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Abstract

We consider a g-analogue of the distance matrix (called the g-distance matrix) of an unweighted tree and
give formulae for the inverse and the determinant, which generalize the existing formulae for the distance
matrix. We obtain the Smith normal form of the ¢-distance matrix of a tree. The relationship of the g-
distance matrix with the Laplacian mairix leads to g-analogue of the Laplacian matrix of a tree, some of
whose properties are also given. We study another matrix related to the distance matrix (the exponential

distance matrix) and show its relationship with the g-Laplacian and the g-distance matrix. A formula for the
determinant of the g-distance matrix of a weighted tree is also given.
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1. Introduction

In this paper, we consider a g-analogue of the distance matrix of a tree and call it the g-distance
matrix. The inverse and the determinant of the matrix are obtained when the tree is unweighted.
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We also define some related matrices and study their properties. For a weighted tree, we obtain a
formula for the determinant of the g-distance matrix.

We refer the reader to the book by Harary [6] for basic definitions and terminology in graph
theory. We start with some definitions. A tree is a simple connected graph without any circuit. A
weighted tree is a tree in which each edge is assigned a weight, which is a positive number. So,
an unweighted tree is simply a tree with each edge having weight 1.

Let e, 0 be the column vectors consisting of all ones and all zeros, respectively. Let J = eet
be the matrix of all ones. For a tree T on n vertices, let d* = (d;,d5,...,d,), d = 2e — d and
z = d — e, where d; is the degree of the ith vertex of T'. Note thatd + z = e.

Let T be atree on n vertices. The distance matrix of atree T isan x n matrix D with D;; = k,
if the path from the vertex i to the vertex j is of length k; and D;; = 0. The Laplacian matrix, L,
of a tree T is defined by L = diag(d) — A, where A is the adjacency matrix of T.

The distance matrix of a tree is extensively investigated in the literature. The first known result
concerns the determinant of the matrix D (see [S]), which asserts that if T is any tree on 7 vertices
then det(D) = (—1)"~!(n — 1)2"~2, Thus, det(D) is a function dependent on only , the number
of vertices of the tree. The formula for the inverse of the matrix D was obtained in a subsequent
paper by Graham and Lovasz [4]. Their result was extended for a weighted tree by Bapat et al. [1].
In Section 2, we extend the result of Graham and Lovasz by considering a new distance matrix,
termed the g-distance matrix, denoted % = (2;;) and defined as follows:

Let T beatreeonn verticesand D = (D;;) beits classical distance matrix. For an indeterminate
q, we define

g, = [N+ta+@+--+q" ifDy =k,
i =o, ifi = j.
For example, the distance matrix 2, of a tree T shown in Fig. 1 is given by
T 0 1 1+9 1+g 1+qg+¢*> 14+g+4q*]
1 0 1 1 1+g¢ 144
g=| 114 1 0 l+qg 14+g+¢* 1+q+4g*
144 1 144 0 1 1
l+g+q* 149 14+g9+4*> 1 0 1+gq
[ 1+g+¢* 1+g 14+g+4 1 1+q 0

Each element of 2 is a polynomial in the indeterminate ¢. For convenience we denote the
matrix simply by £ and suppress the dependence on g in the notation. Observe that & is an
entrywise nonnegative matrix for all ¢ > —1.

In Section 2, we obtain an expression for #~! when g # —1. In Section 3, we use the expres-
sion for 27! to define a generalization, called the g-Laplacian, corresponding to the Laplacian
matrix L of a tree. We also define a related matrix, the exponential distance matrix, and examine
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Fig. 1. An unweighted tree on six vertices.
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its propetties in relation to the Laplacian. Section 4 deals with the invariant factors and Smith
pormal form of the g-distance matrix. The determinant of the g-distance matrix for a weighted
tree is given in Section 5. The formula contains the classical formula of [5] as a special case.

2. g-distance matrix of a tree

In this section, we extend certain results on distance matrices obtained by Graham and Pollak

[5] and Graham and Lovasz [4].

