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Abstract

Let A € R™" and let @ and B be nonempty complementary subsets of {1, ..., n} of in-
creasing integers. For A > p(A[B]), we define the generalized Perron complement of A[B] in
A at A as the matrix 2, (A/A[B]) = Ale] + Ale, BJ(AT — A[B]) ! A[B, ). For the classes
of the nonnegative matrices and of the positive semidefinite matrices, we study the relationship
between the permanents of the whole matrices and the permanents of their Perron comple-
ment. Our conditions, which hold in many cases of interest, are such that the value of the
permanent increases as we pass from the whole matrix to its generalized Perron complement.

For nonnegative and irreducible matrices, we also study the relationship between the max-
imum circuit geometric mean of the entire matrix and the maximum circuit geometric mean
of its Perron complements.
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1. Introduction

Let A = (a;, ;) € R™" and recall that the permanent of A 1s the quantity given by
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per(A) = Z l—[ai,a(i)- (L.1)

oES )y i=1
Permanents of matrices arise in many contexts, but particularly in combinatoria]
applications, see Minc [12] and Brualdi and Ryser [3, Chapter 7]. Among the classes
of matrices to which permanents have been applied are the nonnegative matrices and
doubly stochastic matrices. An n X n nonnegative matrix A = (a;,;) is stochastic
if

n
Yoaj=1 ¥Yi=1,....,n (1.2)

Itis doubly stochastic if

Zaw—Za,J—l Vi,j=1,. (1.3)

j=l1
Itis wcll known thatin the beginning of the 1980s, two Russian scientists, Egoricev [4]

and Falikman [5], independently, settled the van der Waerden conjecture showing that

min per(A) = "— = per(Jy), (1.4)
A€,

where Q, is the class of all doubly stochastic matrices of order n and J,, isthe n x »n
matrix whose entries are all equal to 1/n. Moreover, they showed that J,, is the
unique matrix in £,, on which the minimum is attained.

Let A € R™" be the space of all real n x n matrices and let y and 8 be nonempty
ordered subsets of (n) := (1, ..., n}, both of strictly increasing integers. By A[y, 8]
we shall denote the submatrix of A whose rows and columns are determined by y
and &, respectively. Also, A(y, &) will denote the submatrix of A obtained by deleting
rows in y and columns in 8, respectively. Matrices Ay, 8) and A(y, 8] are defined
similarly. In the special case when y = 8, we shall use A[y] and A(y) to denote
Aly, y]and A(y, y), respectively.

In connection with a divide and conquer algorithm for computing the station-
ary distribution vector for a Markov chain, Meyer [10,11] introduced, for an n x n
nonnegative and irreducible matrix A, the notion of the Perron complement. Again,
if B C (n}, then the Perron complement of A[B] in A is given by

P(A/AIBD) = A(B) + A(B, Bllp(A)] — A[BIY ' ALB, B), (1.5)

where p(-) denotes the spectral radius of a matrix. Recall that as A is irreducible,
p(A) > p(A[B]), so that the expression on the right hand side of (1.5) is well defined.
Meyer has derived several interesting and useful properties of 2(A/A[B]). The
first is that p(#(A/A[B))) = p(A). The second is that if A is stochastic, then so
is Z(A/A[B)). In the latter case, Meyer has shown how, if 81, ..., Bs are disjoint
subsets whose union is {n), the stationary distribution vector for the (entire) Markov
process can be aggregated from the stationary distribution vectors of its Perron com-
plements 2(A/A[B1]), ..., P(A/A[B;)).
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Actually in this paper we shall work with a generalized form of the Perron com-
plement: Let A € R™", let 8 C (n), and let A € R be such that A] — A[B] is invert-
ible. Then the generalized Perron complement of A[B)] in A at X is given by the
matrix

Pr(A/ALBD) = A(B) + AB, BIIM — ALBN ™ AL, B). (1.6)

We mention that generalized Perron complements were already used in [13], [6, The-
orem 2.4], and in Lu [9]. It is immediate that if A € R™" is a nonnegative matrix or a
positive semidefinite matrix, then, in particular, the generalized Perron complements
in A exist for all 8 C (n) and for all A > p(A).

