values of E(x);

(b) the BLUE of CB from the fixed effects model (y, XB, V), where

y=(*) wa x=(5).

is a linear predictor of Cx based on g and h, having the minimum mean squared

error; :
(¢c) the mean squared prediction error of the predictor of part (b) is the same as the

dispersion matrix of the BLUE of CB from the above fixed effects linear model,

Proof. LetAh + Aoz + a3 be alinear predictor of Cx. The matrix of mean squared
prediction error for this predictor is

E[Aih + Az +a3 — Cx)(A\h +Arz + a3 — Cx)']
=EA1h+Axz+as—Cx)E(A\h + Az + a3z — Cx)
+D(A\h + Az + a3 — Cx)
= [(A1F + A2G — O)E(x) + a31[{A1F + A2G — O)E(x) +a3]
+D(A1h + Az — Cx).

Since k is non-random, the dispersion depends only on A;. For a given choice of
A», the bias term can be made equal to zero by choosing A; = (C — A,G)F~ and
a3 = 0. Therefore, a linear predictor with minimum mean square prediction error
cannot have non-zero bias. This proves part (a).

In order to prove part (b), let A1k + A2z + a3 be a linear predictor of Cx and
B = ((C—A2G)F~ : Ay). Let us also write € = (u’ : v'). It follows that

E[(Aih + Az + a3 — Cx)(A1h + Axz +a3 — Cx)')
> E[(By — Cx)(By - Cx)']
=DMBy—-Cx)=D (Be - ((C—-AG)F Ay (g) x— Cx)
= D(Be) = BVB'.
Let C = LX and B, = LR where
R=1I-VPy. [Py VPy.}) Py.. (3.2)

According to (2.1), B,y is the BLUE of Cf§ from the model (y, Xf, V). Moreover,
B.X = LX = C. Thus,

BVB'=(B-B,+B,)V+(B-B,+B,)
=B.VB, + (B — B,)V(B —B,) + B.V(B - B, + (B - B,)VB,.
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The dispersion of the BLUE Ry given in (2.2) can be written as VR'. Eq. (2.4) implies
that ¥(VR') € #(X). It follows that VB/, can be written as XK for some matrix K.
Hence,

(B—B,)VB,=(BX—-B,X)K=(C-COK=0.

Consequently

E[(A1th + Az +a3 — Cx)(A1h + Ayz + a3 — Cx)']
> BVB =B.VB, + (B — B,)V(B—-B,)
> B,VB, = E[(B.y — Cx)(B.y — Cx)'].

This proves part (b). Part (c) follows from the simplification
E[(B.y — Cx)(B,y — Cx)'] = B,VB, = LVR'L',

the last expression being the dispersion matrix of the BLUE of C§ from the model
¥ Xg V). O

Duncan and Horn [5] had proved a version of Theorem 3.1 after assuming that
F=1I L=1Iand V is block-diagonal and non-singular. The best linear predictor
described in this theorem happens to be the best linear unbiased predictor (BLUP).
It has the smallest mean squared error among all predictors (not necessarily linear or
unbiased) when the joint distribution of the errors is normal.

Egs. (1.1) and (1.2) up to time ¢ can be written as

=Xy +e, 3.3)
where y, = (x] : x} : --- : x}) and
Bixg I 6 --- 0 —u
5 T = S A B (e
0 0 ... -B I -
Y= 2 . X = H, 0 - 0\l € = Vi
2 0 H, --- 0 V2
\z'; ) KO 0 - H) \ v /

This is a special case of (3.1) with F non-singular. We shall denote D(e,) by V;, and
use the notation .#,; to describe the model (y;, X;7;, V;).
The state update and measurement equations up to time ¢ can also be written as

Y = (X; : 0)y, 4 + €. 3.4

We shall denote by ./ﬂf the model (y;, (X; : 0)y,.., V;), which also fits into the
framework of (3.1). However, the condition €(C") € 4(F’) of Theorem 3.1 means
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that the result can be used only to predict linear functions of y,, and not for all
functions of 7, ;.

