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RAO-HARTLEY-COCHRAN STRATEGY IN SURVEY
SAMPLING OF CONTINUOUS POPULATIONS

By V. R. PADMAWAR
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SUMMARY. Rao-Hartley-Cochran (RHC) strategy is defined for the continuous set-up and
its efficiency is compared with some of the known strategies under the regression model.

1. INTRODUCTION

Early proponents of the survey sampling of continuous populations, C. M.
Cassel and C. E. Sarndal, were strongly motivated to use the continuous set-up
as it facilitates the assessment especially of the mathematically cumbersome
strategies (Cassel et al. (1977)). Sarndal (1980) reiterates, ‘the continuous
variable formulation is an attempt to adapt Godambe’s survey sampling set-up
in continuous terms. This makes it easier to interpret and grasp some of the
complexities of modern survey sampling theory of finite populations’.

Several sampling strategies for estimating the population mean have been
considered in the literature of survey sampling of continuous populations (Cassel
and Sarndal (1972, 1974), Cassel et al. (1977), Sarndal (1980), Padmawar (1982,
1984, 1994), Cordy (1993)). Results regarding nonexistence (Padmawar (1982))
and existence (Padmawar (1984)) of optimal strategies in certain classes of p-
unbiased strategies are known. Padmawar (1994) compares several sampling
strategies under the regression model.

Cordy (1993), motivated by environment related real life problems, develops
a theory of estimation for sampling from continuous populations. He provides an
interesting extension from the finite set-up, of the well known Horvitz-Thompson
strategy, to the continuous frame-work.

Rao-Hartley-Cochran (RHC) strategy (vide Rao, Hartley and Cochran
(1962)) is one of the important strategies in the finite set-up. This paper is an
attempt to facilitate its assessment and comparison with other known strategies
vis-a-vis the continuous set-up. In section 2, we first define Rao-Hartley-Cochran
(RHC) strategy in the continuous set-up. We consider design based results
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in this section and obtain the limiting variance of the RHC strategy under the
assumption of a.e. continuity of y(z). In section 3, we derive results under the
regression model where z is assumed to have gamma distribution. We compare
the efficiency of the RHC strategy with that of other sampling strategies, in-
cluding those considered by Cassel et al. (1977), Sarndal (1980) and Padmawar
(1994), under the regression model.

Consider a population of infinitely many pairs (y(z),z);x > 0, such that the
joint distribution of y{x),z > 0, is known only partially. For convenience let us
assume that y(z),z > 0, are defined on some probability space (2, A,€). The
distribution of X, whose observed values are z, assumed to be continuous and
known is given by

F(z)= /Ozf(u)du; z>0.

Y is called study variable and X is called auxiliary variable.

In the continuous survey sampling set-up the label of a population unit is a
continuous index A where for convenience A € [0,1). A more specific ordering
is imposed on A by identifying it with the Ath quantile of the X-distribution.
Having drawn and observed n units the data is recorded as (y(z:),z,), i =
1,2,...,n; or equivalently (y(x),x) where x = (z,,z3,...,2,). The problem
under consideration is to estimate efficiently the population mean for the variate
Y, namely

my = By(Y) = /0 " y(@)f (@)dx.

This, incidentally, defines the operator E;. ,

Let B be the Borel o-field of R} = {x :z; > 0,i =1,2,...,n}. Any con-
tinuous probability measure Q on B is called a sampling design. Q(x) is the
probability of drawing a sample such that the auxiliary variate value does not

exceed z; in the ith draw, 1 < i < n. If we write ¢g(x) = a—j%%‘%, then g(x)

can be expressed as q(x) = p(x) f(x), where f(x) = H f(z:). We would say that

=1
p(x) is a design function giving rise to the sampling design Q(x). One may also
think of a two-stage sampling design.
Here we consider a specific superpopulation model, namely the regression
model, induced by the probability space (12,.4, £), given by

Y(z)=pz+ Z(z),z>0

where for every fixed z > 0

E¢(Z(x)) = 0, E¢(Z*(z)) = 0?a? ...(11)

and for every z # ', z,2' > 0
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E(Z(z)2(s)) = 0

where 0% > 0 and 3 are unknown and g € [0, 2] may be known or unknown.
A function t of the observed data (y(x),x) is called an estimator of the
population mean my,whereas (p, t), an estimator together with a design function
p is called a strategy.
A strategy (p,t) is said to be p-unbiased (design-unbiased) for m, if

B0 = [ (0 x0p(x)f )i = [ v(a) (a)ds = m,

for every real valued F-integrable function y(z). This defines the operator Ep.
A strategy (p,t) is said to be £&-unbiased (model-unbiased) for m, if

Eel(t(Y (0, %) —m,] =0 ace. (@]
A strategy (p,t) is said to be p€-unbiased (model-design-unbiased) for m, if

EpEg[(t(Y (x),%)] — E¢[my] = 0.