Most of the proofs in this paper are based on mathematical induction on the number of vertices
of a tree T. So, in the induction step, we start with a tree 7 having a pendant vertex k + 1 with
vertex k adjacent to it. The tree T is defined as T \ {k + 1). Then, using the matrices 2, L, z
corresponding to the tree T, we define the corresponding matrices 2, L and 7 of the tree T That

is; we have

= 2 e+ q%e; = [L+ee, —e - [z+e
9"[e‘+qe}c9 0 :|’ L_[ —e} 10" 251 o | 2.1)

We start with the main result of this section.

Theorem 2.1. Let 2 be the q-distance matrix of a tree on n vertices and q # —1. Then

e=— 1.@(e - qz). 2.2)

Also, 9 is invertible, and

0 ! 1
_ _ , 2.3
PRSI L i @3)

where & = gL — (g — 1)I + q(g — 1)diag(z) and % = (e — qz)(e — qz)".

Proof. We prove the result by induction on n. Let n = 2. In this case, the matrices &, L and z are
defined as follows:

0 1 1 -1 0
[ o 7] [l
So, n'l@(e—qz) Pe = e. Thus, (2.2) is true for n = 2. Also, forn = 2 and g # —1, the
right hand side of (2.3) reduces to

1 1
— ———(qL = (g — DI
T+ 4 (gJ —(q—-1J) q_kl(qL (¢— DD
1

= e (—g(] — —DI+J
q+ﬁq( D)+ (q—DI+J)

1 1
=——@2-1+J)=——@q2+2
q+ﬁq +J) q+ﬂq )

=9 =9

Hence, (2.3) holds for n = 2. We now assume that both the results are true for n = k. Let us prove

the result for n = k + 1.
We first prove (2.2). That is, we need to show that P(e — qZ) = ke. From now on, we will use

the expressions for 2, L, 7 from (2.1). In this case, we have,
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@(e—gi):[ 7 e+q9ek.] [e—q(z+e;c)]

e +ge P 0 1
_ [.@(e ~qz) —qPe; +e+ q@ek]

(e' + ge} D)(e — q(z + &) 24)

We calculate the two blocks separately using the induction hypothesis. The first block is given by

De—qz)—qPer+e+qPer = (k—1e+e=ke. (2.5)
Note thate'z = e'(d —e) = 2(k — 1) —k =k — 2. So,
ele—qgz) =k —qk —2). 2.6)

Therefore, using (2.6), the second block reduces to
(€ + g€, D)(e — g + &) =k — q(k ~ 2) — g + q€, D(e — q2) — g€, ey
=k—qk—1)+qel(k—e—g%- 0=k 2.7

Therefore, by substituting the results from (2.5) and (2.7) in (2.4), the proof of (2.2) is complete,
as

D(e—qZ) = [k:] = ke.

Under the assumption that ¢ # — 1, we now prove that the matrix % is indeed givenby (2.3).
By the induction hypothesis, we assume that & is an invertible matrix and use it to show that 2
is invertible. From (2.1), note that & is a block matrix and is given by

5= L7 e+ g9e;
et +ge,2 0 '

Thus, if [All Alz] is the inverse of &, then we need to show that

Ayl Ax
An=2"'4+9 Y e +q9Pe) W l(e + q%e)'2~! and (2.8)
Ap=—-2 e+ qPe)W!, (2.9

where W =0 — (e + q@ek)‘@_l(e +q%e;) = —(e + q@ek)‘.@‘l(e +g%e;) isal x| ma-
trix. From the induction hypothesis and (2.2), observe that 2~ 'e = L= (e — gz). Therefore,
using (2.6), we get

~W=(e'+ 76, 2)2 (e + qDer) = &' D e + ge'es + gele + ge. Dey
1
k-1

We will prove (2.8) and (2.9) in two steps.