The state update equations (1.1) up to time ¢ and the measurement equations (1.2)
up to time ¢ — 1 can be combined into the single equation

Yijr—1 = Xr|t~1}’: + €tjs-1, (3.5

where 7, is as in (3.3) and

(B,oxo\ (I 0 5 0\ (*ul\

-B, 1 0 —uy
ytlt—l = 0 , Xriz—l = 0 —B; I], €lt-1= —u;

Z) H - 0 0 -y

\%—IJ ‘ \ 0 - H_i 0 \-vi-1)
We shall denote D(e;;—1) by Vy,—1 and use the notation M1 for the model

O'sjr—15 Xtje-1%;, Ver—1). This is also a special case of (3.1) with F non-singular.
Recursive prediction of the state vector consists of the following cycle of steps.

(I) Given the prediction of x,_{ based on xo, 21, - . ., Z;—1, and the dispersion of the
prediction error, predict x; and the dispersion matrix.
(Il) Given the above quantities, update these by taking into account the additional
measurement Z;.

The foregoing discussion and Theorem 3.1 implies that the best linear predictor of
the state vector and at every stage is given by a BLUE in a suitable ‘equivalent’ linear
model. This is where the update equations of Theorem 2.1 have a role to play. Using
the ‘BLUE’ of x,_; and its dispersion under the linear model (3.3) (with  replaced
by r — 1), we can find the ‘BLUE’ of x; and its dispersion under the model (3.3)
recursively by tracking the following three transitions:

(1a) from #,— to 4| _,
(Ib) from ,/ilj_l to M t:—1, and
(D) from M,y to ;.

Haslett [8] considered the updates in steps Ia and Ib together, and consequently
needed a more complex update result, after assuming non-singularity of the disper-
sion matrices. Theorem 2.1 will be adequate for our purpose, even though the set-up
is more general (with possible singularity of the dispersion matrices). Because of the
correlation of errors, it is necessary to update the prediction of all the state vectors
(x1,...,x;) when z; becomes available, even though the interest is mainly in the
latest state, x;. ‘
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We use the following additional notations:

Quantity Notation, when computed from .#;,—1  Notation, when computed from .#/,
BLUE of y, i‘r[: 'S\’tlr—l

Dispersion of above Py, Pl -1

BLUE of xs(s < 1) '%JEI -i'slt—l

Dispersion of above Py, Py

The update equations for prediction are given in the next section.

4. Optimal recursive prediction in the state-space model

Step Ia: transition from M;—y to ﬂj_l. Using Theorem 3.1 for (3.3), with ¢
replaced by ¢t — 1 and C =1, ¥,_y,_; and Py_;—1r—1 may be identified as the min-
imum mean squared linear predictor of y,_; based on x¢, 21, . .., Z;—1, and the dis-
persion matrix of the corresponding prediction error.

The transition from .#, 1 to .# ;r_l should involve no change in the BLUE or

the dispersion matrix, since the model .# ;r_l is only a reparametrization of .#;_1.
Applying Theorem 3.1 to (3.4), with ¢ replaced by ¢ — 1, we observe that the best
linear predictor and the dispersion matrix of the prediction error remain the same.

Step Ib: transition from ,/ff;‘_l 10 M11-1. Applying Theorem 3.1 to (3.5), 9,y
and Py_r—1 may be identified as the minimum mean squared error linear predictor
of y, based on xg, 21, - - -, z,—1, and the dispersion matrix of the corresponding pre-
diction error. Their relationship with the corresponding quantities in the preceding
step are given in the following theorem.

Theorem 4.1. Under the set-up described in the foregoing discussion and the nota-
tions of Section 3, the minimum mean squared error predictor of ¥, on the basis of
anzls ey Zt—1 iS

rm1 = (”’:“‘"), (@.1)

Xtlr—1
where
Bixo — X1)—1 \
Box1je—1 — X2)4-1
~ A~ 'l A A
Xtji—1 = tht—-llt—l _Ktlt—lvr_—l Bt—-lx:—2|t—1 — X111, (4.2)

71 — Hix—1

\ Zr—l"Ht—lft—llt—l }
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and
K1 = Cov(er—1, —uy)
=(0,t,1):--:Q,(—1,0) 1 =Q,(t, 1) -+ 1 =@, (1, 1) 2 -+ -
—qu(t’t - 1))’-

The corresponding prediction error matrix is

_f Priww—1 Prg-ip—IM, 43
Progp-1= (MtPI...tFllt-l Pije-1 ’ “.3)

where

Py = MtP!...t—llt—lM; +0,(,t)— K;|;_1VI__1K:|:—1, (4.4)
and

M=0:0:-.-:B)+K;, |V,  X;).