We assume that Y () is square integrable w.r.t. the product probability
(F x £). To judge the performance of a strategy (p,t) we use the following
measures of uncertainty : ‘

M (p,t) = E¢Ep(t - m,)? o ...(12)

My(p,t) = E¢Ep(t — py)? . (1.3)
where py = Egmy = E¢ / y(z)f(z)dx = BE; X = PBu (say).
0

In this note we assume that the auxiliary variable X has Gamma distribution
with parameter a.

In section 3, we compare strategies ( srs, tr), (Pu,tr), ( PPX, taT), (Py)tg)
with the RHC strategy, here we are using the following : -

(a) sampling designs : ,

(1) srs : simple random sampling for which p(x) =1

" |

(2) ppz® : design for which p(x) Hm;‘

i=1
(3) Py : the continuous analogue of the Midzuno-Sen sampling design with

p(x) = ;%Za:,, where u = Ef(X) = /0 zf(z)dz.
i=1

n n
(4) P, : the sampling design with p(x) = AHzf'IZz?—g

=1 i=1
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n-1
where;\:#(ﬂal}%);—ﬁ) j(u=a)and g€ (0,2},a+g—1>0.

(b) estimators : .
Zy(x.-)
=
(2) LHTn: the Horvitz-Thompson e:;i;lxlator, (Cordy (1993)), based on ¢(x)

giyen by Zﬂ%&{%ﬂl’ where 7(z,) = qu(m,-),vr(x) assumed to be positive for

1=1 J=1
n
e>0 mnda@) = [ g@][ds1<izn
Lo J#1
(3) tg : the estimator given by ~ I 233,1 Iy(z,),9 €0,2].

2-g =1
pRE

=]

(1) tp : the ratio estimator p

2. RAO-HARTLEY-COCHRAN STRATEGY

The Rao-Hartley-Cochran (RHC) strategy that consists of design Pryc and
estimator tpyc is defined as follows :
- The design Ppyc is a two stage design. At stage one fix an integer & > 2.
Let 2y, 29,23,..., 20k 1, 2ot be such that 2; is the ;.‘—k-th percentile of the distri-
bution of X,0 < i < nk. Clearly zy = 0 and z,x = oc. Consider the intervals
[2i,2i41);0 <1 < nk — 1. Divide these intervals into n groups of size k each at
random. Let Gj be the h-th group containing the intervals Bp, Bha, ..., Bre
say, 1 < h < n. At the second stage one point each is chosen independently
" from the n groups formed at the first stage using ppx sampling within each
group. This describes the design Ppp completely. To construct the estimator
tnuc define for the h-th group G}, the density f; as follows

) = 42 ifzeGy
= 0 otherwise

where W), = [ f(z)dzr.
Ja,

Let pp = / zfr(x)dz and (y(zh),zn) be the observation from the h-th

G
n

group, 1 < h < n. The estimator tpyc is now given as tpyc = ZW;, i’—fﬁ%
h=1
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Since we are dealing with a two-stage sampling let E;, Vi and E2, V2 denote
the expectation and variance under the design Pryc at stage 1 and stage 2
respectively.

It is easy to prove the following
Theorem 2.1. The RHC strategy is p-unbiased.
Proof.

Epyc(truc) = EiEy(truc)

_ y(xn)
= b (th xh/llh)

= Yy [ Lo G,

5 Th Ik ik

- 5 " y@) (@)

Hence the RHC strategy is p-unbiased.
We now compute the sampling variance of the strategy RHC.

Theorem 2.2. The sampling variance of the RHC strategy is given by

_ k=1 (7 (y(=) 'z
Vigue (truc) = { (k= 1)./0 (x/“ - my) m f(z)dz

nk

ZLxB (y—(—@ - yﬁa:fﬁ)?xx'f(x)f(m')dxdx' }o2)

T

(n—l) nk
2n  (nk-1)

Proof. The variance of the strategy RHC may be expressed as
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Ve (trHC) E\Va(truc) + ViEs(truc)

= Esz(tRHc) as ViEy(tpyc) = Vmy =0

= BV th,h/,“

- EIZ%( )

= EIZW‘{/ (42)" 2 @iz (I, z/:h:hfh(@dw)}
- {sz’ [ snea=3 ([ v w)f(x)dw)}

= %Elz/c » (y—(fl— —(z,—l> zz' f(x) f(z')dzdz'.

