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CROSSINGS OF BROWNIAN MOTION :
A SEMI-MARTINGALE APPROACH

By B. RAJEEV
Indian Stalrsiscal Instriuie

SUMMARY. In this paper we study the orossings of an interval [a,b] by a Brownian
motion. Wa dn this by constructing an associated continucus semi-martingale which tcacks
the crossings of [&, b} by the Browmian motion. An analyeis of the associated semi-martingale
leads to asymptotic relations between oromsingz and local tims, & probabilistic Taylor's formula
and & new proof of Levy's arossing theorem,

0. INTRODUDOTION
The origins of the current work goes back to an earlier paper (Rajeev,
1989} where we studied the sojourn times of margingales in an interval [s, b]
in time £. 'The main result in Rajeev (1989} was o relationship between these
sojourn times and the namber of crossings of [e, b] by the marfinglule in time ¢
(sse Thm, I of Rajeev, 1689). More speoifically we proved that if (Xy) is &
continuomns square integrable martingale and X, # {4, 5] almost surely, then,

F [ Lay(Zgd < X >y = (0—0P BOZA+BE—X ¢ ... (1)
D

where O denotes the total sumber of crossings of [a, #] in time £ by X and
a¢ is the last exit time before ¢, of X, from {a, 5. The arguments used b0
prove (1} arc elementary, but two limiting cases of (1) are interesting. We
consider the specific case of Brownian motion. Firatly, dividing (1) through-
out by (h—a) and noting thet (X; — X, )* £ (b—a)* we are led to

T 3
Lt p-0)ECEy= Lt B (5= § Fiom (X0) s

Tt is well known that the limit in the RHS is nothing but E ®(, &), where @(f, a)
is the local time a6 @ of the Brownian motion (X¥). We recognise this as an
expocted version of Levy’s crosaing theorem (see Seo. 2 for relsvant referencea).

Secondly, dividing (1) throughout by BCE#, and noting that this incresses
%0 coas £ o, we get

:
E,r I[ﬁ,&}(-xl] ds
Lt 0
L)@ Ecli'f,]
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This says that the expected time apent in [a, ] per crossing ia {(b—a)®.
Thua equ. (1} though simple, is revealing. The two observations we heve
just made certainty call for a closer serutiny of (1). We proceed 23 follows :

Let Y = (b—a) OLy+Xi—X )t

L
end Y; = Yﬂ_ EI,I. II‘,M(IE} 8.

It is easily seen thet ¥, is a continuons SF—adapted process and so is ¥,
Eqn, (1) then says that EY, = 0 for all & It can be shown that £Y =0
for sll bounded stop times 7. In obther worda the process (¥;) is8 a martingale
or equivalently (¥} is & somi-martingale. ‘This is & semi-martingale associated
with the erossings of [, 8} by X in time {. The term (X;—X 3% corresponds
to the unfinished erogsing at time 2.

In this artlcle, we atudy waing fechniquea dsveloped in Rajeev (1989),
whe prooess

2y = (b—a) O+ 1 XX |.

We show in Seetion 1 that this ie & (non-negative} submaréingale and defer-
mine its martingale and bourded variation parts (Thm. 1.1}. This fach leads to
asveral interesting consequences which we develop in Section 2, These inelude
an ssymptotic relationship hetween local times and crossings {Thm. 2.4.1)
and also & new proof of Levy’s Crossing theorem (Th. 2.6.1). An application
of Ito’s formmla shows that the process {¥,;) mentioned above is a serui-
martingale {Corollary 2.3.1). Wa thua get back the reaultz of Rajeev {1988).
We aiso generalize the second of the limik theoreme mentioned above, which
leads tu a probebilistic Taylor'a formula. Yinally we mention thet in Rujeev
(1989b) we have proved Thm. 1.1 for a continuous semi-msrtingale uaing she
more recent Meyer-Yor theory of lucal times foT semi-martingales {pee Moyes,
1976, 381-371 and Yor (1976).