(e'(e —q2)) + 29 +q2-0=‘%(1 +q). (2.10)

Step 1: Using (2.10) and the induction hypothesis,

An=92"+92 e+ qPe)W ' (e +9Pe)' D!
k(1+¢g)

[(@7'e + ger)(e' D! + ge})]
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_ U 2 k-1
T k-1D(14q) l4+q KkQ+gq)
(e—qz)(e—qz)  qle—qz)e, qge(e—gz)t ,
[ k=1 k=1 T k-1 +q°"°"]
__ % % q(e—gpe +e(e—qn) (k- 1Dilee
T k(l4+q) l4g¢ k(1+¢q) k(1 +q)
and
Ap=-2 e+ @e)W"-—( ! (e~gz) + ) k1
12= q2€; =\xr =1 q qe€x 1+

=% +q)(e ~qz+q(k — 1)eg).

Step 2: We now determine the matrices PLand %. Using (2.1) and (2.3), we have

P=qL — (g — DI +q(q — )diag(z)

L +exe; Aek] [I 0] diag(z) | 0
e - +9@-1
[ —e)} 1 01 o 0
_[£+q%erel | —qex
Tl —ge} 1

and

U=@-qDE—qd)' = [" Taa e"’] [e—q@+e0) | 1]

1

_ ["?l — g((e — gz)e}, + ex(e — q2)') + g2exe}
- ((e — qz) — qep)'

(e —qz) — qek]

Thus, using (2.13) and (2.14), the first block of the matrix G s given by
1 ¥ 1 @@ 2
k(1+4q) l+g k(1+q9) 1+g¢
_g((e —qne} +ex(e —q7)) (k= Dg’ere
k(1+4q) k(1+q)

=

and the second block of the matrix 9™ 'is given by

1
((e —gz) — gex) — m("‘qek) =

k(1 +4g) k(1+q)

(e —gz+qlk — 1)ep).

803

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

The expressions (2.11) and (2.12) are respectively, equal to the expressions (2.15) and (2.16).
Hence, if the two sides of (2.3) are partitioned conformally as in (2.1), then the (1, 1) and (1, 2)
blocks on both sides are equal. By symmetry, the (2, 1) block on both sides are also equal. Since a
tree has at least two pendant vertices, we can repeat the argument using the second pendant vertex
and thus conclude that the (2, 2) block on both sides of (2.3) are equal. Thus, by the induction

hypothesis, we obtain the required result. O
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For g = 1, the Theorem 2.1 reduces to the inverse of the distance matrix D, obtained by.
Graham and Lovasz [4].

Corollary 2.2, Let T be a tree on n vertices and let D be its distance matrix. Then

1 1 1 1
-1 _ —e—2) — =L = 68 — -L.
b = Pe-D —3l=5"7 2

3. Exponential distance matrix of a tree

We now define another matrix using the distance matrix of a tree. Let T be a tree on n vertices

and let D = (D;;) be its distance matrix. We now consider an n x n matrix F = (F;;), called the
exponential distance matrix, with

" ifi = j,
T g0 ifi #

Proposition 3.3, Let T be a tree on n vertices and F be the corresponding exponential distance
matrix. If g & %\ then

2

Fl=g- lf A+1q 5 diag(d).

Proof. We will prove the result by induction on n. The result can be easily verified for n = 2.
Let the result be true for n = k, and let T be a tree on k + 1 vertices with k + 1 being a pendant
vertex and the vertex & being adjacent to k + 1. As before, let the tree T = T \ {k-+ 1}. Suppose
F, F respectively, represent the matrices corresponding to the trees T and 7. Then

- F q
P=lg 1]
where for any g € R,

gt = (qDl,k+l , qD2Jt+1 ey qu,k+l , qu+l,k+l — qo =1). (3.17)

We are now ready to prove the formula for F~!. Note that by induction hypothesis, for g # =1, F

is already invertible. So, if [:; QZ] is the inverse of F, then we need to show that

Au=F'+F'qWw'(F ', and Ap=-Flqw!, (3.18)
where W =1~ ¢'F~'q. As Fex = 1q, W = 1 — ¢ Thus,
A F'4 1 (ger)(ger)t = F~! 7 ! and
1= l_qzqk qex) = +l— 5 €€  an
Aiz=— er. (3.19)
1-42

