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ESTIMATION OF COVARIANCE FROM
UNBALANCED DATA

By A. K. GUPTA and V. K. ROHATGI
Bowling Green State Universily

SUMMARY. In thia paper tho problom of estimation of the covariance of a bivariate
normal di when data is ! has been i Besidos the naive and the

i i threo i i have boon proposed and their pro-
portica investigated. Comparative study, in terms of their variances, bas been carried out to
catablish tho superiority of the rogrossion.estimstors for the given numbec’of complote and in.
complete observations.

1. INTRODUOTION

Let the random variables X and Y be jointly distributed with E(X) = u,,
E(Y) = py, V(X) =0}, V(Y)=0% and cov(X, ¥Y) =1y. If pis the correla-
tion coefficient between X and Y, then y = poy0, Suppose (x, ),
i=1,2,...,n are n pairs of observations on (X, Y) and 2,4, 5=1,...,m
are n, additional observations on X only, that is, the observations on ¥ are
missing or simply cannot be obtained. Although the missing observations
are assumed to ocour at random one can, without loss of generality. arrange
them in the above order. In this paper we consider the problem of estimating
v when the data is unbalanced.

In the next section we study & naive estimator, the maximum likelihood
estimator and threo regression-estimators based on predicted values of Y’s.
In Section 3 a comperative study, in terms of relative efficiency, of these
estimators has been carried ont. The cate when =, single observations on Y
are also availahle has also been studied in Section 4.

2. TESTIMATION OF y
Let us write

.

w1 F X, X st B X, PR — ot T o1y,
{=1 (=1 =1

X o (nfny ) nE 0, I,

8y = (n—1)1 £ (X—Xmyz,
il

Sy = (i—1) £ (Y= Py,
f=}
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and

S (=1t £ Xy—Zmy ¥ Fimy. 0y
=1
In thir section we propoce five estimators of y. fow of which are
distribution-free. However, for compnring their efficiencies we will assame
(in Section 3) that the sample comes from & bivariate normal population.

(i) The first estimator 18 a naive estimator, which is also a speoial cose
of the estimator proposed by Boas (1967) (n,—n = 0, in his notation) and
is given hy

Yoy = Sipn n> L. e ()

It is noted that the estimator 750 is unbiased and consistent with variance

given by

. —2_, oo}
Viag) = 17 =iy 14 %), @

where gy, = E{(X—p Y —p)).

(ii) Under the assumption of normality, Anderson (1957) (see also Olkin
end Sylvan, 1977) has derived the maximum lieklihood estimators of the
prrameters ), p,, 0y, 0, ond p. From his results the maximum likelihood
estimator of y can be easily shown to be
1 S" nn,

1 +,
= 225 X=Xy, e 8
ntm Sy .'-1‘“ ) (

P4

Ths estimator is hinsed. An unbinsed estimator based on 4 is given by

LS.
ntn,—1 8y,

nﬂl
y= B (X=X 18
1

The variance of ¥ can be ensily obtained ns

R oo} , 5
V) = m[w—nu-+p-n)+‘zn.(l+np2—2p-)

Hn(ny42)A(p) - p2ater,. ()

where A(p) = (14 np?—4p3)j(n—3), » > 3
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(iii) The next three estimators arc based on the prediction of Y-values
from the estimated regression line. The precision of an estimator of the
population mean of X (say), can, in general, be inoreased by the use of an
auxiliary variable ¥ which is correlated with X. If the relationship is a
straight line, 8 linear regression-estimator can be constructed. In many
cases when the relationship between X and Y :is nonlinear, it is possible to
transform X and Y into two new variables U and V, which are linearly related.
In the present context we will use the regression technique to predict the n,
missing values of ¥ given the values of X. This method was suggested by
the suthors in Gupta and Rohatgi (1977, 1978).