Proof. The model .#;_ is obtained from the model Jl;’_l by including some
additional observations. Note that p(X;,—1} — p(X;-1 : 0) is equal to the size of the
vector x;. Therefore, there is no new LZF. The BLUE of y,_; and its dispersion
remain unchanged. This justifies the form of $,,_; given in (4.1) and the top left
block on the right hand side of (4.3). We can use part (a) of Theorem 2.1 in order to
obtain %;j;—; and Py;_1 in terms of the previously computed quantities. Specifically,
we have

—BX; 1)1 + Xrp—1 = 0 — Cov(—u;,€1)[D(€e;—1)]”

X(Vr—l-Xt—l;J"r—llt—l)
. —Kilt—lvt__l()’:—l - X:—l';’r—llt—l)’

D(=Bi&r_1ji—1 + Xepe—1) = Q,(t, 1) — K:It-—l V,_1DOy— — Xt—lf’:_ux_l)
XV, 1K1
=Q,(,1) - K;It—lVr_]t—lelt—l +K;|z—l Vi1 Xi—1
XPI...:—II:—IX;_lV,__IKtit—l'
The first equation implies (4.2). In order to simplify the second equation, we borrow
the notation y; from Theorem 2.1, which happens to be numerically equal to 0 in this
case. We have, by virtue of zero correlation between the LZF (y,_; — X;—1%,_1),—1)
and the BLUE .ftt_”t_[,
CovEey—1, Xe—1)1-1)
= Cov(y; + Befs—1y—1 — Kjp,_ Vi 01 — Xe1%y-1pp—1)s Br—1)0—1)
= Cov(y;, Xr—1)1—1) + BPr_1)r—1
= COV(Y:,yt-l)[DO’t-])]_COV(yz_l»fr—-llt—l) + BPi—yp1-1.
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The last expression follows from the fact that x,_1|,_ is a linear function of y,_;. It
follows that

Cov(®;jr—1, %r—111—1)
=K1V, CovXo— 19 _qpp—1s Br—1y=1) + BiPy -1
=K,V Xe— Py 1p—1(0:0: - o D) + ByPy .

Consequently

Q,,0)~ Ky, |V, | Kj—1+ K Vi X1 P11 XV, Ky
= D(Btir—lh—l) + Pr|t—1 = COV(Btft—lu—l,i'ﬂt—l)
—Cov(Zyyr—1, BeXr—1)0-1)
=Pyt +BProyp 1B, — (0:0: - :BYPy 1 X,_ |V, K-
Ky Vo Xe—aPy—1i-1(0:0: - : B,Y — 2B,P;_q,_1B,.
By rearranging the terms of the first and final expressions, we have (4.4).

In order to obtain the off-diagonal blocks of the right hand side of (4.3), we write
the first equation of this proof as

—B.3; -1+ Ep—1 =y — Ky Vi 0y — Xee1%im1-1)
=Y _K;|:—1V;__1(yr—1 —Xi—17:-1)
+K;|t_1vt__1Xt—l(i}t——l|t—l - ?t—l)-

It is easy to see that the combination of the first two terms of the last expression is
uncorrelated with y,_;, and hence, with §,_;,_ Therefore,

K;“_]Vt__IXr—IPI...t—llt—l = Cov(K:p—lVr_-le—l(T’t—llt—l RIS TSY
= Cov(—BiZ( -1 + Rtjp—1s P11 |
=—0:0:---:B)P1_ ;111
+Cov(Xejr—1, Pr—1)r—1)-