Also, from the statement of the proposition and (3.19),

2

i g qa ..
F],I——-I 3 _qu + : _qzdlag(d+ek)
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=1—-—2 a4+ g diag(d) + i epel = F1 4 g eel
1—42 1-g42 1—g2 k% 1—g2 7k
— Ay (3.20)
and
Fg' =0- e =4 (3.21)

Therefore, from (3.20) and (3.21), if the two sides of F~! are partitioned conformally as in (2.1),
then the (1, 1) and (1, 2) blocks on both sides are equal. By symmetry, the (2, 1) block on both
sides are also equal. Since a tree has at least two pendant vertices, we can repeat the argument
using the second pendant vertex and thus conclude that the (2, 2) block on both sides of (2.3) are
equal. So, by the induction hypothesis, the required result follows. O

Comparing the expression for 2~ given in (2.3) with the one given by Bapat et al. (see (2.1)
in [1]), we introduce the g-Laplacian matrix, %, of a tree T by
L =qL — (g — 1)I 4+ q(g — 1)diag(z). (3.22)

That is, if v;, v; are any two vertices of the tree T, then

1+ (deg(v)) — g ifi = j,
Zij=1—q ifi #j, (vi,v;) e ET),
0 ifi #j, (vi,v;) ¢ E(T).

Remark 1. The g-Laplacian matrix % reduces to

1. & = diag(d) — A = L, the Laplacian matrix of a treec whenever g = 1.
2% =.diag(d) + A, the signless Laplacian matrix of a tree (see [7]), whenever g = —1.

We now state a few properties of the g-Laplacian matrix %
Proposition 3.4. Let T be a tree on n vertices and let & be the q-Laplacian matrix. Then

L. det(#) =1 ~ g2.
2. The matrix & is positive definite if and only if g € (1, 1).

Proof. We use induction to prove both parts of the proposition. The result is clearly true forn = 2

-q 1
det(#) = 1 — g > Qif and only if ¢ € (—1, 1).

Let us assume the result to be true for n = k. We now prove the result for n = k + 1. As before,
let T bea tree on k + 1 vertices. Let k + 1 be a pendant vertex adjacent to vertex k. Then in the
block form, 2 is given by

as the corresponding matrix is given by & = ! —q] and
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Thus, by the induction hypothesis

det(Z) = 1-det(g’exel, + 2L — (—gqer) - 17! - (—gel)) = det(L) =1-¢%.  (3.23)

Hence by the induction argument the proof of the first part is complete.
For the proof of the second part observe that, by the induction hypothesis, % is a positive
definite matrix. So, the matrix g ekek + £ is also a positive definite matrix,

We now suppose that & is a positive definite matrix. Then det(#) = 1 — g2 must be positive.
That is, we need ¢ € (-1, 1).

If q € (=1, 1), then det(¥) =1—¢q% > 0. Also, by the induction argument, the matrix
ekek + £, which corresponds to the first block of the matrix ., is positive definite. Hence,
the matrix 2 is itself a positive definite matrix.

Therefore, by the induction argument the proof of the second part is also complete. [

The proof of the following corollary is omitted as it is an immediate consequence of Proposition
3.4 and Remark 1.

Corollary 3.5. Let T be a tree on n vertices. Then the q-Laplacian matrix & of T is positive
semidefinite for g = —1, 1.

The next proposition gives a bound on the smallest eigenvalue of the g-Laplacian matrix &.

Proposition 3.6. Let T be a tree and let & be the q-Laplacian matrix. If ©() denotes the
smallest eigenvalue of &, then 1(<£) < 1 forall g € R. Also, 1(%) = 1 if and only ifg=0.

