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CESARO UNIFORM INTEGRABILITY AND THE
STRONG LAW OF LARGE NUMBERS

By TAPAS K. CHANDRA and A, GOSWAMI
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STUMMARY. This peper studies some consequences of conditions Hks the uniform inte-
grebitity end Cesito uniform integrability {infroduvod by Chandra {1989)) in the contexb of
gtrong laws of lerge numbers (SLLNs). Extonding certain srguments of Etemadi {1981),

Catrgo, Tandori and Totik (1983}, we relax the sondition of ‘identicel disbribution andjar indepen-
denes’ in Eternadi's extension of Kolmogorev's SLLN and in the classical SLLNg of Markov and
Centelli, Wa also extend the recent SLLN of Landers and Rogge {1889) and a reeuit of Caldaron
(1983) related to tha classical SLLN of Marcinkiewioz and Zygmund,

1. I¥TRORUOTION

Although conditions like amiform integrability are well-known, these
are not yet widcly sbudied in the context of strong laws of large numbers
(SLLNs). This paper athtempts to fill up this gap to some extent. Let
{Xa}a=1 e o sequence of integrable yandowm variables defined on the same probabi-
fity space, and put S() = Xi+-......+X, and X, = n? 8in) (n 2> 1). Bte-
madi (1981, 1983a) hay shown in a1 elementary way that in the classioal
SLLN of Kolmogorov (seo Theorem 5.4.2 of Chung {1974)), the ocondition
‘independent and identically distribubed (i.i.d) random variables’ can be
eelaxed to the condition, ‘pairwise independent and identically distributed
random variables’ ; he has also been able to prove other SLLNs, with nice
applications, for nonnegative pairwise independent random variables satis-

fying certain moment conditions. Csérgo, Tandori and Totik (1083) proved,
by a novel extension of arguments of Etemadi (1981), an analogue of the other
SLLN of Kolnogorov (sse page 125 of Chung (1974)) for pairwise independent
random variables. On the other hand, Landers and Rogge {1986) have
obtained the SLLN for a certain clags of uniformly inbegrable random vari-
ables which, are also pairwise indepsndent ; they have also shown that fhe
SLLN need not hold Jor independent random variables which are merely
uniformly intagrable. Tt may be nobed that the SLLN of Landers and Rogge
(1986) does not imply the Kolmogorov SLLN for iid rendom variables.
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Chandra (1989) hasz sttempted to give s simple and strsightforward
proof of the classical weak law of large numbers (WLLN) of Khinchin (zes
Theorem 5.2.2 of Chung (1974)) and has poinbed out that it ia better to prove
the sbronger fact that the L,-convergence of (X, E(X,)) holds. The methad
of his proof leads naburelly to & condition called ‘Cesdro vmiform integrability
of {X,} which iz weaker than the nsual nniform integrability of (X, ).

In this paper we modify the ideas of the shove papers to get now SLILNg
for pairwise independent randora variables which are not neccssarily identi-
cally distributed and satisfy cerbain moment conditions. TWe are thus able
to relax the condition of “identical distribulion andlor independence’ in Flemadi's
gxtension of Kolmogorov's SLLN {see Theorem 2 below) and in the classical
SLLNs of Markov and Cantells as well {sce Corollury 4 and Theoram & below),
We havo obtained an extension of SLLN of Oaﬁrgg, Tandori and Totik (1883)
along the lines of Chung (1947). We also prove an extension of the SLIN
of Landers and Rogge (1986) by replacing the uniform integrability by the
Cesgro uniform mtegrability ; this situation ia quite natural, since the laws
of large mumbers are, after all, properties of the averages X, Finally, we
eatablish in the Appendix an analogne of a clagsical result of La Vallée Poussin
(on, the necessary and sufficient condition of the uniform integrability) for
& soquetce of Cesdre uniformly inbtegrable random variables,

Deflnition, A sequence {X,}, 21 of random variables is said to be Cesro

uniformiy integrable if
m  supet S B(| X[ (| Xe| > N))] = 0.
1 1=1

N oo

{Here I{4) denotes the indicetor function of the set A). Noie that the above
notion depends ouly on the margina]l distributions of the X,,.

Definition. A sequence {n.} of nonnegative reals is said to be Cestro
bonnded ¥ the sequence {n—a,+-...... +,)} i¢ bounded.

