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On priors providing frequentist validity for Bayesian inference
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SUMMARY

We derive the differential equation that a prior must satisfy if the posterior probability
of a one-sided credibility interval for a parametric function and its frequentist probability
agree up to O(n~'). This equation turns out to be identical with Stein’s equation for a
slightly different problem, for which also our method provides a rigorous justification.
Our method is different in details from Stein’s but similar in spirit to Dawid (1991) and
Bickel & Ghosh (1990). Some examples are provided.
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1. INTRODUCTION

Suppose X, ..., X, are independently and identically distributed with density f(x; 6),
where 6 =(0,, ..., 6,)" is a p-dimensional parameter vector. Consider a prior density ()
for 0 which has the following property of matching frequentist and posterior probability
for a real-valued twice continuously differentiable parametric function ¢(0):

n [Jn{t(e) — 1) _ } _» [Jn{t(e) @ _,
Jb Jb
for all z. In (1), 0 is the posterior mode or maximum likelihood estimator of 6 and b is
the asymptotic posterior variance of \/n{t(H) —t(0)} up to 0,(n"*), Py(.) is the joint prob-
ability measure of X =(Xj, ..., X,)" under 0, and P,(.|X) is the posterior probability
measure of 6 under n. Such a prior may be sought in an attempt to reconcile a frequentist
and Bayesian approach (Peers, 1965), or to find or in some sense validate a noninformative
prior (Berger & Bernardo, 1989; Ghosh & Mukerjee, 1991, 1992a, b; Nicolaou, 1993;
Tibshirani, 1989), or to construct frequentist confidence sets (Stein, 1985). Another related
paper is by DiCiccio & Martin (1993) where similar higher order frequentist confidence
limits are obtained by using Bayesian asymptotic calculations.
One of our objects in this paper is to show that (1) holds if and only if

Xj| +0,(n" 1Y) (1)

0
Y. 25 (100} =0, 2)
where, for
0 0 T
Vi(0) = <a—91 o), ... 30, t(9)> ,
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n(0) =, (0), ..., n,(0)" is given by
I"1(6)Vi.(6)
JIVIOI(0)V.0)}

satisfying nT(0)1(0)n(0) = 1 for all 6. In (2) and throughout this paper all the summations
as well as the ranges of the subscripts «, § and y extend over 1 to p, unless otherwise
explicitly mentioned. Note that, in (3), I~1(6) is the inverse of I(6), the information matrix
of 6 per unit observation.

Equation (2) is similar to equation (5-8) of Stein (1985) in the context of a somewhat
different matching equation and we will refer to this as Stein’s equation, and all priors
satisfying (2) as probability-matching priors. It may be mentioned that, to achieve (1),
(3) is the only choice for #. If the goal, following Stein (1985), is to get a multiparameter
set of the form

n(0) = (3)

S.(0)={0:170)1(0)\/n(0 - 0) <z}

for 0 rather than a confidence interval for a real-valued ¢(f) then other choice for # are
possible. Stein (1985, p. 510) made a choice of #(f) in a particular example involving the
squared distance of the normal mean vector from the origin. In this example, his chosen
n is same as ours. An intuitively attractive choice, at least for the construction of confidence
sets for 0, is given by Tibshirani (1989, p. 605) though there is no guarantee that (1) will
hold for this choice. Our equation (3) is in general different from Tibshirani’s equation,
but they agree when t(6) =0, and 0, is orthogonal to (0, ..., 0,) in the sense of Cox &
Reid (1987), the case mainly considered by Tibshirani.

We also justify Stein’s (1985) equation (5.8) in the context of his original probability
matching problem. Our method of proof is more explicitly rigorous than Stein’s; see, e.g.,
Tibshirani (1989). It is somewhat different in details from Stein’s but similar in spirit to
that of Dawid (1991) and Bickel & Ghosh (1990). Section 2 of the present paper contains
the derivation of Stein’s equation, the necessary assumptions and the related discussion.
Section 3 contains a few illustrative examples.

2. THE EQUATION FOR PROBABILITY-MATCHING PRIORS
Let

) =n"" Y, 10g/(X;0), h=n0—0), ay=(D.DOos

Aupy = {DaDﬂDy 1(0)} =4,

C=(—a,), G=C"1, where D, = 9/00,.