According to Gupts and Rohatgi (1977, 1078) we use the regression line
o= o 3 XX o), s ()
11

for predicting the missing Y-values. Then the first regression-estimator
we suggest is & pooled estimator given by

" _ ata, "
5 = [:‘: (X—Xm)(Yy—Fm) 4 ”EH’(X.—X‘ l’;(?;—Y"‘")] [nt+m—2)

(8)

where
FM Ty g:_:(x('l’_x(""’”l))_ .o (8)

It may be noted that ¥, remains unchanged if we estimate z, in (7) by .l
(n+ny) . .
in place of x" Y The expression for %, in {8) can be simplified to

(ntm)
9,:8"[7.—14_ I (X XOS, Jimtn—2. . (10)
n+l

The second regression-estimator we propose js also based on the
estimated vegression line (7) and is given by

. ntm
- kq_[_):(x.—x"‘"")y(.g. z (x,_x“'“'”)?.] .
1 n+l
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-1
where k, = ["H'”h 2+n+7l ] . This eatimator uses the improved estimato,
) 1, and can be simplified to
$a= ky [ 18t ——{ 2 R St + @ (x‘""—x""x’}]

(12)

tnmy)
However, if one uses Xm inatead of X e in (7) to estimate 2, i.e.,
P =7 St X
(= +S_“ (X—2&m) e (13)

then %,=7%, the estimator based on maximum likelihood estimation given

earlier by (5). The estimator 3, can be written in terms of 9 as follows

2
fa= o[ (rtm—1y— 2 0 -] g

The third regression-estimator is also based on (7) and is given by

3=k £ (X=X -7 L
where
b= [rm1 ] ond FTY — e P

95 can be simplified to obtain

. L g -
Yom k[0St L S Fw_gp] L0

The four estimators 4},0, ¥ (3= 1,2, 3) are distribution free whereas

the estimator based on the maximum likelihood estimator, 9, asaumes nor-
mality. In the next section we atudy their properties and relative efficiencies
in the apeoial case when (X, Y) has a bivariate normal distribution.
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3. 'I'HE BIVARIATE NORMAY, OASE
To study the properties of and to compare the estimators 5’,,0, ¥ P
i=1,23) we assume that (X, Y) has & biveriate normal dietribution,
(-,1 um ) )
We first note that (X X, 8., 8y Sy Siy) Where
g -
8 =(m-N B (X—X"y
=41

is minimal sufficient. All the five estimators being id
functions of the minimsal sufficient statisti

ed here are

In view of (3) we have

V($s) = olod1+ph)fin—1), . 7

and the varianoe of 4 is given by (6). The unbissedness of 9 (i =1, 2, 3f
follows from the faot that E(S718,,|X;, ..., X, a+n,) = Y07 The expressions

for the variances of 9 (8 = 1, 2, 3) are easy to derive. Indeed, for n > 3,
we have

V(y‘)—(n+u1 2.[(" 1){14p%)+(n—1)A(p)

+2{m—1)(1+np*—2pY]—plofol .. (18)

Viya) = Ia’a'}vi[m—l)(l+np‘)+A(p)

a1y 2 —1)
{("1 1)+ At +(n+”‘,.}+2(l+7m —2p%)
n
Am—1+ n+nl}]_p'”"°" L)

and

n2n§ 2nn,

V6w = Kotk (=10 +npt1+800) s

g2 | —pradot. o (20)
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Let us now define the exaot relative efficienoy of an unbiesed estimator
with vespect to another unbiased estimator g of y, both with finite variances,
by

Vi
b o) =y e

Then the estimator h ia more efficient than g if (g : ) < 1. From (8), and
(18) through (19) we see after simple computations that for > 3,

ey, %) < 16 02> 1(n—2), o (29)

e(yp, - ) <16 p* > 1(n--2), o (23)
and

d¥ 1 9) < 1= p° < 1n—2). . (24

1t follows that we need to compars the performance of ¥, ve. ¥, and %, for
p* < 1(n—2) and that of P ve. ¥, and ¥, for p* > 1/(n—2).