For a better understanding of the signifivance of the Cesiro uniform
integrability, we state a resuly of Chandra (1989),

Theorem, A sequence X} of random variables is Cestra uniformly snke-
grable if and only if the following conditions ave satisfled :

{(2) {B(]| X1} t¢ Cesare bounded ; and

(b) for eack € > 0, there exisls a & > 0 such that whenever {Axhw1 #9 &

sequence of events sabigfying the condition that sup {n'-'-k% P{Ag] < 8, we
A -1
L]
have sup [n Z B X | I{4))] < e.
Y kaml
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Ta this paper, C' stonds for a generic consiant, not necessnrily the same of
sach QPpEATance. Also {f{n)} will stand for an incressing sequence suck that
fin) > O for ench n and fln)— o0

Por the convenience of the reader and the sake of the readability of the
paper, we have made it self-condained by repeating some of argnmenta of the

ahove papers.
2, Mamw RESTLTS

We bagin with a very simple and useful lemmes. Reosll the definition
of the S(x).

Temma 1. Let {X }o»1 be o sequence of random voriables with finite
B(X%). Suppose thet

{i) there is & constant ¢ > 0 such that E(S(n))}* < Uﬁl B, ¥apl;
and

i) T a2 B(XL) < oo.

Aml

Then for every subsequence {k,} of positive infegers such that Tim inf (&, [kn_y)
1) vy @
~ 1, one has S{k )k, — 0 alinost surely (¢.5) o n—00.

Proof. Iel &> 0. The Chebyshev inequality, Condition (i) end =
change of order of summabion imply that

3 PRGE)| 2 h DO ZEEY (k) e (1)
Bl §=1 t kg x §
Sinco lim inf (k,fk, ;) > 1, there exiat b>>1 and an integer %y = 2 such

R =) @
fhat k, b k,_, for each n 3 ny Put a(j)=min > 1:k, >4} 52 1.
Then n{j) T o #s j T oo, so that the seb {j > 1 : w(7) < myy 1e finite, say
4,2, ...,5o—1} Let § > jg ; then n(j} > ny and 50 &, > bestf Ly for each
% > n{j) ; therefore

T k)T = B (b3 (g T Gtestd)
Ak d =iy o

= (o)™ (L=b81 =2 (1097
(by definition of a{f)). Coundition (if) now implies

EEX) X (ki<
J=in nib, B4

Next, note that for eachj > 1, the series 2 (B J*< = w00,
nrkbgmi =l
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Thus the Jeft gide of (1) is finite. By o standsrd result (see, o.g., Lodve,
1977, page 18) we have the desired result. []

The next theorem anrd Corollary 1 can be obtained from the argmments
of ﬂﬂﬁrgg ef al. (1983}, We therefore indicaie only the main steps of the
proods.

Theorem 1. Lat {X, 3}, Be a sequence of nonnegotive random variables
with finite wvar(X,). Assume that

6 sup | T BEa)fn)] = Alowy) < 0
A1 b gl
(i} there 43 @ doudle scquence {py} of non-negative veale such thot

var (3,} < 3 X oy forenchn > 1;
imk f=1

(i) E;. ;%1 pul(F ¥ )P < <0, iV § = maw G, j).
Then [S(n)—E(8(n))if(n)— 0 almost surely as n— m.

Proof. Lot &> 1, 62> 0 and put L —[4/e], the integer part of Afe,
and Z(n) = [S{n)—E(S(w))]{f(n). Tor each integer = 2> 1, there exist inte-
gers m(n) and g(n} such that m(n)-—3 w0, 0 € s(n) < L, e  fln) < amin
and s(n)e & E(8(n)){f(n) < (s{n)+1)e. Let T, be the set of all integers
E 2 1 auch that a™® & f{k) < ami®iH and s(n) e B{SEN/{E) < (sin}+1) 8 ;
let kf =wsap T, and k; =inf T,. Then &5 co and Jmn)} is increasing.
Note that

A Rt

(M) var (SEEN € B (FEEN X 2 gy
#=1 n=1 fuml el

QEEpﬂEWWQE Ep;;fa"“ﬂ'
f=1 J=1 H=p i=l 3=1 m-ardm
where p =1inf {n 2 1 o™ 35 f5 V 4}, Thus the last sum is