Following Ghosh & Mukerjee (1992b) we assume (Johnson, 1970) that 6 has a prior
density n() which is positive and twice continuously differentiable for all 6. The prior
7(0) will be obtained by solving the probability-matching equation (2) for #(6). If n(6) is
not proper we have to assume that there is a fixed positive integer n, such that for all
Xi, ..., X,, the posterior density of 8 is proper. For a prior n(0), let P,(.) denote the joint
probability measure of 8 and X. All formal expansions for the posterior, as used here, are
valid for sample points in a set S which may be defined along the lines of Johnson (1970)
or Bickel & Ghosh (1990, § 2) with m = 1. The P,-probability of S is 1 + O(n~!) uniformly
on compact sets of 6. The matrix C is positive definite over S. We also make the Edgeworth
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assumptions following Bickel & Ghosh (1990, p. 1078). It may be noted that in addition
to the Edgeworth assumptions we need the regularity conditions of Bickel & Ghosh (1990)
or Ghosh, Sinha & Joshi (1982) to justify the limiting Bayesian arguments for frequentist
calculations used later. The last two papers contain more details on these. For calculations
up to O(n~') as needed here, the detailed rigorous justification of the limiting Bayesian
argument is not as cumbrous as for o(n~!) but it is still somewhat lengthy, though straight-
forward, and hence omitted. It should be mentioned that all the assumptions made about
f(x; ) will be satisfied for exponential family with 6 a sufficiently smooth function of the
natural parameter.

For real-valued twice differentiable function f(#), we denote the gradient vector of f by
V(0)=(Dyf0),...,D,f(0))" and the Hessian matrix of f by H(0) = (Dsf(0))sp-1,...,
Then from (2.2) of Ghosh & Mukerjee (1991), the expansion of the posterior density of
h is given by

T-1
”(th)=(27T)—p/2|Gl'%exp<~h G h)

2

1 1 5
X {1 + —6_\/—; za Zﬂ Zv aaﬂ)‘hahﬁhv + 7'5(0)\/}1 hTVu(H) + Op(n_l)} : (4)

We will now derive from (4) a formal expansion of the posterior characteristic function
of U= \/n{t(H) — t(H)} up to O,(n~ ") by expanding #(6) — t(0) around 6 and retaining the
first two terms. After con81derab1e algebraic simplification we obtain

o ) =exp {00 {1+ Gt + 0,7}, 5)
where
n(y) = ;y g+ ;ytr (GH,(0)} + - ! ye1(0)+ 1 3 3e,(0) + —2 (0) V.(0),
=VIOGV,B), 1=(t1,...,1,) =GV, g=1"H,0O)r, (6)

€ (é) = Za Zﬁ Zv aaﬂy(’cagﬂy + T8ay + T‘yga[f)’ eZ(é) = Za Zﬁ Zy aaﬁytarlffr

Let ¢(u|0, b) denote a normal density with mean 0 and variance b. Using repeated
integration by parts and the normal characteristic function we obtain

e}

1 d
E {exp (iqU)| X} = f exp (iqu) {1 + %nl <— E)} ¢u|0,b) du+0,(n" "), (7)

where m,(—d/du)¢(u|0, b) is the result obtained by operating n;(—d/du) on ¢(u|0, b).
Following Bhattacharya & Ghosh (1978, Lemma), we get from (7) that, for fixed z, the
posterior probability on the right-hand side of (1) is given by

1 z
P (U <z /b|X)=0(z) + —\—/; Lw 7r1< \/b T )ql)(v) dv+0,(n™), (8)

where ®(z) and ¢(z) are respectively the standard normal distribution function and density
function.
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Let p lim, denote the probability limit under 6. Then define

2

09— g la®+ Tt ), al.0-55 [ v wionon |

VI6)GV, (0) Z &b,2), 66, 2= pnm &b,z (k=1,2),

T ON=
VE(6, n,z)=pli;nd§"(9, =1 n (6 ze)(0)+ Z £4(0, 2).

Then using the above notation and standard results on Hermite polynomials, we have,
under 6 = 6,,

d’Zk(é: T, Z) -

P,(U <z./b|X) = ®(z) — 1 $(2)dx (@, m,2) + 0,(n" 1)

I

— B() = $()A (6o, 7, )+ Oy(n ). ©)

Jn
The last equality follows since 6— 0o = O,(n"*) implies
d3(0, m, 2) — A$ (6, 7, 2) = Op(n ™).

Now to find the expansion of the frequentist probability P, (U < z./b) under 0 = 6,, we
proceed following Ghosh & Mukerjee (1991). See also Ghosh (1994, Ch. 8) for a detailed
argument. Since the difference between the posterior mode and the maximum likelihood
estimator of 6 is 0,(n"%), for the following calculations we assume that 0 is the maxi-
mum likelihood estimator. Note that P‘, (U<z,/b) is obtained by integrating
®(z) — n~*¢(2)A¥(0, m, z) with respect to a prior n(6) which vanishes at the boundary of
a rectangle containing 6, and satisfies the assumptions of Bickel & Ghosh (1990) or
Ghosh, Sinha & Joshi (1982) and then allowing this prior to converge weakly to the
measure degenerate at 0,. To illustrate the limiting process we denote this prior by n5(6),
where J is the length of each side of the rectangle. Now by integrating by parts the first
integral on the right-hand side of (10)

JA’{(H, M5, 2)5(0) 40 =3 fm

, 2)15(0) d6

s
00,
Ny
= f{ Yy = 20, 4 Z ACA z)} n5(0) dO (10)
and since, for any continuous function a(8),
lim J a(0)m;(0)d0 = a(b,),
510

we have

oy
00,

2
+ Z k8o, 2).