Proof. If g =0 then ¥ = I and hence 1(¥) = . For g # 0, consider a tree T with 1 as a
pendant vertex. Suppose the vertex 2 is adjacent to 1 and has degree d. Then the 2 x 2 matrix

=1 -q - , . _
M= [—q 1+ (d - 1)g? 18 a submatrix of .Z. Note that, the characteristic polynomial of
this submatrix is p(A) = (A — 1)? + ¢*(d — 2 — (d — 1)A). Note that p(4=2) > 0 and p(1) <
0 (g #0). As p(}) is a continuous function of A, by the intermediate value theorem there exists

a real number xg € (d'2 1) such that p(xp) = 0. So, by the interlacing eigenvalue theorem (for
example, see [8]) (&) < 1. Therefore, the required result follows. 0O

We now show that for |g| > 1, & has exactly one negative eigenvalue.

Proposition 3.7. Let T be a tree and let £ be the q-Laplacian matrix. Then for |q| > 1, & has
exactly one negative eigenvalue.

Proof. The result is clearly true forn = 2, asdet(#) = 1 — g% < 0for|g| > 1. So, let us assume
the result to be true for n = k. We now prove the result for n = k + 1. As before, let T be a tree
on k + 1 vertices. Let k + 1 be a pendant vertex adjacent to vertex k. Then in the block form,

Zis givenby & = [q e"e‘;: < ‘ie"]. letQ = [({t q:"]. Then it is easy to verify that
k
&£

QPO = ot (1} = B (say). Then by Sylvester’s inertia theorem, the matrices .% and B have

the same inertia. Therefore, the conclusion follows by appealing to the induction hypothesis. [
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We now relate the two matrices & and F. By definition,

Fl=] - I_q A+ i disg(@)

1
=17 (- q2)1 — qA + g*diag(d)). (3.24)

Also,

Y =qL — (g —1)] +q(g ~ 1)diag(z)
=q(diag(d) ~ A) - (g — 1) + g(g — 1)diag(d — ¢)
=(1 — g1 — gA + g*diag(d) (3.25)

Thus, from (3.25) and (3.24), we see that (1 — g2)F~} = . Hence, we arrive at the following
lemma.

Lemma 3.8. Let T be a tree on n vertices and let F be the corresponding exponential matrix. If
& is the q-Laplacian matrix and q #+ %1, then

(1-¢gHF =2

Using the above lemma, we get the following corollary to Proposition 3.4.

Corollary 3.9. Let T be a tree on n vertices and let F be the corresponding exponential matrix.
Then F is a positive definite matrix for ¢ € (—1, 1).

Proof. Note that a matrix A is positive definite if and only if A~! is positive definite. By Prop-
osition 3.4, we know that & is positive definite for all ¢ € (—1, 1). Also, 1 ~ g2 > 0 for all
g € (-1, 1). So, by Lemma 3.8, F~! is a positive definite matrix and hence F itself is a positive
definite matrix.

4. Invariant factors of the ¢-distance matrix
We first prove a preliminary result.
Lemma 4.10. Let T be a tree on n > 3 vertices. Then one of the following holds:

1. T has a pendant vertex adjacent to a vertex of degree 2.
2. T has 2 pendant vertices adjacent to the same vertex.

Proof. Let P = [uy, ua, ..., uk—2, ux—y, ux) be a path corresponding to the diameter of T'. Note
thatas n > 3,k > 3. If degy (ux—) = 2 then the first condition holds.

If degy(ur—1) > 2, let v be another vertex adjacent to u_, other than ux_ and u;. Since the
diameter of T is the same as the length of P, it follows that degr(v) = 1. Thus Case 2 holds. [0

Recall that a square matrix A with polynomial entries over R is called unimodular if det(A)
is a nonzero real number. For our purpose, we use the word “unimodular” to describe a matrix
Which satisfies the stronger condition that its determinant is +1.
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Theorem 4.11. Let T be a tree on n > 3 vertices and 2 be the q-distance matrix of T. Also, let
n be a pendant vertex. Then there exists a unimodular matrix Uy, such that

n—2

U, DU = [(1) (l)]ea[ :+1(1+q)]

i=]

and Uye, = e,.

0 1 14g¢
Proof. We will prove the result by induction onn. Forn =3, 2 = 1 0 1
1+q 1 0
Let
1 0 01 0 0
P,=10 1 0}10 1 0
-1 0 1]]0 -1+g9) 1
Then
0 1 0
Pn@P: == 1 0 0 and Pnen = €.