[ ] ] -] ==
O Spyamd <0 3 V § .
& Z H_Pﬂ < ) pey{f6 V It <0

Hence Z(k%)— 0 almost surely as n— oo, Following now the argnments

of Csiirgo et al. (1983), we get —s—{a—1)4/a < lim inf Z(r) & Hm supZin)
& (a—1) 44e Letbing ¢ 0+ aud o 14 nlong sequences, we get the
degired resnlt. (3
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Remark 1. In Theorem 1, the condition ‘the X, are non-negative sud
(B(X )} salisfies Conditiony, (i) above’ can be replaced by the condition 'X,
3 e, ¥ n > 1 and {E(X ,—c,)} safisfies Condition {i) above’. This obuerve-
sion is occasionally uscful, Finslly, Conditions (ii) end (i)} will wsually be
gubisfied with the particular choice @ py = C max (cov (X, Xy), 0); it is nob
known whether this is the ‘opfimal’ cheice.

We denote by X+ and X~ the posilive and negalive parls respectively of a
random wvarigble X.

Corollary 1. Let {X_ }sa1 be @& sequence of pairwise independent rondom
variables with finite var(X,). Assume that

0 wp | B BIG—EEA ) | <o
[ -1 H=l
and
(i) El ()2 ver(X,) < oo,
ﬂ-

Then [S(n)—E{(S))]if(1)—> 0 almost surely as n— co.

Proof. Put ¥, =(X,—B(X)) and Z, = (X,—BX,)) &31). It
guffices to show that as n— o,

(fmy E”; (Yo—E(T)—> 0 85., (fin)) i (Z—B(Z)> 084, ... (2)

sinoe (it 3 BT - £ E(Z) = (oo X BOG—BX)) = 0.
fe=l feal fml

Since var (¥,) < E(Y3) < var (X,) and E(Y,) < B(| X,—E(X,) | > 1),
it follows from Theorem 1 thet the first part of {2) holds ; replacing X, by
—X,,, one gets the aecond parb of (2). [J

Corollacy 2. Let {X )}y =1 be ¢ sequence of pairwise independent infegrable
random variables such that there is a sequence {B,} of Borel subsets of B sulis-

fying the following conditions (@)—(d) :

(8) TP eB)<m:
foml
®) é E(X(X¢ e BY) = olf(m)) ;

{e) EILf[n 2 var (X (X, eB,) <w©;
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and
@ sup| X BUX|IFeeB0) | < o0

ftal F=l

here BS is the complement of B,. Then (fir))! [Sin)—E(Sn)}l— 0 almost
surely as m— 0.

Proof. Let Y,= X I{X_eB,), nz 1 By (¢} and (d}), Corollary 1
applied to {¥} yields (f(n))-? ﬂ;:l(r‘-E(n}]-»n almost surely 85 - oo,

By (b), we gob Lf{n])*‘iﬁl (Ys—B(X 1))~ ¢ almost surely as #— co. By (a)
and the first Borel-Cantelli lemma, the desired result follows. O

The next theorem, our first main result, is en extension of the classical
Kolmogerov SLLN for independent and idemtically distributed random vari-
ables {(see Stout (1974) and Etemadi (1981)). Owr fnteniion ie fo replace the
sondition. of ‘identical distmibulion’ by swiduble weaker conditions of simple
ngbure, It is known that the SLLN need not hold for woiformly integrable
soquence of independent random variables. We show instead that the SLLN
holds wnder the stromger assumplion of ‘domination in dislribulion by en inte-
grable random varinhle’. or, the assumplion of ‘Ly-boundedness of X, for some
p o> 1 (ses, in this connection, page 32 of Billingsley (196%)).

Thevrem 2. Let {X }uzy be o sequence of puiriwise independent random
variables and put Gix) = at;ji Pl X, ex)fore 20, If
"

;F Alaide < w0, (3)

then 1 i% e Xi—E{X ) 0 odmoet surely as n— oo for each bounded
w]l
sequence {C,}.
Proof. Tirst note that sup B(|X,|) < cc. It suffices to prove the
n=1

result for ¢, == 1. To this end, we use Corollary 2 with B, = [—n, =] for
n» 1 (it is algo possible 1o apply Corollary 2 of Theorem 1 of Etemadi

(1983a)). Condition (s) follows sinee £ P{|X,| > n) < }':'1 G(r) < o0. To
Awl Hom

verify Condition (b), note that for any nounegetive random variable Z
and = 2 0,

B(ZI(% 3 ) = aP(E > o)+ | P(Z > aie;
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goo, .., Equation {3}, page 223 of Billingsley (1968). Hence
B I X, | > nd) < nP(| X, ] > m)+ | Gl 0,
]

s that Condition (b) helds. Obviously Condition (d) holds, Thus it remai
to verify Condition (c). Observe that for a nonnegative random varieble 2

m&a:’ﬂl

1

E(ZIZ < ) I PZI(Z < &) > a)da

_ u; Pl < Z < oMz < EP{Z}m}rlx.