0=0, k=1

lim j A3, 75, )10 dO = — 3
6.0
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Using arguments similar to those of Bickel & Ghosh (1990), we derive from the preceding
discussion that

My
a0,

+ Ck(Oo,z)} +0m™Y. (11)

0=0, k=1

1
Py (U <z./b)=®(z) — % ¢(2) {_ )y

We now determine the matching prior 7 by equating the coefficients of n~% on the right-
hand sides of (9) and (11) for all 6,, that is by solving the differential equation

1 it My
that is
0
> 70, na(0)m(0)} =0. (12)

Remark 1. Using a cov, to denote asymptotic covariance under 6, note that

a covy{/nt(0), \/nd,}
Jla covy {/nt(B), \/nt(9)}]

up to O(n™*), where f is the maximum likelihood estimator of 6.

’1a(9) =

Remark 2. We will now derive the probability-matching equation for Stein’s approxi-
mate (1 — ¢) confidence set, his (5.3), given in our notation by S (0) = {6: 11T(0)I (H)h <z},
where #n(0) is an arbitrary differentiable vector satisfying #7(6)I(6)n(0) =1, and z, is the
100¢ upper percentile of the standard normal distribution.

To find the posterior and the frequentist probabilities of the set S (0) we first express
the expansion in (4) by using I(9) in place of G™*. Since G~ —I(§)=0 ,(n~%) under 6,
we can rewrite the right-hand side of (4) after some simplification as

W 1(O)h 1 A
—2( ) } X {1 +—\/—nP3(h)+ \/m:((O)) +op(n—1)},
(13)

n(h| X) = (2m) P 1(9)|~* exp {—

where P;(h) is a third degree polynom1a1 in h not involving the prior n. Now we use a
linear transformation W= BI? (0)h where I* (0) is the symmetric positive deﬁnlte square
root of 1(9) and BT =(b,,..., b,) is a p x p orthogonal matrix with b, = I* (0)11(0) Note
that

A A A A A A p A A
Wy =bi*(O)h=n"(0)(0)h, h'V.(0)=Win"(O)V.0)+ ). W,bi I *(0)V,.(0).
a=2

By this transformation and integrating out W, ..., W,, we get from (13) that the expansion
of the posterior density of W] is given by

2

1 1 ) T@)V,(0 _
n(wi|X)=(27)"* exp (— %—1) {1 + %Q3(w1, 0) + n\(/n)n(H() ) + 0,(n 1)},
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where Q5(w,, 0) is a third degree polynomial in w; depending on 6 but not on the prior
n. Consequently, the posterior coverage probability of S (0) is given by

P (W, <z|X)=1—¢——§(z,)d*@, m, z,) + O,(n™ ")

%4’

1
=1 —8___¢(28)A;k(0037r3 Zs)+0 (n_l), (14)
NG ,,
where
T § T
2402 = 60,2+ D px(g 72 = 0,0, 2) + T8,
m(0) (0,)

&0, 2,)= —¢7(z,) f Q3 (wy, 0)p(w,) dw, ({00, 2,) =p lim &, z,).

The expression given by the last approximation of (14) is valid under 6 = 6,. Now as in
(10) and (11), it follows from (14) that the frequentist coverage probability of S (0) under
0, is given by

$(z.) on(6)
\/ {L’s(em s) Z 60,3

Equating the coefficients of n™% on the right-hand sides of (14) and (15), we can match
Py(W; < z,) and P,(W; < z,|X) for all 0 up to O,(n™ ") if 7 satisfies

Poy (W <z)=1—¢—

} +OmY). (15)

0=0,

T a5, (OO} =

which is Stein’s (1985) equation (5.8).
Remark 3. Note that, from (14), the Bayesian coverage probability of Sg(é) under an

arbitrary prior =, is given by

7,(0)

(0)

which is not equal to 1 —¢ up to O(n~1) as suggested in (5.5) of Stein (1985). How-
ever a simple modification of S,(f) will have the desired accuracy. Define S;(6, n) by

P {0eS,@)}=1—&— %%8) J {406, 2)n(0) + 7™ (O)V,(0)} == 2 d6 + O(n™ "),

A A A _1 A
S:(0, m) = {9 " (0)I(0)h — n dy 0, m, z,) < Ze} :
Note that S;(é, 7) depends on 7. Since the expansions given in (14) and (15) are locally
uniform, it follows that
P.{0eS.0,m)| X} =1—¢e+0,n"")

and consequently the frequentist coverage probability of S;(é, n) is equal to 1 —¢, up
to O(n™1).