0 0 —201+gq)

So, the statement is true for n = 3. Let the statement be true for n = k and T be a tree on k + 1
vertices with k + 1 as a pendant vertex. We will prove the result by considering two cases.

Case 1: Suppose that the vertex k + 1 is adjacent to the vertex k of degree 2 (Fig. 2).
Let the vertex k be adjacent to the vertex k — 1. Then the matrix 9 has the form

D1 e+qgPi_1e—1 e+ qe+q Dy rep_
Diy1 = (e + g Dr—18p-1)" 0 1
(e +ge + g Di—1ex_1)! 1 0

where P, is the polynomial matrix corresponding to the tree T \ {k, k + 1}. Let E;; ;= e,
and define Py = I — (1 + ¢)Exq1 1. Then

Dy e+ gZi_18—1 —qPi—1€r—1
P\Dis1 Pl = | (e + qDp-1€1-1)" 0 1
(—q Dr-1€8-1)" 1 —2(1+¢q)
Now taking P> = I + g Et41 k-1, we get
Di-1 e+ gDy_1€k-1 0
PyP\ D1 PIP) = | (e +qDy—1€— )" 0 l1+¢
0 l+gq —2(1+¢)

Fig, 2. Figure for Case 1.
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Note that the upper left 2 x 2 block matrix is nothing but the g-distance matrix 9Dy of the tree
7\ (k + 1}. Observe that for this tree, the vertex k is a pendant vertex. So, by the induction
hypothesis, there exists a unimodular matrix U; such that

k=2
0 1 i+1
U]@kU} = [l 0] @ [-—-——i-—(l +q)] and Uie; = e,

i=l1

Thus,

Uu, 0 ut o
[0 1] P2P19k+1Plngl[01 1]

_ U]@kU{ (14 q)U,e;
T LA+ el —2(1+4)

0 1 0 0 0 T
1 0 0 0 0

0 0 —2(1+q) - 0 0

0 0 0 o —Eld4g) [ 1+4

0 0 0 1+4 —2(1+49)

So, taking P3 = I + %E}H.],k, we have

k-1
U, o Ut o 0 1 i+
P; [ 01 1] P, P19\ P} P} [ 01 1] P} = [1 0] @ [——-E—(l +q)] )

It can be easily verified that

det{ P3 U 0 PP )=1 and P up 0 P Piegy1 = €y,
0 1 0 1

Case 2: Suppose that the vertices k + 1 and & are both pendant and are adjacent to the vertex
k ~ 1 (see Fig. 3).
In this case, the matrix &4 has the form

Di-1 e+qDr—1er—1 €+ qDi—1€-i

Diy1 = | (€ + qDi—1841)" 0 144

(e +qPi_1€x-1) l1+4q 0
Let us take P = I — Ey4) . Then
D1 e+ qDr-1€k-1 0
P\ D1 Py = | (€ + qDPr—1€4-1)" 0 l+gq
0 14+¢ —2(1+4¢q)
k+1
k-1 k

Fig. 3. Figure for Case 2.
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Note again that the upper left 2 x 2 block matrix is nothing but the ¢-distance matrix 2. Observe
again that for this tree, the vertex k is a pendant vertex. So, by the induction hypothesis, there
exists a unimodular matrix U/ such that

k-2 .
1
UlgkU} = [(1) (1)] @ [—L-:_;—(l +q)] and Ue; = eg.

i=l1
So, taking P3 = I + £=2 E; «, we have

t
P v 0 P @k.HPlt vp ¢ P:; = 0 1
0 1 0 1 1 0

It can be easily verified that

det (P3 I:l;l ‘1)] Pl) =1 and P3 [I{)l 0] Preg41 = €x+1-

Hence, by the induction hypothesis, the statement holds foralln > 3. O

k=1 41
s [—f—*i"—(l +q)].

i=1

o

As a corollary to Theorem 4.11, we get the following result about the inertia of the matrix 9.
Recall that inertia of a Hermitian matrix A is defined as the triplet (p, n, z), where p, n, z are the
number of positive, negative and zero eigenvalues of A, respectively.