h=1"

Since G}, is the h-th group containing the intervals Bpi, Bra,. .., Bp.

k k
GrxGp= UBp xBu+ U By x th.
1201 1£7=1 '

k .
Y\ 2
= Elz/u , (-"—) — ”;’) o' f(z) f(')dzds’
i1 BhiX B
k
w2
+E, / ( ya) _ l(—l) za' f(x) f(2')dzdz’
1#]771‘ By x By, )
nk N 2
= / (1(152 - 2-(;,—2) zz' f(x) f(2')dzda'
1 Bix B,
nk N 2
+cy / ' (yTz) - y:,)) zx' f(z) f(z')dzds'
o1 BixB, '
a2
— / (22— )" () (o'’
k. R xR
n , 2
+He— )y / (!(_- — Y )) zz' f(z) f(2')dzda’
T BixB,

where ¢, and c, are respectively the probabilities of inclusion of an interval B;
and a distinct pair B;, B; in the h-th group. Clearly these probabilities are
independent of 7, j and h and are given by
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_ (nkvl)c(k«‘) 1
€ = =
nkck n
(ﬂ.k< 2)0 . _
g = () 1 k-1 .
nkcy, nnk-1

Thus

Vime(true) = %{ %/+ yﬁ) - ygl))2mx'f(m)f(z’)dmdx’
o mZ / (- K" as'f(a) /(o' }

Vewe(true) = | Z‘ﬁ@k—%/ z/“ ) Z f(z)dz
+M(nk—15 /BxB, ( ;fl ) zz' f(z) f(z')dzdz' }.

Hence the theorem.
In what follows we show that the second term in (2.1) goes to zero as k, the
number of intervals in each of the n groups, goes to infinity. Observe that

() = [ () o e

nk 2
= ,Lg /B (@ — 40, + 10, — '—:‘;!) zf(z)dz.

Expanding the square and simplifying, we get

V”"‘(x/,t) (Z/ (y(x _ko) of x)d.r+2(0 ”T) ki kw)

- (2.3)
where for k > 2 B1.¢B9. ..., By are the nk intervals;
f[; y(z)f(z)dx
WW, = f(@)dz; W, = / zf(z)dz; 10, = “F——Fr~7—; 1 <i < nk.
JeB; ) ' B, (=) l .',,H, zf(z)dz

L.emma 2.1. Let y(.) be a.c. (Lebesgue) continuous function on R . Let

2
further g (z) = Z"“' ( 0; — = ) X5y and g(z) = (’1(—:-2 - 1}) where x,

denotes the zndzcatm Junction of the set B, then g,(x) converges to g(x)
a.e. (Lebesque) as k tends to oc.
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Proof. Let xy be any continuity point of y. Let B;(xo) denote the interval

containing the point o at the k-th stage, k = 2,3,...,. It is clear that for any
function u that is continuous at z, we have sup | u(z) — u(xp) | converges
z€; Bi(zo)
to 0. In particular it is true for the functions y and the identity. Therefore
[ i@
| kbi@o) — o |=| “FE——— — 35 |< sup |z -
/ f(x)dm IGA,B.‘(IQ)
+ Bi(zo) ‘
Thus
k-o0 X
Similarly
/ y(=)f (2)d=
[ 16i(mo) - k| = | =l - 12|
zf(z)dz
«Bi(zo)
zo {y(2)~y(z0)} f(z)dz - y(z0) / . (z-z0)f(z)dz
= | /¢ Bi(zo0) £Bi(zo) I .
Io/ z f(z)dz
+Bi(ze)

Dividing the numerator as well as the denominator by ;W;(z) and simplifying
we get i

0a) — 2| < [ () = (w0 | gt

« Bi(zo,
H2 [, 12 )
R X2 0 0
S ot { s y(e) - y(so) |
I&A,B,(.to)
+42 sup |z )
z€,Bi(z0)

as 4;(xo) converges to x; the above expression goes to 0 as k tends to oo.
This proves that g,(zq) converges to g(zp). Hence the lemma.
Lemma 2.2. For y(.) a.e. (Lebesgue) continuous

nk
limz (-y(—x)—k&)2xf(m)dm=0

k-—00é T
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nk
2
Proof. In view of the Lemma 2.1, E (kH,- - %’-) kel kWi converges to
1=1

x

I (J— —l) zf(z)dz as k tends to oo.
Now using (2.2) we get that

li’gZ/ (y(z) — kb ) zf(x)dz = 0.