Therefore,
CovErj—1, Fr—1pp-1) = [Kjpp 1 Vi Xe—1 + (0:0 - - BOIPy 4101
This completes the proof of (4.3). [

Step II: transition from My to M. Note that §,, is the minimum mean squared
error linear predictor of y, based on xg, 71, ..., Z;, and Py_ is the is the dispersion
matrix of the corresponding prediction error. In order to obtain these from 3,,,_; and
P;_+)1—1 we once again use Theorem 3.1. The updates are obtained as a special case
of part (b) of Theorem 2.1. The results are summarized in the following theorem.
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Theorem 4.2. Under the set-up described in the foregoing discussion and the nota-
tions of Section 3, the minimum mean squared error predictor of y, on the basis of
b 71 T 4 P £ Is

'I}"m = i’r[r-«l +Pl...t|t-lR:[D(Wt)]_Wt, (4.5)
where
W =2; — ?.:lt, (4.6)

Bixo —®1je-1
Boxyj—y — X2pe-1

Zip = HiXe—1 + K, Vth—l Bix:—1ji-1 — *qge-1 | » 4.7
71 — HiXy—1

\2t—1 — Hy1%1-1)—1)
K; = Cov(ei—1,vr)

= (_qu(ly t)l s _qu(t’ t)l : Qv(t, 1) e Q_u(t’ t— 1))1'

D{wy) = Q,(t,t) — K;Vﬁt_lKr + R:Py_1)-1R; .
and Ry =(0:---0: H,) - KV, _ Xy,

The corresponding prediction error matrix is
Py sie—1 = Pi.tje—1 — P1_aji— 1R DW)] " RePy, g1 4.9

Proof. The model .#, is obtained from the model .#;j,_; by including some addi-
tional observations. Since X;|;_) has full column rank, there is no newly estimable
LPF. In the present case, the recursive group residual of (2.6) is identified as

Wy =2 — HiZy—1 — Cov(vy, €rr-1)[D(€je—1)1" Opje—1 — Xepe—195-1):
which simplifies to (4.6). By rewriting w, as
W =9 — K;V;[,_letlt—l - Ht(frlz—l - X)) + K;V,_"_lxt|t—~l (f’:|z—1 -7
= [v, — K;VH,_lezlt—l] —Rt(f’tit—1 — ¥
we obtain its dispersion matrix by (4.8). Finally,
CoV(Fepy—1, W1) = Cov(iy,_1, ve — KV, €rj—1 = Re (Tt ~— 1))
= —COV(fJ,l,_l,R;('?,],_lr - = _D(?tlr—l)R;-

Substitution of w,, D(w;) and Cov(i‘f,],_l, W,), in part (b) of Theorem 2.1 produces
(45 and 4.9). O
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Under the special case given in Section 1, the update equations of Theorem 4.1
and 4.2 simplify considerably. In this case it is enough to use updates of the predic-
tion of x; (instead of the entire y,) and the corresponding prediction error matrix. The
equations obtained from Theorem 4.1 are

-1 = BiXe—1)1-1, (4.10)

Py =B,Piii—1B, + Q,(1,1). 4.11)
The equations obtained from Theorem 4.2 are
X =%y + Ptlr_—lH: Q,(t, 1)+ HtPt|t—1H’[)_(zt — Hxy 1), (4.12)

Py =Py — Pt|t—1H;(Qv(tv 1)+ HtPt|t—1H:)—HtPt]t—l- 4.13)

The recursive relations (4.10)—(4.13) constitute the usual Kalman filter. The general-
ization of this filter for correlated errors is given by (4.1), (4.3), (4.5) and (4.9). These
«clations hold for ¢ > 2, The initial iterates are )0 = B1xo and Pyjo = @,(1,1). The
minimum mean squared error linear predictor of the measurement vector z; (in terms
of xo, 21, . . ., Z+—1) and the dispersion matrix of the corresponding prediction error
are given by (4.7) and (4.8), respectively.

Derivation of the usual Kalman Filter (in the simplest special case) from the
update equations of the general linear model appears in {21], along with many other
applications of these equations.
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