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Abstract

Available results on optimal block designs for diallel crosses are based on standard linear model assumptions
where the general combining ability effects are taken as fixed. In many practical situations, this assumption
may not be tenable since often one studies only a sample of inbred lines from a possibly large (hypothetical)
population. In this paper, a random effects model is proposed that allows us to obtain an interval estimate of
the ratio of variance components. We address the issue of optimal designs by considering the L-optimality
criteria. Designs that are L-optimal for the estimation of heredity are obtained in the sense that the designs
minimize the maximum expected normalized length of confidence intervals. The approach leads to certain
connections with an optimization problem under the fixed effects model.
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1. Introduction

Diallel crosses as mating designs are used to study the genetic properties of inbred lines in plant
breeding experiments. Plant breeders frequently need overall information on average performance of
individual inbred lines in crosses, known as general combining ability, for subsequent choosing of
the best amongst them for further breeding.

Consider a hypothetical population involving a large number of lines and crosses so that all means
are estimated without error. Crossing a line to several others provides the mean performance of the
line in all its crosses. This mean performance, when expressed as a deviation from the mean of
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all crosses, is called the general combining ability of the line. Any particular cross, then, has an
expected value which is the sum of the general combining abilities of its two parental lines. The
cross may, however, deviate from this expected value to a greater or lesser extent. This deviation is
called the specific combining ability of the two lines in combination. In statistical terms, the general
combining abilities are main effects and the specific combining ability is an interaction. Griffing
(1956) defines diallel crosses in terms of genotypic values where the sum of general combining
abilities for the two gametes is the breeding value of the cross (i, ;). Similarly, specific combining
ability represents the dominance deviation value in the simplest case ignoring epistatic deviation; see
Kempthorne (1969) and Mayo (1980) for details.

In practice, often a plant breeder carries out a diallel cross experiment by selecting p lines
randomly from a population consisting of a large number of lines. In such a case, the expected
value of an observation Y;;, conditional on the realized value of the general combining ability and
specific combining ability, arising out of cross (i, ) involving lines i and j,i < j; i,j=1,..., p can
be modeled as

E(Yy)=p+g' +4g; +5p (L.1)
where u is the general mean, gi (g7) is the realized value of g; (g;), the general combining ability
effect of sampled ith (jth) line and sj; is the realized value of s;;, the specific combining ability
effect of cross (i, /).

Accordingly, in experimental mating design, the analysis of the observations arising out of #
crosses involving p lines may be carried out based on a model

Yt_ﬂ=|u+gl+gj+e£jls l<j’ (1.2)

where Yj; is the observation arising out of the /th replication of the cross (i, j), g; is the ith line effect
with E(g;) =0, Var(g;) =a; =0, Cov(g;,g;) =0, p is the general mean and e;; is the random er-
ror component, uncorrelated with g;, with expectation zero and variance ¢2 > 0, 1 <i < j < p. Here
#,0? and aj are unknown parameters. Also, the specific combining ability effects are
assumed to be negligible and have been absorbed in the error component; see Hinkelmann (1975)
and Hinkelmann and Kempthorne (1963) for a discussion on this assumption. In model (1.2), u is
a fixed effect while g;, g; (i <j) and e;; are random effects.

The basic idea in the study of variation among observations arising out of crosses is its partitioning
into components attributed to different causes like additive value, dominance deviation and epistatic
deviation; see Falconer (1991). The relative magnitude of these components determines the genetic
properties of the population. One such property is heredity which is of paramount interest to plant
breeders. The ratio 4a;/0% = #* gives a measure of heredity, where 0% =202+ 62 is the phenotypic
variance and ag is the genotypic variance. Such a measure expresses the extent to which individual’s
phenotypes are determined by the genotypes.

Our primary interest is thus in /*=462/(262+62). In order to get a good estimate of 4? we propose
optimal designs for interval estimation of o7/07 since &> =402/(202 + 62) = 4(d%/q> )/(2e7/a2)+1).
Let T be an estimator of o;/67. Then an asymptotically unbiased estimator of 42 is 4T/(2T + 1).
Hence an interval estimate of ¢7/a7 will lead to a meaningful interval estimate of 2. The problem
confronted in constructing a confidence interval on either 2/(02 + 62) or 62/a2 has been referred in
Burdick and Graybill (1992). An approximate solutiog to this interval estimation problem is given
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by Burdick et al. (1986) by employing Thomas—Hultquist (1978) approximation of y? distributions
under certain parameter values of oZ/cZ. The only exact interval estimate of g2/02 is due to Wald
(1940), which is based on iterative solutions of non-linear equations. We give a non-iterative method
of constructing exact confidence interval of o2/07 and study their expected normalized length.