=178,

We now prove the following theorem.
Theorem 2.3. The limiting sampling variance of the RHC strategy for
a.e. continuous y(.) is given by

. _ 1 [ (y(=) 'z
’firz.)VpMC(thc) = TL,/() ( o — my) “f(.'l:)d:l:. ...(2.4)
nk )
Proof. Note that Z/ @ - "’(:,)) zz' f(z) f(z')dzdx’'
i=1 EB XkB

- % o e oo

= szu, kw/ YD _ 10, ) 2 f(z)da

{Zkﬂf kW}{Z/ M—ko mf(a:)da:}

ll"'

= ZuZ/ —1:9 xf(:r)dz

=17 B

IN

Now in view of the above inequality and Lemma 2.2, the second term in (2.1)
goes to 0 as k tends to co. Therefore the limiting variance of the RHC strategy
is given by

. 1 [ (y(z) 2z
,CILIEOVPnnc(tRHC) = ;/O (iv_/l_t _'my> ;f(m)da:.

Theorem 2.4. For a.e. continuous y(.), the limiting sampling variance
of the RHC strategy equals to Vy,.(tyr).

Proof. 1t is easy to see that Vi (tyr) = Vppr (— —(—) 1Vops (%)
=1

Thus using the equations (2.2) and (2.4) we get the required result.
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3.  EFFICIENCY UNDER THE MODEL

In this section we do away with the assumption of continuity of y(.) and
evaluate the efficiency of the RHC strategy under the model (1.1). We then
compare the RHC strategy with the strategies mentioned earlier. Let us first
prove the following lemma that would be useful in computing the limiting value
of My(p.t) for the RHC strategy.

At the k-th stage, as mentioned earlier, we have the percentiles of the variable
x such that yzo = 0,121, k22, .. -, kZnk 1, kZnk, = OC, €tc.

Lemma 3.1. If the density f satisfies for u < v,

/sz(a:)da: = W (u,v) + ¥o(Problu < x < v]),

where W(u,v) — 0 as u — oc,u < v; and Wy(p) — 0 as p — 0. Then

max ra; — 0 as k — oo.
1<i<nk

kZi

Proof. Let ra, = / zf(x)dz,i = 1,2...,nk. Given an ¢ > 0, choose
kzi—1

M and k such that ¥;(u,v) < § for M < u < v and ¥, (#) < gsfork > K.

At the k-th stage there exists unique ry such that 7, ; < M < Z,,. Hence
max (kGr, 41, kQro+2y -« -, ) < €

2,
Note that ra,, = / xf(z)dz
Jyzp, -1
]\/i k2r, M
_ €
= / zf(z)dx + / zf(z)dr < / zf(z)dz + 3.
£z, 1 JM ez -1
M
Therefore consider max { ray,xay ..., 1a,, 1 / zf(z)dr |. For convenience
£2r, -1
M
we write pb; = ra,;,1 <i<r, — 1, and b, = / zf(x)dx.
Jize, -1
Now look at max (xb1,xby. ..., 1bs, 1.4by,). This maximum must go to 0 as

k — oo, if not then there exists a & > 0 and a subsequence {k;.j > 1} such
that  max (k,b:) > 6¥j = for each j there exists m; such that ¢ b, > 6 =
Sigry ’

1 s 1 5 adicti a1 . ; Tenc
T 2> 37kbm, > 37 > 0. A contradiction as nE £0es 10 7ero as j — 0. Hence

M
max( kalyka2s Tty ’Cark"la /

k2

zf(x)dz ) goes to zero as k — oc. Therefore
1

k
max ra; — 0 as k — oc.
1<i<nk
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Theorem 3.1. For the RHC strategy we have,

(k=1 T(a+g-1) (n—-1k
(nk—1) T(a+1) T

| [ 1) ([ ixg""f(z)dm)} . e

1=1

My(Pruc,truc) = o {

Proof. For a strategy that is both p-unbiased and &-unbiased Ma(p,t) re-
duces to E,V,(t). Therefore

My(Pryc,truc)

i

E] EQVE (ZWhﬂh "A;—‘.Q)

h=1

n
E] E2 (UQZ W’?[li.’l,”qlz)

h=1

I

it

n
02EIZW3;4§ Jo, #°7  f(z)dz
h=1

a2E1i (fG;. a:f(:c)d:t:) (JG;. mg“]f(a:)dm) .

H
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Now anologous to the proof of Theorem 2.2, we have,
Ey( / of(@)ds) ( / 2 f(2)dz)
((Z / £f (2)dz) Z / 29 {(2)dz))
( RN / 2 1f(2)do))

(Z( / zf(z)dz) / 297 f(2)dz))

171

= (%Z(_/ i:vf(z)dm) ( / z ‘f(r)dw)))
(n(nk ) Z (/ zf(z)dz) (/ ad lf x)dr))

1£7=1

- IZ [ et ([ 2 s
n(nk ) {i(/mf )dx) Z(/ 29 1 f(x)dx)
S et (f o s

= ,.(:_ij {/ zf(x)dx /Om‘rg 1f(ar)d;z}
n?nkl :) {Z(‘/.ﬁ z)dz) /nglf(:v)dx)}.