Corollary 4.12. Let T be a tree on n vertices, n > 3. Also, let D be the corresponding q-distance
matrix. Then the following hold.

1.Ifq > -1, then the inertia of D is (1,n — 1, 0).
2. Ifq < —1, thenthe inertiaof @ is (n — 1, 1,0).
3.Ifq = ~1, then the inertia of 2 is (1, 1,n — 2).

Proof. Since the matrices 2 and U 2U" are congruent, the result follows from Sylvester's law of
inertia. [

It may be remarked that when g > —1, 9 is an elliptic matrix with a zero diagonal in the sense
of Fiedler [3]. Also, for g = 1, the g-distance matrix is the distance matrix, and one gets the well
known result (see Theorem 3, [5]) that the distance matrix has exactly one positive eigenvalue
and n — 1 negative eigenvalues.

As another application of Theorem 4.11, we obtain the Smith normal form of the g-distance
matrix.

Corollary 4.13. Let T be a tree on n > 3 vertices and D be the q-distance matrix of T. Then
there exist unimodular matrices U,V such that

n-2 .
1 O i+1
U@V=[O 1]@[— l, (1+q)],

i=1

a diagonal matrix.

Proof. Letn be a pendant vertex of T. By Theorem 4.11 there exists a unimodular matrix U, such

that U, 2U; = [(1) (1,] @i} [ — &1(1 + ¢)]. Note that the matrix U,2'U, is not a diagonal
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matrix. This matrix differs from the diagonal matrix only in the first block. Therefore, if we take

U= ([(1) é] GBI) U, and V = U}, then the new matrix

-2

1 0], i+1

UDV = [0 1] G? [———i——(l + q)]
i=

is a diagonal matrix. Also, the matrices U and V are unimodular as the matrix U, was unimodu-

lar. O

Remark 2. Observe that the matrix U, DU} in Theorem 4.11 is not a diagonal matrix, whereas
the matrix U2V in Corollary 4.13 is a diagonal matrix.

5. g-distance matrix of a weighted tree

We now define the g-distance matrix of a weighted tree T on n vertices. Let D = (d; i) be
its distance matrix. Suppose the weights on the n — 1 edges of the tree T are any real num-
bers wy, w2, ..., wp—1. Let { = iy, (ip, i1), i1, (1, 82), i2, ..., ig—1, k=1, ix), ix = j be a path
of length k from a vertex i to a vertex j of T If the edge (i;, #;+1) has weight w;, then the (i, j)th
entry of the g-distance matrix 2 is set to be wp + qwy + qzwz +--- 4 wk_lqk‘l. Note that the
diagonal entries of the matrix & are zero and 2 is not a symmetric matrix in general. Also, let
On = Z?zl Wi

For example, the distance matrix 2, for the tree T shown in Fig. 4 is given by

[ 0 w wi+qwy  wi+gwr+wigd  wi +qws + wag? wi+wsg |
w) 0 w) w2 + wig w2 + wag ws
w2 + quw wy 0 w3 wy wy + wsq
w3+ quwr+qPu  wy+qun w3 0 ws + wag w3 + qup + wsq?
ws +qwa +q*w  wa+qw; w4 w4 + w3g 0 ws + quz + wsq®
| ws +qw ws ws+qwz  ws+qur+wigd  ws+qwr + wag? 0 i

In the next result we obtain a formula for the determinant of 2.

Theorem 5.1. Let T be a weighted tree on n vertices with edge weights wy, wa, ..., wn_1. If
q ¥ —1, then

n
det(2) = (—1)"~' (1 + q)" %0 [ [ wi.

i=]

6
/-
wy W2 3 w4
>— -&
1 2 wa 5
4

Fig. 4. A weighted tree on six vertices.
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Proof. We will prove the result by induction on n. For n = 2, we have @ = [u(: u())l] So,

det(2) = ——wf = (—=1)!oyw;. That is, the result is true for n = 2.