In this paper we shall derive several inequalities on the permanents of the gen-
eralized Perron complements of irreducible nonnegative matrices and of positive
semidefinite matrices. For example in Theorems 2.4 and 4.4, of Sections 2 and 4,

respectively, we shall show that if A € R™" is any one of the two types of matrices
just mentioned and 8 C (n), then

per(Z,(A/A[B])) det(A] — A[B]) > per(4), VA > 2p(A).

In Lemma 2.1 we shall show that if A € R™" is a nonnegative matrix and 8 € (n),
then

per(P(A/A[BD) > per(A), VA > p(A[B).

In Section 3 we shall turn our attention from permanents to maximal circuit geomet-
ric means in irreducible stochastic nonnegative matrices. We shall show, for example,
in Lemma 3.1, thatif 8 C (n), with || = 1, then u(23.(A/A[B))) = (L(A))?, where,
for an n x n nonnegative matrix, (-) denotes the maximum circuit geometric mean.

For background material on nonnegative matrices, M-matrices, directed graphs,
permanents, etc., we refer the reader to the books by Bapat and Raghavan [1] and
Berman and Plemmons [2]. For background material on matrix theory, linear algebra,

and matrix computations see the books by Horn and Johnson [7] and Golub and van
Loan [8].

2. Permanent of Perron complement

In this section we develop inequalities between the permanent of a nonnegative
matrix and its generalized Perron complements.

Let Abeann x n matrix and let 8 C {n). Recall thatif A] — A[S] is nonsingular,
then the Perron complement of A[A]}in A at A is given by:

Pr(AJALIB]) = A(B) + A(B, BII — A[B]) ' ALB, B).
Lemma 2.1. Let A be an n x n nonnegative matrix and let A > ay, ,. Then

1 A' - 2 n,n
Per(Pr(A/an.n)) > T——— per(A) + T—‘L— per(Alin — 1)), (2.1)

— dn, — Qu,n
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Furthermore, if . = 2a, ,, then
per(Z).(A/an )X — ap n) > per(A). (2.2)

Proof. Let B = A[(n — 1}], x = A[(n — 1)}, n}, and y = Aln, (n — 1)]. Then
Pr(Afann) = B+ —
A—ayy

Denote by B(i, j) the (n — 2) x (n — 2) submatrix of B obtamed by deleting row i
and column j. Since A is nonnegative, A > a,, and the permanent is a multilinear
function of the columns, it follows from (2.3) that

xy. (2.3)

n—1n-1
per(P3(A/an ) > per(B)+ZZ per(B(i, j)). (24)
i=t j=1 Gn.n
Clearly,
n-tn—1

.. B x
2D xiyj(perB(, j)) = per ([ y O]) = per(A) — a, ,per(B).  (2.5)
i=1 j=1
Now (2.1) follows easily after substituting (2.5) in (2.4). If A = 2ap,, then (2.2)
is a simple consequence of (2.1). O

As an example of this lemma consider the case when A € ,,. First, it is an
immediate outcome of Meyer’s results on the Perron complement mentioned in
the introduction, that all the Perron complements of A are now doubly stochastic
matrices of a smaller size. Thus for any subsets 8 € ¥ C (n), with ¥ of cardinality
l¥| = n — 1, we have that

per(A) < per(Z1(A/A[B]) < per(Z1(A/Aly]) = 1.

In this connection we also mention that when A = J,, then for any 8 C (n) with
|8l =k, 21(A/A[B]) = Jo—«. It should be noted though that even when A % J,
with A € Q,, it can be that for some 8 C (n), with || = k, P1(A/A[B]) = Ju—; as
the following example shows: Let

169 188 | 17

440 495 72

-1 1 1 35
27 28

5 5[0

Then for 8 = {3}, we ﬁnd that:

w o, 1[5
7
3"1(A/a3,3))=|: . . j|+*1—_—_—0 [55] 5 Bl= [
g 9 72

:| = J.
8
In order to prove the main result of this section (Theorem 2.4) we require the

following two lemmas. The first of these lemmas was observed implicitly in [13]
and explicitly in Lu [9, Lemma 3].