Moreover, letting # and #, — 0 such that n,/(n+n,) - A, we see that

V() P(y) > 1

whereas
PE)V(F) - (1+c)?

where ¢ = A,/{1—A,). This is to be expected since 9, being essentially the
maximum likelihood estimate, is asymptotically efficient. Therefore we
need only-compare the estimators for small and moderate values of n.

Accordingly we computed the relative efficiencies ey :9¢), ¢+ =1, 2, 8 for

7n=810,1520; p*=0,0102)08; and nf(ntny)= A, = 0-1(0-2) 09.
These results are presented in Table 1 for n = 8 only.



TABLE 1. RELATIVE EFFICIENCY OF y,. y; AND y, WITH RESPECT TO 5

COVARBRIANOE FROM UNBALANOED DATA

FOR n=8
M I3 ey :7) eyt ya) o(¥:%)
0.1 0.0 .9607 L9917 9574
0.1 .9818 .9932 -9800
0.3 1.0328 0856 1.0174
0.5 1.0731 .9976 1.0470
0.7 1.1080 9002 1.0711
0.9 1.1332 1.0005 1.0811
0.3 0.0 9748 9879 8882
0.1 8801 0903 8475
0.3 1.0181 9948 1.0838
0.6 1.0460 .9089 L1721
0.7 1.0m2 1.0020 1.2738
0.9 1.0948 1.0086 1.8680
0.5 0.0 9890 9920 8273
0.1 0956 9040 0209
0.3 1.0084 . 9981 1.1218
0.5 1.0248 1.0027 1.3489
0.7 1.0419 1.0078 1.6903
0.9 1.0810 1.0136 1.8655
0.7 0.0 -9966 9969 7187
0.1 9085 .8979 8979
0.3 1.0038 1.0003 11809
0.5 1.0006 1.0036 1.5791
0.7 1.018¢ 1.0081 2.1178
0.9 1.0314 1.0147 2.9166
0.9 0.0 1.0000 1.0000 L7332
0.1 -9908 .0098 8704
0.3 1.0003 1.0002 1.2752
0.5 1.0012 1.0010 1.9149
0.7 1.0027 1.0021 3.1240
0.9 1.0087 1.0054 6.2738

149

We note that for p* < 1/(n—2) (same result holda for = = 10, 15, 20)

%» is preferable, 1t therefore suffices to compare ?ﬂu and §, for p* & 1j(n—2).

This was done for z = 8, 10, 15, 20 and same set of parameter valuos of p%

and A, a8 uged above, Table 2 gives a

B 2-4

of our

dati

N
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TABLE 2. RECOMMENDATIONS

ra profarrod estimstor

0 s

0< < Un—2) %

£ > Uin—2)
0.3 72 forn = 8,10,% = .1, .8,.5;

n =154, =1, .3, and

n = 20,3, = .17 otharwise
0.8 72 for n = 8, 10, 16, 20, 3 = .1

and n = 8, = .8; 5 otharwise
0.7 72 forn = 8, 10,5, = .1; 7 otherwise
0.9 7 forall nand A

4. THE 7, > 0 0a8®
Lot (z, ), i =1,2,...,n be n pairs of observations on (X, Y), z,,5
j=1,..,n and Ypinprp k=1, .., 7, be n snd n, additional observations

on X only and Y only respectively. Besides the notation (1), let

n Fng)

y 1 ntng) n¥ M4, ¥ e
P = 2 Yo T = “om,
Then Boas (1967) proposed an estimator of the covariance which uses the
extra information from the single observations on X only and Y only. His
estimator (C, in his notation) is given bv

5 (n+n,)(n+ny & (ntny) tn+ng)
] nf(ntn,)(n+ny)—n—n,—n,] ,E‘, (X-% NYi--¥ )

(26)
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We propose the following regression-estimator which is & gencralization
of §, considered in Seation 3.
» Aty .
fo=I (X—ZO(Y~T®)+ I iX—X)P-F)
1 ntl
n+

n}?m( 770y 2, X,
ntm+l

At +n,—3

(26)