Hence
n

It Xy | < ) < T [ P(|Z] 2 e

<ozt § g6y =22t B f oGy

=2

L4s

3 © s w0 1 1
[ oty £t <u B g 1 ooty

|
L

b
w  f

<4 I [ Gy <co [
§=1 §—1

Remark 2. Our Condition (3), though stronger tham wuniform integra-
bility, is by no means any stronger than the conditions imposed by Landers
and Rogge (19846).

The next theorem, our second main resulé, is an analogue of the BLLN
of Chuny (1947); for other related results, the interesting paper of Chung
(1947) may be consulted.

Theorem 3. Let {X,} be pairwise independent and
sup [ £ B(1Zk | 1(1Xn) < asiffr) | < o
a==1k pw=l

Let g, 1 (0, o) (0, o0) Be ncreasing in  for each n 2 1. g,(0) being defined
arbitravily.  Adssume fhat

2g.tz) and Qi:j,f} decrenss in x, e (4)

2B 1 X | Niga(a,) < o0 and {alfin} bounded ; then (fm))S(n)—-E(8E)]
=0 almost surely as n— .
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Proof. We use Corollary 2 with B, =[—a,, a;]. To verify Condition
(a), note that
ZP(1 X1 > ay) € T Pig,(1.X,]) 2 g4(8,)) < w0,
Next note that
() B X, | I(| X ] > &) < Za Bty (| X, Difir)gain,)) < 0

so that Condition (b) follows by the EKronecker lemma. Finally, Condition
{c) follows, since

Bfla))"? BRI X,] < a,) < 2aiB(g.(| X, | Wigale,)(f(n)) < 0.

Theorem 4, Let {X .}, {o,) ec. be as in Theorem 3, ewcept thai Condition
{4) is replaced by x/g,(x} is incrensing in x and BE(X,) = 0. Then the conclusion
of Theorem 4 holds,

Pragf. The proof of Theorem 4 goes through except that we have to
verify Condition (b} of Corollary 2. To this end, we use the fact that E(X)
=10 and

ST E(1 XA (1 KR | < a)) € Za, Blg,(| X DN l)gale,)) < 0. [T

Corollary 8. Let {X,} be as in Theorem 3, and assume thai B(X,) =0
fo<p, <t If O<p, 2 for cach n > 1 and EnﬁmE{lInlm’){m,
then nt [S(n)—E{(S(n))]— 0 almost surely us n—* 0.

EBemark 3. It may be noted that the last condition with p, == 1 implies
that {E(|X,[)} is Cesdro bounded’. C(lesrly, Corollary 3 generalises the
SLLN of Csiirge e al. (1983),

Corollary 4. Let {X,}, 51 b¢ a sequence of pairwise independent rondom

variables with B(X, ) =0. Assume that a'ﬁ B(| X, |®) < oo for somep > 1.
H
Then n38(n)—> 0 almost surely as n-» .

Following san argument of Chandra (1991), we now sirengbhen
Corollary 4.

Theorem 5. [Let {X.} be pairwise independent, {B{|X,|)} Cesnro
bounded, E{(|X |P)< o for some 1<p<?2 wnd E(X,)=0 Wik
b, = n‘léi B(1X21?), atswme that

Lo P << o0 and b, = ofn?Y).
Then vt 8(n)— 0 almost surely as n~» 00,
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Progf. We uge the formula of summation by parte (see page 194 of
Apostol (1974)). Note that if ¥ > 2

T nPB(X, [ = % 15 (ud,—(n— by
n=l =l
= Nby/N?4- b 1, (=P —(n-1-1)79)
n=1

N-1
< Nog/Nop X byfa¥
ﬂ:n

go that Corollary 8§ applies. (7
Remark 4. Corollary 4 genevalizes Markov's SLLN to the case of pair-
wise independent sequences of random variables ; see pages 1256126 of Chung

(1974). It also generalizes Cantelli’s SLLN to the case of pairwise indepen-
dent sequences of random variables which need not be identically distributed;
go0 pagea 106-107 of Chung (1974) and poge 436 of Rényi (1070} (see also
page 377 of Shiryaev (1983)).