An experiment is carried out using a diallel cross design with p lines and » crosses. A diallel cross
experiment is said to be complete, if each of the (4) crosses appears at least once in the experiment,
otherwise it is said to be a partial diallel cross experiment and then necessarily n < (#). Most of
the available literature on optimal designs for diallel crosses is based on standard linear model
assumptions where the general combining ability effects are taken as fixed and the primary interest
lies in comparing the lines with respect to their general combining ability effects. Under such a
model, among others, Gupta and Kageyama (1994), Dey and Midha (1996), Mukerjee (1997), Das
et al. (1998b) and Das et al. (1998a) have characterized and obtained optimal completely randomized
designs and incomplete block designs for diallel crosses. When one is studying only a sample of
inbred lines from a possibly large hypothetical population the fixed effects assumption may not be
tenable. A random effects model is proposed in this paper that allows us to obtain an interval estimate
of the ratio of variance components. We address the issue of optimal designs by considering the
L-optimality criteria. We obtain designs that are L-optimal for the estimation of heredity in the sense
that the designs minimize the maximum expected normalized length of the A confidence intervals
based on £ distinct eigenvalues of the information matrix. The approach leads to certain connections
with an optimization problem under the fixed effects model.

In Section 2, under blocked and unblocked models, we first obtain the interval estimate of a2/02.
Subsequently, we obtain suitable bounds of the expected normalized length of the confidence interval.
In Section 3, we characterize L-optimal designs.

2. Confidence intervals in diallel cross experiments

Consider an experiment carried out using a diallel cross design with p lines and b blocks each
having & crosses (n = bk). Here our model is

Y=ul,+D\B+Dig+e, (2.1)

where Y is the vector of » observations, g is the p x 1 vector of general combining ability effects
with E(g) =0 and Var(g) = 21, f§ is the fixed effect due to blocks and e is the error vector with
E(e) =0 and Var(e) = ¢l. Also, D) = (dﬂ,)) is the p x n line versus observation incidence matrix
with d%)) = 1 if vth observation is out of a cross involving the wth line and d}) = 0 otherwise.
Similarly, D; = (df:‘,’,)) is the b x n block versus observation incidence matrix with dﬁ) =1 if the vth
observation arise from the uth block and d = 0 otherwise. Equivalently, we can write (2.1) as

u
Y=X]|5]|+e
)

where X = (1 D) D}). Here, E(Y) = pl,, Var(¥|o2,62) = 02D{Dy + ¢2I,. We assume that ¥ ~
N,(ul, + DB, agD’,Dl + 02I,), where N,(p, Z) denotes n-variate normal distribution with mean
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vector g and dispersion matrix Z. Let G = D\D{ = (g;;) and s = D1. Using the definition of D,
it can be verified that for i # j, gy gives the number of times cross (i,j) appears in the design,
gii =S; where s; is the replication of the ith line. Let N =D;D} =(n;;) be the incidence matrix with
n;; indicating the number of times the ith line occurs in the jth block. Also, let C =G — k™ INN',
Then Rank(C) < p — 1 and throughout we assume Rank(C)= p — 1. Here 1, represents a ¢ x 1
column vector of all ones and I, denotes an identity matrix of order ¢. In situations where the order
is evident from the context, we write, respectively, 1 and / instead of 1, and J,.

Let H be an n x (n — b) matrix such that the columns of H form an orthonormal basis of
the orthocompiement of the space spaned by (1 D)) in #". Thus H'H =1, , and HH' =1 -
(1 D)1 DYY(1 D{I~(1 DY where T~ is a generalized-inverse of a matrix 7. Note that D,H =0
and 1,H = 0. Hence, Z=H'Y ~ N,_(0,62H'D\D\H + 062I,_).

We observe that the non-zero eigenvalues of H'D{DH are the same as the non-zero eigenvalues
of D\HH'D| =Dy(I — (1 D3) (8 k_Dl_,b) (1 DYY)D| = DD} — (1/k)NN' = G — (1/k)NN’ = C. This
implies that the eigenvalues of H'D{D\H are zero with multiplicity ((n — b) - (p— 1)) =n, and the
remaining (p — 1) eigenvalues are identical to the non-zero eigenvalues of the C-matrix.