1. A SEMI-MARTINGALE ASSOCTATED WITH COROBSINGS

L&t (R, &, FP) be a probability apsce and (), = ¢ & filtration on it satisfy-
ing usual conditions. Let (X,) be a cortinuona squaroe integrable martingale.
The process { <X X >y, ¢ ;> 0} will as usual denote the guadratic variation
of the process (X;). Let @il #) denote a juintly continuous version of the
local time of (Xj). For a detailed account of the properties of @, «) see
Meyer (1976) and Yor (1976). In particular for any bounded Borel funetion
J on the line ®{¢, ) satisfies

; fXgd <X > =}Iz.f{ﬂ-}®(t, o) do o @
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Further @ff, ) is explicitly given by Tanaka’s formula as follows :

1 :
g O, x) = (Xg—a)r—(Xy—a}r— .E T2, a(Xa}dXs. o (8}
For any o < b and ¢ > 0, let

U 4y = number of uperossings of the interval [sz,d] wplo time I
by the process (X,),
= the largest integer k such that there are pairs (¥, &), with
XR{ a and IH::-E: and 0 Gh<s <. <<l

Similarly let DL} be the number of down-crossings of [z, 5] upto time ¢ by
(X;), and let

Cfh = U+ Dil)
= total number of crossings npto time £
Fort = 0, wa dafine
T =1inf{u > 0: Xy ¢ [a, B]} At
= firat exit time from [«, b} before £.
cp=max {u:7, < u<§ Xy¢[o 0]}
— the first time after 7, beyond which the path remaina
in [a, & upto ¢, if such & time exista, otherwise it is 2.
For & few properties of oy, see Rajeev (1989). Note that J_&_’,‘ is 5 meagurable

and further
X,lzaorbifI;e e, &] and 7 < ¢

= X; if X;¢[e,blorry=1%

In particalar |X,—X_ |  b—«¢. From these observations it is not difficult
to sce that the procoss (b—a) Ofi+ | X t—X, |15 8 continuous F-adapted
Process,

¥rom now on we fix a continuous square integrable martingale (X} with
local time Off, 2). We fix o <2 b and £ > 0. We now define two sequences
of stop times (g}) and {(#3) aa follows :

WB=inffa>0: X, >0AL
yf =inf fo > 95, Lo < a}A ¢

yhy == inf fo > 9d Le >BIAE
ik = nf {5 > pie, Ly < @}A L
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Lot k%(es) = min {& ; 9¥¢,, = £} Then for all 5 < k%, 38, < ¢ Similsly
we define (33} a8

gi=inf{a > 0: X, <ajp i
7§ = f {8 > 43, Xy > DA ¢

e = inf {8 > ey, Lo < a}A ¢
Pike = Inf o > gk, Xy > B}A ¢

Let k%(w) =inf {b : 4k = & Then for all n < %, 98, ., <2 Let

gos, )= I (8)

=0 (o wEppl
':b‘l:sr m} = !“"‘{3; ﬂ}—'if“{-ﬂa m]'

Wae note that ¢ is a bounded predictable function and that r®(s), ()
= (.

Lot g2, w) = X 42(Xy). Wa oan now state our main result.

Theorem 1.1: Xoranya < b, the process (b—a) CRly+|X—X, ) do
an Fp-semi-martingale and we have

: 1
b—0)C Bt 1 KXl = § AN Eet5 06 +O 5. .. (@
To prove the theorem we need the following lemma which can be consi-
dersd an Iy version of Levy’s crossing theorem,
Lemma 1.1: For gny be Rand ¢ > 0,

L6 € Dfthyn 2 20 (5, 3).
vl I

Proof : For ¢ >~ 0, we define the following sequence of stop times ;
oi=inf{z>0:X, > b+s)
f{:iﬂf{&}ﬂ"{:.ﬁ.{b}

of =1nf {8 > 753, Xy > b4-¢}
T{.=iﬂf{#}5'£: Irﬂ:b}-

L3
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Let ¢, w) = };". I':'i*’ri][t’ w)
Then f* is & bounded Fp-predictable function and we have for any £ > 0