We next generalize the SLLN of Landers and Bogge (1986). The reader
should note the naturality of Cesiro uniform integrability in the context of
laws of lsrge numbers.

Theorem 8. Tet {X, }y»1 be a seguence of pairwise independent random
sariables, Assume that there iz o function ¢ : (0, c0)— (0, ) such Hhat
(i} &1 B(t) ia increasing taooast T oo}

@) sup [52 £ B X, 1)] o fsay) < 0
] fml
el
i) E @) < oo

Then n* [S(n)— B8 (n))1— 0 almost surdy as n—> 0.

Proof. We use Corollary 2 with B, =[—n, n] for =2 1. Alo we
use the following lsmma which oan be proved using the formula of summation
by parta.

Lemma 2. If S5, < oo and b, i decrensing, then for any bounded {on}
suck that {na} ds imsreasing, S[nay,—(n—1) ta] by < 0.

Put 2, = gt :31 B(g{| Xs1) forn > 1. We first verify Condition (a) (of

the above-mentioned corollsry) ;
I P X,| >a) € 2P| X0} > ¢

< X B@(1X, | )pn) = Elncy—(a—1)e}fln) < 0
A 12



224 TAPAS K. HANDEA AND A, GOSWAMIL
{by tiii). To prove Coudition (b}, let ¢ <2 0. There ia an indeger N, > 1
ench that for each = > 1,

w8 (| Xs| 21 Xel > Fy) < o2

this is possible since {X_} iz Cesiro uniforraly integrable (gee Remsark §
below). Next there is an inrteger N > N; such that for ewh #32 X,

Ny
n~t T B(| XK¢|) <ef2. Then for n > ¥,

> B(| X J)Xs] > 9))
fuul

x ki)
< TE(XN+ T B(X| > N) < ne.
f=1 =1

To prove Condition (o), it suffices to show thas
T2 B(XE I(4,)) < o .. (5)

where 4, = [al* ¢ [X,| & 1], n » 1. Foreach n > 1, thereis a z_ in the
interval [#1%, n] such thab

dlegizs < 2 inf (Plz)fad : Al 2 <Ky 5

nofie that the right aide of the above inequality is positive, Then for 26[nd, n),
we have

¥ & Inz, Plrlidl)  (s8z, K w)
< nfd{x)jt,  (by (i) ond saz, 22 w)
where I, =a¥ g(nl4)forn > 1. Ohservo that
o B I(4,) < 2 Z E@{| XMt
= 2 E[nes,—(r—1)a Jft,.

Bo (5} will follow if we show that % 1ff, < o (use Lemme 2). For this
purpose, we uae Lemma 16 of Petrov (1975, 277-278) with a, = nti—
(n—1)V for n » 1, ¥} = @(|x|)/| x| ; here we are following the notation of
Petrov {19756) and using Assumptions (i) and (i), As a, » 1f{4n®%) for
cach n and {, = n y(n'*), we get T 1ff, < o

We finally prove Condition (d). There is a #, > 0 such that ¢{f) > ¢
for each £ 3> &, sud g0 |2| < £1-¢{|#}|) which implies that for each n 2 1,

wt (K < tte [
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Remark 6. The existence of a function ¢ with the properties (i) and
gii) of Theorem ¢ is equivalent to the Cesiro uniform integrability of {X,.}.
The proof is given in Appendix.

We next state and prove & result that arises in conneetion with the
following interesting guestion. Now that Kolmogorov’'s SLIN is known
to hold under more relaxed conditions, it i3 natural to ask whether the
dagsion]l SLLN of Marcinkiewicz and Zygmund (see Theorem 2, page
122, of Chow and Teicher (1978)) also holds under auch relaxed conditions.
We eome up with the following partial answer. Incidentally, our result
strengthens considerably o result of Calderon (1983) along similar Tines.