Define 0 = Aj < A7 <--+ < 4} as the h + 1 distinct eigenvalues of H'D|D,H with multiplicities
mg = Me,my,...,my, respectively. Now there exits an orthogonal matrix P = (P Py -+ Py) of
order n— b such that H’'D\D\H =P (g 5) P’ where A= diag(4{Zus, 431ms. .-, 431 ). Consider the
transformation Z, = P(,Z, i =0,...,h. Then it follows that 0; = Z,Z%, are independent and

(034 +02)7' Qs (2.2)

follows a x° distribution with m? degrees of freedom, i =0,...,h. We now construct the confidence
interval of o7/o7 with confidence coefficient 1 — a. From (2.2) we get that for i = 0,1,2,...,4,
(6247 + 62)~'Q; follows a y’-distribution with m;} degrees of freedom and furthermore, they are
independently distributed.

Fori=1,....h let Li=F\_y m;n, and U; = F,, »: »,, where o) + oy = and F, ,, ,, is the upper
100a% cut-off point of the central F-distribution with p; and p, degrees of freedom. Then

> 1 A*az 0.2 —1
PriL, <2 (‘_,9: & vl =1-a
ne O’e Qo
n.0| 1 o2 n.0\ 1
& Pril—=_ _ g fg_"e=l [ _q1_
4 [m’{‘UJ’fQo A a2 T mLiAiQy A} [-o

giving a confidence interval

nte 1 nte 1 )
h=|—— -, = 3
: (m’{‘UIA}‘Qo A miLiitQe A @5

of 62/62 with confidence coefficient 1 — a.
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For I = {x: a < x < b}, we define (/) = b — a. Now, using the result E(F, ,,) = p2/(p2 — 2),
where F,, ,, follows an F-distribution with p; and p:(> 2) degrees of freedom, we get

ne Q) _ n.Oh )
miLi2Q0  myUiAi Qo

e Oi(Afa2 + o2y 'my (o2 + A2\ 1
- Qoo *n;! a’ LAy
_ g @0iq +a2)"'my (a2 + 202\ 1
Qoo; n;’! a? Ui}

(1 @)1 LY
- (E + o_g) L] E(Fm:v”e) - (/‘-T + o__g EE(‘FFNI’J‘Q)‘

E()=E (

Thus,

0.2
s (25) (5+3) (2-4):

Now, the pair (L;,U}) is not unique for setting up the confidence interval with confidence
coefficient 1 — «. Hence we normalize the expected length of the confidence interval I, by di-
viding the distance between L; and U; defined by 1/L; — 1/U,. Note that the distance d(a,d) =
|1/a — 1/b|, a > 0,b > 0, satisfies the three properties of the distance function since (i) d(a,b) =
|1/a —1/b| = 0, d(a,b)=0 if and only if a=b; (ii) d(a,b)=|1/a—1/b|=|1/b—1/a| =d(b,a); (iii)
for ¢ >0, d(a,b)=|1/a—1/b|=|1/a—1/c+ 1/c — 1/b| < |1/a—1/c|+|1/c — 1/b| =d(a,c)+d(c,]).
Hence, the expected normalized length comes out as

2
E(Iy(h)) = E(K1, ))/(L_l,' - '13_1) _ (n e 2) (% + %) : @.5)

The other 4 — 1 confidence intervals of og/ag are constructed, on similar lines, and are given by

neQi 1 neQi 1 .
= mrU QoA A T WL = teey 2.6
b= (- - g) =2 26

each with confidence coefficient 1 — . Then the expected normalized length of the ith confidence
interval is

2
ECy(T)) =E(1(I,-))/(% - 5) - (li + %) (;—"_—_—2) . i=2,..k 27)

Let o}, of,...,o; be positive numbers such that " | of =a. On lines similar to (2.3) and (2.6),

for i=1,...,h define I* as a confidence interval of ¢2/c; with confidence coefficient 1 — af. Then



52 H. Ghosh, A. Das/!Statistics & Probability Letters 67 (2004) 47-55

by applying Bonferroni’s inequality we have,

0'2 h h 0,3 . h ,
Pr[Y:O_—geﬂ[‘.*jl =Pr[ﬂ Y‘;%EI,' 22(1—0{,&—(12—1):1—0&,
€ =l

which gives the confidence interval I* ﬂ I of a2/} with confidence coefficient at least 1 —a.