F a
ﬂ.l- f‘(ﬂ]dx. = ;E‘l. {Iﬂﬂ*—xﬂi.ﬂi}

= —F Dﬁ:g,,ﬂ+[1¢—ﬁ—s]f' (t, W}"" [In'—'{ﬁ—l"in-l-- e {5}

As s 0, almosb surely, f4(¢, w)— Iz 5 (X;) for almost every ¢, d << X >». This
oan be seen as follows : Pixany (§, w). If X; < &, then f*(¢, o) = O for all ¢.
If X; > b, then for snfficiently smell 2 there exists & = kic) such that
te[rs, i]. In other words f%4, o) =1 for sufficiently smell ¢. Sinee by
equation {2) we have almost surely

d<X>f:Xs=0=0

the proof of the ¢leim is compiete. Hence
2 £
§ sy dXs— ¢I Iy » 0y (X)X, in L,
0

Also it is easy to see that {X,—b—s) f*{t, w)— (X;—b)* almost sorely and

henee in L, by dominated convergence. Similarly {X,—(b{-s)}jt— (X,—8)"

in L,, Now teking s— (in {§f) and using eqn, (3} we have the etated resuls.
Bemork 1.1 ; Bimilarly we oan prove that

L, 1
Lbs Ufln = 5 P D).

=30

Proof of Theorem 1.1 : We firat note thatif &, 7 a then ®f, a,)—> Dit, a)
in L,. This is an easy consequence of the Tanake formula for the local time
given by eqn. (3). Fix & sequence (a,) gtrictly increasing t0 &, By Lemma 1
we choose an @, such that e, < ay < @,y and such that

’ 1
”{ﬁﬁ'_an]D[{;;’n;]_m[t# ﬂ‘} Hf,ﬂ < ﬁ

- I
8o ’_I_-}t; {8.—8.) Df%a;] D, ).

Similarly flx & sequence (b,) strictly decreasing to 3, and for each # fix 3, such
that by, < by < b, and

Zg
Lt (b,—bs) ULt = @it b).
H_{i’? ) e 242 @e, B)
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Now we deflne a sequence of stop times (o}) and {r}) as follows :
o5 =0
M=inf0<sgt: Xy <a,or Xe>b} A
o) =inf fr} < s 8! | Xi—a| <|a—a,[or| X—b|<1b—b,|} At

op =inf {1}, <8 8! | Xg—a| <|o—ap] or | X—b]| <{b—B. 1} At
H=infliof<sgt: X, <e,or X,>b} Al

Lot kfw)=min {k:71=8. Then k(o)< almost surely, 72 =¢
fmaﬂk}k,mﬂa‘—tforaﬂk}i’:

Let E,= U (o}, 13). Then it is easy to show that (seo Rajeey, 1080a)
=0
{1} EHICEN
@) foxe<t: X,ela b} = E,. ()
Iet .08 w) = Eﬂ 1@75](3}, Then ¢, are & sequence of bownded

prediotable functions and almost surely ¢.(s) = ¢ (s) for almost every
sd<X >,

¢ H
Hence { nta]ﬁs]dx.&_f ey o)EX,
But [ PlsHHONEs = [ WX ME s~ | glehdo)d,
= LI,

We now look at the integral I, mere carefully, The integrand in I, is

vy = (1 ) E1,0 o )

= hlatngay ©

We nots that all the sums invelved are finite amost surely. Hence

t
§ WML, = fa[zr—r:.mﬂm"%:wam’
BEach summand on the right side takes the values p—a), (a,—ay), (-0

ot (&, —a), excopt when (j, k)=(0, 0) or (k,, 2k*). Aocoordingly we van write
¢
S a0 0 ak, = X 5,
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To explain 8y, let ns demote by U([a, b]) etc. the number of uprrossings
of [3,0] eto. by (Xi) in the time interval [(7f A 79) A 4 (7%, V 12,) A 4]
We denote by U([c, d], [4, b,]) the number of upcrossings of [¢, d,] during the
time interval [{rg A 7%l A €, (a",;n A\ 1;‘; :w) A #] which eonfain at least one oro-
giing {up or down) of [, b]. A similar notation is used for the downeroasings.
We also note that for all «» and for sufficiently large n, there are ne uporossings
of [#,6] or downorossings of [a,,a,] in ocither of the time imtervals
ey V #0) A B4 ADA Hoelloh V 45,0l With the above notation
wa have,