Let the result be true for n = k. We now prove the result forn = k + 1. Suppose T is a tree with
edge weights w, ws, . .., wg. Suppose further that T has a pendant vertex k + 1 and is adjacent
to the vertex k with edge weight wy. We assume that g # —1 and that _1 w; 5 0. This results
in no loss of generality since the restrictions can be removed by a continuity argument. Then

&= P Dex + weq
T (weet +ge} D 0 ’
where for any g € R, q is defined in (3.17).
The proof of the induction part will be done in four steps.

Step 1: (e — gqz)'q =e'q—qz'q=1+4.

To prove this, suppose that there is a vertex io adjacent to ¢ vertices, say, iy, i2, ..., i;. Also
suppose ig is at a distance d from the vertex k + 1. Then in the expression e‘_q, the contribution due
to the presence of ¢ vertices being adjacentto ipis g?~2 + g9~ + (¢ — 1)¢?. Butin the expression
q7'q, the information that the degree of the vertex ig is 7, gives ¢ - (¢t — 1)g“~' = (¢ — 1)g. Thus,
in (e — gz)'q, the contribution at vertex ig is ¢ + g% ~!. That is, there is no contribution from
the vertices that are at a distance d + 1 from the vertex k + 1. But then this will be true for all

vertices that are at a distance 1 or more. Hence, the only term left out in the expression (e — gz)'q,
is14gq.

Step 2: In this step, we show that e!9 ™! = . 1(e — g7"). That is, we show that o;_je' =
(e' —qzh) 2.

The result will also be proved by induction. The initial step in the induction argument can be
easily verified. Let the result be true for all trees with k vertices. We now prove the result for a
tree with k + 1 vertices. From (2.1), note that

e' — gz' = [e'|1] — q[(z + €)"10] = [e' — g(z + ex)'|1].
Now, using step 1 and the induction hypothesis, we get

—ta = 9 Qek + wrq
t_ 3G — (el — t |
(€ —qz)P=(e —q(z+e)) [wket +qe,P 0 ]
@D Dey + wrq
—Tal _ t q
=[e —q(z+ e) (1] [wket +qelD 0 ]
=[oye'|ox) = oxe'. (5.1)

Thus, by the induction hypothesis, the proof of step 2 is complete.

Step 3: We now show that (wie' + ge} )P~ L Dex + wrq) = l—":fk)—_wl"ﬂ We use the results
obtained in step 1 and step 2, to prove this step. We have

(wie' + g€, 2)D~ (Dex + wiq)

= wre'e; + wke tg~1 q+ qgerYe; + qwkekq

2
_wk-l—wke'.@ q+q- O+qwk—wk(l+q)+ (‘—qzt)g
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2

w 1
= Wit +q) + (1 + )k = LT DU (52)
Ok—1 Ok~1

Step 4: We now use (5.2) to complete the induction step. By the induction hypothesis and (5.2),
we have

det(P) =det(2) - (0 — (wie' + g€, D)D" (Dex, + wiy))
— — det(D) woik(1 +q)
Ok—1

k—1

- _»  wroy(l
=~ (=200 [Jwi1 4 g2 x 22U+ D

i=1 Ok—1

k
=00+ 9 ok [ [ wi

i=l

Thus, by induction, the proof is over. [

It is tempting to obtain a formula for 2!, in the case of a weighted tree. However, it appears
that such a formula will be very complicated and we leave it as an open problem. As a consequence
of Theorem 5.1, we derive the determinant formula for an unweighted tree.

Corollary 5.2. Let T be a tree on n vertices and let & be its q-distance matrix. Then det(9) =
D" - DL+ )"

Proof. In this case, the weight of each edge is 1. S0, 0,y =1+ 1+4---+1=n — 1, Hence,
the result follows. O

For g = 1, the above result reduces to the result of Graham and Pollak [5] on det(D).

Corollary 5.3. Let T be a tree on n vertices and let D be its distance matrix. Then det(D) =
(=1 (n — 1272,
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