Remark 4. From (9) it follows that the credible set As(é) =(— 00, t(@) + \/(b/n)zg] for
t(0) has posterior coverage probability 1 — ¢ accurate only up to O,(n~*). However, mod-
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ifying Ag(é) as in Remark 3 to

Aﬂ@m=<—“»ﬂ®+¢mw{a+iﬂ%§ﬁ%}

one has the posterior coverage probability of A;(é, n) and hence the Bayes and the fre-
quentist coverage probability equal to 1 —e¢, up to O(n™1).

Remark 5. We notice that the matching equation (12) to match up to O(n~ 1) the pos-
terior and the frequentist distribution functions of \/n{t(O) — t(0)} /\/b for a prior 7w does
not depend on the Hessian matrix H,(0) of ¢(6). From this one may correctly guess that
it is possible to approximate up to O,(n~ ') the distribution function \/n{t(H) — t(0 )} /\/b
at some z by the distribution function at some z’ of only the first term of Taylor’s expansion
of \/n{t(0)— t(0)}/\/b that is by that of VI(A)h//b=U’, say. Since U’ is only a linear
function of h, as in Remark 2 we get from (4) directly by linear transformation of variables
without all the involved algebra

STV, (0) N
nw)}+%m ), (16)

where s = t/,/b and, m(0 z) is a function of 0 and z, and does not depend on 7. In fact it
can be seen through indirect or complicated algebraic arguments that m(0 z)= 61(0 ).
Since the last expansion is locally uniform in z, we have

P,,{U’Sz— ész;z) X} =d(z) — @d*(e 7, 2) + 0,(n~1)

Jn
=P, (U<z/b|X)+0,(n").

Finally, one would get the same matching equation (12) by matching the posterior and
the frequentist distribution functions of U’ up to O,(n™").

We conclude this section by referring to the more accurate probability-matching results
of Mukerjee & Dey (1993). They have determined a prior by matching the posterior and
the frequentist distribution functions of scalar 6; up to o,(n”') when there is a single
nuisance parameter 6, orthogonal to 6,.

P (U'<z|X)=®(z) - %{ 0, 2)+

3. EXAMPLES

Example 1. Let X;=(X;;, X,;)" (i=1,...,n) be independently and identically distrib-
uted as N,(u, X), where u=(uy, u,)* and

Y- < oi pay ‘72)
= o
po10, P2
Here 6 =(uy, 45, 64,05, p)*. We suppose the parametric function of interest is t(6) =

po,/o1 = P,|1, say, the regression coefficient of X,; on X;;. The inverse of the information

matrix I(6) is given by I~(0) = block diagonal (X, D), where

o1 30010, 3010(1—p?)

D= 1p%010, 303 302p(1—p?) 1.
301p(1—=p%) 3o,p(1—p%)  (1—p?)

D=
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The probability-matching equation simplifies to

0 0
(1= P apn(d)} + 5 (1 = p2m(0)} =0,
2 p

which has a solution given by n(6) = o7 o5 }(1 — p*)~32 This prior has been proposed
by Geisser (1965) for inference for p and is shown to avoid the marginalisation paradox.
Since g, and ¢, have symmetric roles in 7(f) above, this is also the probability-matching
prior for po, /o, = By, (say), the regression coefficient of X;; on X;.

Example 2. Let X;, ..., X, be independently and identically distributed as N,(u, 6*1,),
where 0 =(py,. .., 4,, 6)7. Suppose the parameter of interest is #(6) = u" u/6> The infor-
mation matrix is I(0) = 0~ 2 diag (1, ..., 1, 2p). The probability-matching equation is given
by

(3%

i 14;7(0) 0 1 um(0)
oy [J{zp(uwaﬂ + (uTu/Gz)z}] o [2p0\/{2p(uTu/02) + (ﬂTﬂ/az)z}]’
which has a solution given by
() =0~ " (uTu+2pe®) T H(uTw) " @2,
It can be checked that this prior will result in a proper posterior, and for p = 1 this reduces

to the reference prior for u/e, proposed by Bernardo (1979).

Example 3. Let X4, ..., X, be independently and identically distributed as log-normal
with parameter 0 = (u, 6)T. Suppose the parameter of interest is t(0) = exp (u +10?), the
mean of X;. The information matrix is I(8) = ¢~ 2 diag (1, 2). The probability-matching
equation is given by

0 o 0 o? —0
A WTRE P s A PNTRS PO

which has a general solution given by
n(u, 0)=0"*(1+30%) f(s% ™)

for any nonnegative function f.
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