Theorem 7. Lel {X Jaz1be o sequence of pairwise independent rondom
variables such that B(X,) = 0, and ihere is o random varigble Y with E{(¥9)
< w0 for some 1 < p < 2 and satisfying the condision thai

ﬂ:ﬂpilxnl 2R O z2a)¥axl.
(Here ' is @ constant). Then

@ I P(X,|?>n) <o;
Bwl

{h) ale 8 | BEY¢|—> 0 as n—> 0 ;
gl

ek
(c) for every subseguence {k,} of positive infegers such thal
b inf (b fR-z) > 1, ome s
kﬂ
(ka0 3 (Vi—EY )~ 0 completely

ir the sense of Heuw and Robbins (1947) (see also page 228 of Stout (1974)), where
Fo=X (| X, |P < n) for each > 1.

Proof. (8) 3 P(|X,|?> ) < 0 2 PV > m) < OB(Ts) <o,
#=1
(b) By Kronecker’s lemma, it sufflces to show that
S n | E¥, | < o
=1
Bat the last series is

& T 0V B(1 X, | K| X, [# > o)
gl

< 0% nVs B(YI(Y? 3 ).
-1
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Now put A, =[w¥? £ ¥ < {n+1)V#] for each n > 1, and note that

i i
T W [ wVedo < 400
=l L
for & suitable constant 4. Henoe

S wUPR(YI(FP 2 a)) = Ea'® T E(YHY edy)
o n=-1 F=n

¥
= 3 EBYI(Yedp)) Znpgd 3 B(YI(Y e 4j) j~e-iup
f=1 A=l f=1

<d T BYPHY e ) < d B{¥?) < o,
=1

since on Ay, wo have j=io=1VWp ¥ < ¥9.

[c) We prossed ag in the proof of Lemma 1, and define & => 1, the n{3)
and §, as before, Let & > 0. Now note that

-] iﬂ-
T #P (| b (r,_Ef,}| > kysa)
#=1 =l
= kg
& I (k) I B(XY(|X;? < 5D
=1 =1
- kn JAiP
< X (k) T | PUX,[? > a)de
Rl k=1 0

o b Sfp
£C 5 (B)Ye T [ P(Y2> n)de
=1 =1 0

- 3
<O E @I B (BT < )+PPT? >
Next obgerve that

- ] l"n L
k)3 5 e P(Y?P »>7)= X )73,
Z (s 2 e PY? 55 = SIS0 Z ()M

—BPYP )M B (k)< (b E TP D ) < o,
gm1 B=n(}) f=t
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Finally, with the set 4, defined in the proof of (3),

2 (¥ T B(PHTP <)) = E BYHTP<j)) I (b
e | =1 J=1 n=nif
< (1—b-¥)-t B RE(TI(Y? < j)
_f=-1
@ -1
= (I—b-¥p)1 £ j2i2'S B(TU(Y e Ag)
4= k=0
= (}—b-¥P)2 X B(T*(Y = A2)) T 52
Xul) Jmptl

< 4% b1y B(FAU(Y ¢ Ap) < d:i E(Y2Yr2 I(Y ¢ 42) (ae p < 2)
E=0

& 4 B(Y9) < oo,
where d is a suitable constant. [

Modifying the proof of Theorem 2 of Etemadi (1981) alorg the line of
argnments used. to prove Theorem 2, one cap establish the following resulf.

Theorem 8. Lot {Xg,ulm 1, a1 b2 o double sequence of pairwise indepen-
dent random variables such that there exist o random variable ¥ ond 6 constant

G 2 0 satisfying the conditions
Pl|Zpp|l 2 2 CP(Y 22 ¥ a2 0, ¥ n
and B(Y log" 1) < .

w8
Then (mn)~1 (S n)—> O almost surely as (m, n)—> 0 where Smp =EIEI.I¢,,;.
Cabrgd el al. (1983) prove Corollary 1 with f{n) = n ; we shall now show
that & general SLLN like Corollary 1 automatically yields & ocorresponding
BLLN for weighted converges (see in this connection Etemadi (1983b) who
used separate arguments for such an extengion) ; to this end, one needs only

replace X and f(n) by respectively wy X¢ and ‘Ell wy where {uw,} stands for the

weights, We are thus able to strengthen Theorem 1 and Corollary 2 of
Eternadi {1983h) ; a8 observed. in Etemadi (1988b), Theorems 2-4 of Jamison
¢ al. (1865) remain true for pefraise indepondent random variables,
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Appendix