Thus we may construct infinitely many conﬁdence intervals of crz/cr2 We define the expected nor-
malized length of the confidence interval I* as E(/y(I*))=max;g;<p E(I{(I*))/(1/L} — 1/U}). Here
we have normalized by the respective distances between L} and U which are the lower and
upper cut off points of the F-distribution with probability oc;". Now using the fact E(In(I)) =
E(In(I)), i=1,...,h, for any choice of «f,o},...,o; and observing that the confidence inter-
val I* being subset of I for each i = 1,...,h, we have E(I(I*))/(1/L} — 1/U") < E(Iy(I7)) =
E(In(L)), i =1,...,h. Now, defining E(Iy(I*)) = E(I(I*))/(1/Lf — 1/UT), we get for all I*,
E(Iyn(I*)) = max; <i<i E(In(I*)) < max, <;<n EUn ;) = (nef(n, — 2)X1/A} + 6}/62) = E(Iy(I})).
Now, we define ¢ =max, ¢;<s E(Iy(J;)) which represents the maximum loss due to # individual
confidence intervals with confidence coefficient 1 — . Furthermore, for every i=1,...,A

0.2
E(U) < ¢ = (n ~e 2) ( ; + 2 ) E(In(T,)). (2.8)

It is to be noted that the upper and lower confidence limits of I* comes out as the order statistic
of the upper and lower confidence limits of I, i =1,...,h Further the order statistic is based on
two sets of & random variables which are neither independently nor identically distributed. We have
taken this detour in order to set a well defined criterion to carry out the design optimization. For
comparing designs we set an upper bound of the expected normalized length of I*. One of the
possible ways to achieve this is provided by our workable measure ¢.

The results for interval estimation of 62/62 under unblocked diallel cross experiments can be
obtained as a special case of the above results by taking the number of blocks as one. The maximum
expected normalized length of the interval estimate of 0‘5/0'3 under an unblocked model reduces
to ¢o =((n — p)/(n — p — 2)X1/4 + 0}/6?), where i, is the minimum non-zero eigenvalue of
Cy = G — (1/n)ss’, the C-matrix under the unblocked setup.

3. Optimal designs

In the previous section, we have explicitly obtained the maximum expected normalized length (¢
and ¢) of the interval estimate of ag/ag under a blocked and an unblocked model. Our objective
in obtaining an optimal design would be to minimize ¢o = ((n — p)/(n — p — 2))(1/4; + 6%/07)
in case of an unblocked model and to minimize ¢ = (n./(n. — 2))(1/A} + ¢2/02) in case of a
blocked model. Let 2(p,n) be the class of unblocked diallel cross designs involving p lines and
n crosses and 2(p,b,k), the class of diallel cross designs with p lines arranged in b blocks of &k
crosses each. For a design d, let the non-zero eigenvalues of Cyy (Cy) be A1y < Ayy <--- < A
(A}, <435 < -+ < Apy) with respective multiplicities m g, mag, ..., mpg (M}, m3,,...,m5,;). A design
d* will be said to be L-optimal if, among all designs in 2, d* minimizes ¢, (or ¢;). Thus we see
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a connection between L-optimal designs in our set-up and E-optimal diallel cross designs under a
fixed effects model.

It is well known that under fixed effects model, a complete diallel cross design is universally
optimal in %(p,n). Since a universally optimal design is E-optimal as well, it follows that complete
diallel cross designs are L-optimal in Z( p,n) under our setup.

Under the fixed effects model, Gupta and Kageyama (1994), Dey and Midha (1996) and Das
et al. (1998b) have obtained universally optimal (and hence E-optimal) diallel cross designs. It thus
follows that their designs are L-optimal under our setup.

The close connection between nested balanced incomplete block design of Preece (1967) and opti-
mal designs for diallel crosses under a fixed effects model was first observed by Gupta and Kageyama
(1994). A nested balanced incomplete block design with parameters (v, by, ki, r, 1, ba, ko, o, m) is a
design for v treatments, each replicated » times with two systems of blocks such that: (a) the second
system is nested within the first, with each block from the first system, called henceforth as ‘block’
containing exactly m blocks from the second system, called hereafter as ‘sub-blocks’; (b) ignoring
the second system leaves a balanced incomplete block design with usual parameters v, by, ky, 7, i1; (c)
ignoring the first system leaves a balanced incomplete block design with parameters v, by, ko, 7, 5.

Consider now a nested balanced incomplete block design d with parameters v= p, by, ki, ks =2,r. If
we identify the treatments of 4 as lines of a diallel cross experiment and perform crosses among the
lines appearing in the same sub-block of d, we get a block design d* for a diallel cross experiment
involving p lines with v. = p(p — 1)/2 crosses, each replicated r =2b,/{ p(p— 1)} times, and b=b5,
blocks, each of size k =k, /2. Such a design d* € 2(p,b,k) and is universally optimal in Z(p,b,k)
under the fixed effects model. Summarizing, therefore, we have

Theorem 3.1. The existence of a nested balanced incomplete block design d with parameters v =
Dby = b,by = bk, ky = 2k, ky = 2 implies the existence of a L-optimal incomplete block design d*
for diallel crosses.