The estimator 9, is based on the estimated regression line (7) to estimate the
missing values of Y. To estimate the missing values of X we use the regres-
sion line

X=Xy ‘g—:(y.-f"'“"), f=ntngtl, ndbntba, .. (27)

As in the case of ¥, the estimator of ¥, remains unchanged if we estimate

4y in (7) by X™ natead of "™ and By in (27) by 7' instead of S il

This estimator can be simplified to obtsin

S S 8y MM LU
= ey L8k E (X=X
ntm+n?
+S—“ z (Y«—?"'))’]A . (28)
Sy nengHt

If we now assume that (X, Y) is distributed as bivariate normal we can

write the variances of 9, and 7, as

V(&,,=a§ag[ 14+d 44t A4 (n—1)(14-d)? ] 29)

n—1+4dn (n—14dn)?

and

oo
V9o = m,:—_—x)‘g [(n+2ny+2n,—8)(1 4+ ) — 4pHny +1,—2)

+Aip)md+ i —2)+2n,— 1 (ng— 1) E(RY] ~ plolo} - 130)
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where

n—2)

snd E(RY = 1- (5

L3t _ ntl
4= Sty (1=t (1.0,%5557)

The funotion ,F, is the hypergeometric function.

To compare 75 and %, numerically, relative efficiency of 45 with respect

to the regression-estimator P, viz. e(y: §,) was computed for » = 8, 10, 15, 20;
=0, 01 (0209 (4, A)=(01,01), (0:1,02), (0-1,08), (01,0,
(02,02) and (0-3,03), where A, = n)/(n+m+7;) and Ay = ny/(n-tmytny).
The resulting expression for e{yy : ¥,) i symmetric in A, and A, Hence these
computations also provided additional tables for values of (A, A5} = (0-2,0-1),
(0-3,0-1) and (0-4,0:1). There appears to be genersl loss i efficiency a3 p*
increases for fixed =z, A;, and A, except in few cases where the gain i8 not
significant. Also there appears to be general gain in efficiency a8 A, (or A,)
inoreases for fixed A, (or A,), » and p* < 0-1 while there is loss for p? > 0:1. In

Table 3 we present the value of e(y : ¥,) for n = 10 and 15 only.

TABLE 8. RELATIVE EFFICIENCY e(ya : y.)

(n = 10)
n X s
0.0 0.1 0.3 0.5 0.7 0.9
0.1 0.1 1.0160  1.0037  0.0840 0.9712  0.9608  0.8527
0.1 0.2 1.0676  1.0004  0.9360  0.8830  0.8435  0.8134
0.1 0.3 1.0052  1.0134  0.8888  0.7984  0.7892  0.6838
0.1 0.4 1.1208  1.0162  0.8435  0.7201  0.6204  0.5622
0.2 0.2 1.088¢  1.0045 0.8782  0.7808  0.7368  0.6817
0.3 0.3 11418 0.9807  0.7641  0.8108  0.6068  0.4410
(n = 15)
0.1 0.1 1.0184  0.9942  0.9574 0.9316  0.9112  0.8962
0.1 0.2 1.0384  0.9852 0.8048  0.8474  0.8054 0.7748
0.1 0.3 1.0575  0.9761  0.858  0.7686  0.7097  0.0576
0.1 0.4 1.0750  0.9672  0.8037  0.6888  0.6057  0.5457
0.2 0.2 1.0548  0.9701  0.848  0.7683  0.8976  0.6558

0.8 0.8 1.0838  0.9879  0.7248  0.58256  0.4888  0.4310
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It is observed that the regression-estimator 9, is more efficient than ¥y
for p? away from zero (except p = 0) and moderate » (n = 15 or greater).
For small values of n {n =10 or less), however 9, is better than Ps for

p*> 0:1 most of the time except in & few oases (when A; and A, are both
small) and even there the loss in efficiency is not significant.
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