Congider the statement (A) below for a sequence {X_}, 1 of integrable
random varisbles :

(A) thers ia a measurable function ¢ : (0, co}-»{0, c0) such that H{3E
— 00 a8 ¢=) 00 and sup [-ra"" ;)1 E{gb{!i‘i’;l}}] == ¢ (any) << co. If (A) halds, then

(X3} i8 Cesdro uniformly integrable. ¥or if ¢ > 0, thore is an integer N > 1
such that &(f) > #{c+1)/e for t > N, and so for eachz 3= 1,

S B X\ I(| X4 > ¥))
=L

<o & B@(XIK| > Nffe+1) < e

The converse implication is more interesting, and is analogous to a classical
result of La Vallée Poussin (seo, o.g., page 19 of Meyer (1266)) on nniform

integrability.

Theorem. ZLet {X, },51 be Cestro uniformly inlegrable. Then (A) holds ;
moreover, § can be chosen 30 that P(I)ft 48 increasing and ¢ ts convex.

Proof. 1°. For any sequence {u,},a; of nonnepative reals with %, 1o
a8 n T o0, if we put

[
$0) =1 glo)de, (£ 0)
($(0) = 0), where ¢ : (0, c0)— (0, o0) is defined s

ga}=u, fn—-1Ce<<n n>1),

then ¢{Bft T o0 a8 ¢ T oo ; such a fanction ¢ is convex (see, e.g., Theorem A,
pagoe 9, of Roberts and Varberg (1973)).

Since B(1) : = @(t)j¢ is continncus on (0, co) and is differentiable in each
interval (n—1, #), # = 1, to see that A(f) is increasing, it suffices to prove
that g'(ty » 0 for te(n—1, n) for each > 1. Fix an n» 1 and a

n—13 -
fe(n—1,n). Notethat $(t)= ‘Eu wE—n+1)n, (4, =0) so that BF@
— E {(4,—wg) > 0. Now that § is shown to be inoreasing, to show theb

§=1
BtH— o as t—» 0, it suffices to show that S(n)—> o aa n—>w. Bub Hn)=

)
=1 El t—> OO 8§ #— 00, SiNCE U, OO A5 R 00,
.
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9. Tt remains to show thab snch a sequence {u, )}, =3 06D be chosen so
ag to also satisfy
-1 2
mp| wt BQUX)] < 1. e (A1)

where ¢ is defined through fu,} aa in 1°

To this end, we first use the Cesdrc uniform integrability of {X.} to get
hold of a sequenice {Nz}y5 1 of positive intogers such that for each § 1,

aup {#2 3 B(X|KIXs| > ¥} <2,

sod Ny— o a8 j—> 0. We now put for each » 2 1,
w, =ocard {j > 1:N; < n}

{Note that gince Ny—» o0 ag j—> oo, the et {j > 1: Ny < »} is finite for sach
n» 1) Clearly, {,} i8 inoreaging. Finslly, for any M > I, there is am
infeger ny 5> 1 such that Nj; << ny for each j =1, ..., M which implies thet
u, > M for each m 22 n,; thus #,— w as n—» 0.

We now establish (Al). Note that
Pty < $ w for ¢ g{n—1, 0], n > 1. s (AZ)
fuml
Next note that for eny k 2 I,

Fg(1Xe))) < B £ Ton-1< 1Xal <) £ ] (by (a2)

x| El i E; In-1< | <) ]| = EltuP{IXkl > i—1).

Ro for any # 3 1,

Ereuxanct E o T OPUK >mo)

=3 3 % PUXzl>m& T B BIZKIEl > N
j=l k=l mwNj =1 k=1

’ﬁ;ﬂiﬂ“i{ﬂ.
=1

Here we have nsed the result of 3° below.
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3°. TFor any integrable random variable X and any ivleger N » 1
£ P(X| »>m < BUXIHIZ| > 5.
M=y
For,ifj 3» 1,

N N4F
¥ BIX|In < [X| <mtl)> % mPon< |X] <md)
N =N
Nef Niti
=% mP(|X] > m)— 5 mP(|X| > mtl)
m=N M=

Najia . .
> ,ﬂéﬂmlxl > m}—(N+j+1P([ X | 2 N4ji+1)

Letting i—» oo, we get the desived inequaliby. [
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