DN~ B—
b= b —
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Lemma 2.2. Let A be an n x n nonnegative matrix and let Ay > Ay > p(A). Then
forany B C (n),

p(Zx, (A/ALBD) < p(P,(A/AIBD)).

The second lemma is as follows,

Lemma 2.3 [10]. Let A be an n x n nonnegative, irreducible matrix with p = p(A)
and let B C {r), B ¥ (n). Then p(P,(A/[B])) = p

The main result of this section can be stated as foliows:

Theorem 2.4. Let A be an n'x n nonnegative, irreducible matrix with p = p(A)
and let A 2 2p. Then for any B C (n),

per(Z,.(A/ALBD) det(A] — A[B]) > per(A).

Proof. We use induction on the cardinality of 8, namely on | 8|. Without loss of gen-
erality, let 8 = {k, ..., n}. If 8 = {n}, then the result follows from (2.2) of Lemma
2.1.Solet |B] > 1, assume the result to be true for y = {k + 1, ..., n} and proceed
by induction. Then

per(Zr(A/AlyD)) det(A] — A[y]) > per(A). (2.6)

It follows from Lemmas 2.2 and 2.3 that the spectral radius of 2, (A/A[y]) is less

than p. Thus any diagonal entry of 2, (A/A[y]) is less than A /2 and it follows from
Lemma 2.1 that

per(Z)(Pr(A/ ALy D/ak ) (A = i i) 2 per(Pa(A/AlyD), 2.7)

where dg 4 is the (k, k)-element of 2, (A/A[y]). By the quotient formula for the
Perron complement, see [6], we have

Prl(PrAlAlyD/ark) = Pr(A/ALBD)
and hence (2.7) implies that
per(Zr(A/AIBD)(A — dxk) 2 per(Za(A/Aly]). (2.8)

The result follows from (2.6) and (2.8) in view of the identity (which is the
familiar Schur-complement formula for the determinant) that

det(L ] — A[B]) = (A — Gxp) det(A] — Aly]D). O

3. Circuit geometric means

IfAisann x n matrix and if 1 < i; < iy < --- < i < n, then the entries of A:
Qi ins Big,izs « - -, Biy iy ATC said to constitute a circuitin A and (a;, i, @iy ,i5 -+ * Qiyi)) 17k
is the correspondmg circuit geometric mean. The maximum circuit geometric mean



100 R. Bapat, M. Neumann / Linear Algebra and its Applications 385 (2004) 95-104

of A is then the maximum geometric mean over all circuits in A and we shall denote
it by £(A). In this section we shall obtain certain inequalities between the maximum
circuit geometric means of an n x n nonnegative and irreducible matrix A and its
Perron complements.

We begin with the following lemma.

Lemma 3.1. Let A be an n x n irreducible, stochastic matrix. Then
W(P(Alann)) = n(A).

Proof. Let P = #(A/ay ). First suppose that ;1{A) is the circuit geometric mean
of a circuit which does not pass through n. Without loss of generality, let u(A) =
(a1,2a2,3 ~--ak_1,kak'1)1/k, where k < n. Since p; j Z a; j, for 1 <i,j<n-—1,
we have that

P1,2D23 "+ Pk—1,kPk,1 = G1,202,3 ** * Gk—1 kGCk, 1,

and it follows that £ (P) = u(A).

Now suppose that 12(A) 1s the circuit geometric mean of a circuit which passes
through r2. Without loss of generality, let 1t (A} = (a1,2a2,3 * * - Ak—1 k Bk n@n, 1)/ * D,
where k < n. Then

S Ak .nln, 1
P12P23 " Pk—1kPk1 2 01,2023 - Qp—1 k| Qi1 T ﬁ
— Y%n.n

2 a12023 ** * Qk—1 kGk,nqn 1,

sincel L _ > 1. Thus
—Qn.n

(12023 Pe—1kPe1)/* = (a12623 - - - ag_1 gag nan.1)V*
— M(A)(k+l)/k
> n(A).