Hence, My(Pryc truc) = o { nk 1)(/ z f(x)dzx) / o9 1 f(x)dx)

fr Lk zf(x)dr 9 ' f(x)dx) }.
o Z(/m e[ = )e) )

Theorem 3.2. For the RHC' strategy the limiling value of My(p,t) is
given by

o)t Ma+g-1)

e TAs L (3.2)

lim My(Pruc. true) =
s ¢
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Proof. Observe that

nk

S([ 2o [ ot sote) < (s, [ =)t Z(/ 2 f(o)d)

=1 i
. INa+g-1) )
= T T (ﬂ:%ik /Bﬁ”f Wﬂ’) :

Since the gamma density with parameter o satisfies the conditions of Lemma
3.1

1<i<nk

max / zf(x)dz goes to 0 as k — oo.
J B,

Hence the second term in the expression (3.1) goes to 0 as k — oc. Also 1 = a.

. 2,2 Platg-1)
. > N — o g
I'herefore ;3”‘1 My(Prycitruc) = = T Hence the theorem.

We conclude this paper by comparing the RHC strategy with some of the
known strategies in the continuous set-up. Cassel et al. (1977) in section 7.6 of
their book considered certain strategies which were later taken up by Sarndal
(1980) and Padmawar (1994). The rest of the section deals with the comparison
of these and some other strategies with the RHC strategy w.r.t. M;(p,t) and
M;(p,t). From Siarndal (1980) and Padmawar (1994) we have,

cl2T(a+g—1)

ot T) ..(3.3)

A['z (pp.L t‘H'l") =

ol Ma+g—1)
n '(a + 1)

My(Pyot,) = _.(3.1)

nl'(g+ o)/T'(«)

(g +na—1)(g+na—2) -.(3.5)

My(srs. tp) = o*p?

, @+ a)/T{a+1)
My(Py . tp) = 0%t —
2(Py.tp)=0n Gt na—1)

Theorem 3.3. In the limiting sense the RHO strategy is as good as the
strategies (ppx,tyr) and (P, 1,) w.r.t. cither measure of uncertainty M,
or My under the regression model (1.1).

Proof. For any p-unbiased as well as £&-unbiased strategies M, and M, differ
by the quantity FKe(m, — 3pu)? which is clearly independent of any strategy.
Therefore it is enough to use the measure of uncertainty M, for the purpose of
comparisons as all three strategies are p-unbiased as well as £-unbiased. In view
of (3.2), (3.3) and (3.4) the strategies (Pryc,tnuc), (ppx, tyr) and (P, ty) are
equally efficient.

..(3.6)
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Remark 3.1. In the limiting sense the RHC strategy is as good as the strate-
gies (ppx, tyr) and (Py,t,) w.r.t. either measure of uncertainty M; or M, under
the regression model (1.1). This result indicates that from the practical point of
view the strategy (ppz, tyr) would score over the other two competing strategies
(Py,tg) and (Pryc,truc) as the strategy (Py,t,) depends on the parameter g
of the model (1.1) that may not always be known and (Pruc,truc) is as good
as (ppz,tyr) only in the limiting sense.

Using Theorem 3.3 and the results from Padmawar (1994) we finally have
the following.

Theorem 3.4. Under the model (1.1) we have, in the limiting sense,

(a) My(srs,tr) > Ma(Pruc,truc)
(b) forn>2and g+na—-1>0 Mr(PM,tn)%M,(PRHc,tRHc)

according as gél,r =1,2.

(c) for g = 1 the strategies (Py,tr), (ppz,tut), (Py,ty) and (Pruc,truc)
are equally efficient w.r.t. either measure of uncertainty.

Proof. The proof follows using the above Theorem 3.3 along with Corollary
2.1, Theorems 2.3 and 2.4 of Padmawar (1994) and the expressions (3.3) through
(3.6).

Remark 3.2. The parameter g of the model (1.1) may not always be known
in practice. If the sampler has to choose between the strategies (Pryc,trac)
and (P, tr) then there is a clear demarcation of the parametric space of g. If
there are reasons to believe that g is less than unity then (Py,tr) would perform
better than (Pryc,truc). On the other hand if the sampler speculates g to be
greater than unity then (Pryc,truc) should be preferred to (P, tr).
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