The construction methods and elaborate tables of nested balanced incomplete block designs are
available in a recent review paper by Morgan et al. (2001). The tables in their paper provide solutions
to our L-optimal diallel cross designs within the parametric range 2k < p < 16, s < 30. The case
2k = p is dealt in Gupta and Kageyama (1994). The nested balanced incomplete block designs have
been extended to nested balanced block designs and a series of designs, L-optimal under our set-up,
is given in Das et al. (1998b).

Mukerjee {1997) has obtained E-optimal partial diallel cross designs under the fixed effects model.
Following Mukerjee (1997) we now present L-optimal designs for the unblocked case.

Let p = nn, where n; > 2, n, > 3. Partition the set {1,..., p} into n; mutually exclusive and
exhaustive subsets §,...,S,, each of cardinality n;. Let

di={Gj):1<i<j<p andijeS, for some u}. 3.1)

Then d} € @( p,n), where n= %nlnz(nz — 1), and D)4 is the incidence matrix of a group divisible
design with the usual parameters p =mny, k =2,4; = 1,4 =0.

Theorem 3.2. For each n; = 2 and ny = 3, up to isomorphism, the design d} is uniquely L-optimal
in Y(p,n), where p=n\ny and n= %nlnz(nz - 1)
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Example 3.1. Suppose we have p = 12 lines and n = 18 crosses. Then n, =3, ny =4 and the
subsets are S| = {1,2,3,4}, S» = {5,6,7,9}, S5 = {9,10,11,12}. Consider the following design:
{(1,2); (1,3); (1,4); (2,3); (2,4); (3,4); (5,6); (5,7); (5,8),(6,7); (6,8); (7,8); (9,10); (9, 11); (9, 12);
(10,11);(10,12);(11,12)}. Following Theorem 3.2, this design is L-optimal in £(12, 18).

Let p=mny +t, where n, 22, n, 23 and 7 (1 <¢<n — 1) are positive integers. Partition
{1,..., p} into n; mutually exclusive and exhaustive subsets Sy,...,S,, such that Si,...,S, —, have
cardinality », and S,,—+1,--.,3,, have cardinality »#; + 1. Analogous to (3.1), let

dy={(Gj):1<i<j<p andijesS, for some u}. (3.2)
Then d% € D(p,n), where n= % mny(ny — 1) + nat.

Theorem 3.3. For ni 22, n, 23, p=nm +1t, n= %nlnz(nz — D+ ntand 1 <t <n —1, the
design d3 is L-optimal in D(p,n), provided (n, —t)ny f > 1, where f=n"'(n,—1)* — p~l(n—2).

Example 3.2. Suppose we have p =13 lines and n =22 crosses. Then ny =3, n, =4, t =1 and
the subsets are S} ={1,2,3,4}, $,={5,6,7,9}, §3={9,10,11,12,13}. Consider the following design:
{(1,2) (1,3); (1,4); (2,3) (2,4); (3,4); (5,6); (5,7); (5.8); (6,7); (6,8); (7.8); (9,10); (9,11);
(9,12); (9,13); (10,11); (10,12); (10,13); (11,12); (11,13); (12,13)}. Following Theorem 3.3, since
(m — t)ny f =2.04 > 1, this design is L-optimal in Z(13,22).

The condition in Theorem 3.3 holds a large number of cases over a practicable range. Thus,
among the 79 cases of (m,n,,¢) satisfying ny 22, m, 23, 1 £t <m —1, p=mny +1 < 30, there
are as many as 57 where the condition holds and hence 43 is L-optimal.

The notion of orthogonal blocking for designs in diallel cross experiments was introduced by
Gupta et al. (1995). The blocking of optimal designs of Theorems 3.2 and 3.3 is given in Mukerjee
(1997) where orthogonal blocking has been achieved for designs corresponding to Theorem 3.2.
Thus, Mukerjee’s method of construction of orthogonal block designs lead to L-optimal diallel cross
block designs in 2(p, b, k).

Example 3.3. Consider the following design (rows are blocks) with parameters p = 12, b =3
and k =6:

1L,2) (3.4 (5.6 (7.8) (9,10) (11,12)
(1,3) 24 G7) (68 911) (10,12)
L4 (23) .8 (67) (512) (10,11)

This design is L-optimal in 2(12,3,6).

In our model (2.1) we may consider § to be a random effects block parameter. Such a consideration
do not alter the optimality results obtained here. With the increase in the number of lines, the
optimality criteria based on the interval estimation of &* = 462/(262 + 62) is same as that obtained

for the interval estimation of aﬁ/o'ﬁ. Thus the design optimality results obtained here would remain
valid for estimation of heredity.
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