Hence u(P) > 1(A)? and the proof is complete. [

The following example shows that the inequality in Lemma 3.1 cannot be im-
proved. Let

0 1 0
A=]e 0 1—€],
o 1 0

where 0 < € < 1/2. Then

P=2Umy =] '

1-¢

and we see that (A) = +/1 — € = /(P) and so equality holds in the inequality
of Lemma 3.1.
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A repeated application of Lemma 3.1 gives the following result.

Theorem 3.2. Let A be an irreducible, stochastic matrix partitioned as

_ A An
A= [AZI Azz] ’
where A1 isk X k. Then
U(P(A]AR)) > p(A)HH,

4. Permanent inequalities for positive semidefinite matrices

In this final section of the paper we develop inequalities between the permanent
of a positive semidefinite matrix and its generalized Perron complements. We shall
employ the following here: if A and B are n x n positive semidefinite matrices, then
A > B will mean that A — B is positive semidefinite.

We begin with a preliminary result.

Lemma 4.1. Let B and C be n x n positive semidefinite matrices. Then

n n
per(B +C) > per(B) + ) | ) _ cij perB(i, j). 4.1)
i=l j=1

Proof. The proof involves familiar ideas from multilinear algebra. We include a
proof since it is not readily available in the literature.

If A is a square matrix, then ®"(A) will denote the Kronecker product of A with
itself, taken n times. Let z be the column vector of order n”, with its coefficients
indexéd by all sequences i}, ia, ..., i, of integers from 1,2,...,n, and with its
Egfries defined as follows. The entry of z indexed by iy, iz, ..., i, is 1 if and only
if iy, i2,..., i, is a permutation of 1,2, ..., n, and is zero otherwise. We have the
following basic identity: If A is an n x 7 matrix then

per(A) = %(@"(A)z, ). 4.2)

Now if B and C are n x n positive semidefinite matrices, then

n
®"(B+C)>®"(B)+) B® - -®BRC®B---®B, 43)
i=1

where C appears at the ith position in the summation. It follows from (4.3) that

%(@"(B +C)z,2) 2 %(®"(B)Z, 2}
n. n.

1 n

+—Y(B® --®B®CQ®B---®Bz,2). (44)
n!,1
[=
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Observe now that

(B®---@B®C®B---®Bz,2) =(n—1)!)_ > cjper(B(i, ). (4.5)
i=l j=1

The result follows from (4.3)-(4.5). 0O

Lemma 4.2. Let A be an n X n positive semidefinite matrix and let A > ay, ,. Then

A —2app
per(Zy((A/ann)) 2 P per(A) + l—_;':n—per(A[(n)]). (4.6)
Furthermore, if A > 2ay, ,,, then
per(Z(A/ann)) (X ~ ann) 2= per(A). @7

Proof. As in the proof of Lemma 2.1, let B = A[(n — 1)}, x = A[{n — 1), n], and
y = A(n, (n — 1)]. Then

Pr(Afann) = B+ xy. (4.8)

A' - an‘n

Denote by B(i, j) the (n — 2) x (n — 2) submatrix of B obtained by deleting row
i and column j. Since A > a,, by Lemma 4.1 and (4.8) we have

n—1n-1

per(Z1(A/an,n)) 2 per(B) + Z Z

i=] j=1

M ver(BG, J)). (4.9)

;L - an'n

The rest of the proof is similar to that of Lemma 2.1. O

If A is a positive semidefinite matrix, we continue to denote its spectral radius by
p(A). Observe that then p(A) is just the largest eigenvalue of A. The next result is
analogous to Lemma 2.2.

Lemma 4.3. Let A be an n X n positive semidefinite matrix and let Ay > Ay >
p(A). Then for any B C (n),

PP (A/A[BD) < p(P,(A/ALBD) < A2 (4.10)
Proof. First observe that since A1 > A3 > p(A) > p(A[B]), both the Perron com-

plements in the result are well defined. Note that A;/ — A[B] and A2] — A[B] are
positive semidefinite and that

M1 — A[B] > A2l — A[B].
It follows that
(2l — AIBD ™! = (I - A[B]) L
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Thus

Arz(al — ALBD) ™ A2t > Al — AIBD ™ A
and hence

P (AJALB]D > Py (A/ALBD).
The first inequality (4.10) follows in view of the well-known monotonicity prop-
erty of the largest eigenvalue. Since A2/ — A is positive semidefinite, any Schur
complement in the matrix is positive semidefinite as well. Thus

Aol — A(B) — A(B, Bl{r2l — ALBNI ™ ALB, B)

is positive semidefinite and therefore A3/ — 2, (A/A[B)) is positive semidefinite.
The second inequality in (4.10) now follows. [

We now state the main result of this section.

Theorem 4.4. Let A be an n x n positive semidefinite matrix with p = p(A) and
let . > 2p. Then for any B C {n),

per(Z1(A/A[B]) det(A] — A[B]) 2 per(A).

Proof. We use induction on |8|. Without loss of generality, let 8 = {k,...,n}. If
B = {n}, then the result follows from (4.7) of Lemma 4.1. So let || > 1, assume
the result to be true for y = {k + 1, ..., n}, and proceed by induction. Then

per(Zi(A/Aly])) det(Al — Aly]) 2 per(A). (4.11)
Setting A} = A and taking the limit as A, approaches p(A) in (4.10) it follows that
the largest eigenvalue of 2, (A/A[y]) is less than p. Then, since #,(A/A[y])) is
positive semidefinite for any A > 2p, any diagonal entry of 2 (A/A[y]) is less than
p and hence is less than A /2. Now using Lemma 4.1 we have that

per(Zi(Pr(A/AlyD/ar i) (A — ar k) = per(Zi(A/AlyD), (4.12)
where, as before, dy i is the (k, k)-element of 2, (A/A[y]). Now, by the quotient
formula for the Perron complement, see [6], we have that:

Pr(Pr(A/Aly]D)/dk k) = Pr(A/ALBD,
and hence (4.12) implies that

per(Z (A/AIBD(A — aw)) 2 per(Zr(A/Aly1)). 4.13)
The result follows from (4.12) and (4.13) in view of the identity

det(Af — A[B]) = (A — agx) det(A! — Ay D). O

Acknowledgements
The authors are glad to acknowledge useful comments and suggestions of the

referees which lead to improved presentation of some of the original results. The
work of the author was supported in part by NSF Grant no. DMS0201333.



104 R. Bapat, M. Neumann / Linear Algebra and its Applications 385 (2004) 95-104
References

[1]1 R.B. Bapat, T.E.S. Raghavan, Nonnegative Matrices and Applications, Cambridge University Press,
Cambridge, MA, 1997.
[2] A.Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM Publica-
tions, Philadelphia, 1994.
[3) R.A. Bruaidi, H.J. Ryser, Combinatorial Matrix Theory, Cambridge University Press, New York,
1991.
{41 G.P. Egorycev, A solution of van der Waerden’s permanent problem, Dok. Akad. Nauk SSSR 258
(1981) 1041-1044,
{5] D.I. Falikman, A proof of van der Waerden’s conjecture on the permanent of a doubly stochastic
matrix, Mat. Zametki 29 (1981) 931-938.
[6] S. Fallat, M. Neumann, On Perron complements of totally nonnegative matrices, Linear Algebra
Appl. 327 (2001) 8594,
[7] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
(8] G. Golub, C. van Loan, Matrix Computation, third ed., The John Hopkins University Press,
Baltimore, MD, 1996.
[9]1 L. Lu, Perron complement and Perron root, Linear Algebra Appl. 341 (2002) 239-248.
{10] C.D. Meyer, Uncoupling the Perron eigenvector problem, Linear Algebra Appi. 114/115 (1989)
69-94.
[11] C.D. Meyer, Stochastic complementation, uncoupling Markov chains, and the theory of nearly
reducible systems, SIAM Rev. 31 (1989) 240-272.
{12] H. Minc, Permanents: Encyclopedia of Mathematics and its Applications, Addison-Wesley Publish-
ing Company, Reading, Mass, 1978.
[13] M. Neumann, Inverses of Perron complements of inverse M-matrices, Linear Algebra Appl. 313
(2000) 163171,



	173-IFPIP-LAIA-V385-P95-104.jpg
	2-10.pdf