=X —-X
S (Thagf Al (ogvaiiat

8y = (b—a) {U([a, ) —U([a,, ¥])—-D([e,, ay], [2, B}

Sa = {ﬂrg_a’:l] {D{[a‘m ﬂ;]}—-D{[ﬂ-ﬂ, bﬂ]_ﬂt[ﬁm tI,:],. ['n': b])}
8, = (b—a,) {U([a,, b))+ D(a,. 2.1, 5, 5]

8; = la,—a) {IN[=,, b)+D([s,,, 5,), [e. BIY}

S0 X g s ant Kot v e

Sinee 7§ } 74, the firat exit fime from e, 5] before ¢ 8, tends to zero
almost gurely. Sinee (see Rajeev, 1989), o3, Top and 73 =14, o oy = b S,

sONverges to (I;—Xﬂ_ﬂ .

8,18, increases to {b—a) Uy(s, b]). Regarding the first term in 8§, we
nete that

) ahnoet sarely and in Ly, It is easy to see that

) . . m Ta 1
(@n—0) D {[ay, ]) = (3a—53). D {[2y, &2} = — 5 D (5, 0)

83 noted in the beginning of the proof. The other two terms in &, are
kounded by (a,—a,) D¢ ([2, B]) and gince o —a,— 0, these two terms tend to
zero. Bmilarly 8 converges to zero almest swely and in I,
Henee Lt F (8yfrela)d X - G—a) ULt (X—X *ul—d}[: @)

n—:nulh £ L 61 ( ¢ a'iv*?;u) 2 7T
I an snalogous fashion we get,

T [ou el 2 @50+ (B gm,) +3 ),
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Bubtracting the above two equations, the proof is complete.

Hemark 1.2 : Sinee Y} =0 for 0 &, 8 < 7, where 7; i8 the fimt exijt,
time of the process (X;) from [a, b], we see that for ¢ e [0, 74] both sides of
eqn. (1) are identicelly zero.

In a similer manner, by taking ¢{s) == 1 in Theoreta 1.1 we can prove
the follewing :

Theorem 1.2 : (I,‘-—En)—l-{b"—'ﬁ}{ Uteh— [n"bl‘i*('x‘-x'r)

¥

= [ Lo n(X 03X e300, 01—, B) . @

But it is interesting to note that egn. (7) can be guickly derived from
Tanaka's formula (3) az follows: Using (3) at X —=coand X =5 and
subtracting we get

(Xp—o)t — (X g—a}t —(Zp—b)t - (Xo—b)*

4
= J Zjm o Xs) dIr}—-;-{ﬂ’(i. a)— D, b)).

It iz now » matter of verification to aee that the LHS above is precisely the
LHS of equ. (7).

2. SoME CONSEQURNCES OF THREOREMW 1.1
In this section we detail some of the consequences of Theorem 1.1,
2.1 Theorem 1.1 says that the process (b—a)CE%+ | X,—X ol B8 &
non-negative submsartingale whose increasing part in the Doob-Meyer decom-

position ia (B, &)+ D). The asymptotic beheviour of the provess
(X} gots reflected in the convergence of this submartingule. For exampls,
if {X;} ia Brownian motion then.l‘:f;t_ X; = 4 o implies that this sub-martin-
gals converges to < almost zurely as i~ oo for all o < 5.

2.2 Wo have used Tanake’s formula in deriving Theorem 1.1. Con-
versely by letting b—r <0 in Theorem 1.1 wo oan get back Tanaka’s formuls.
Noto that for fixed ¢, w, CF4), = 0 for large b. ®it, b) is also zero for lerge &,
sinoe it ia supported on the aet {3 : X, = b}. Strictly speaking, letting b o
gives Tanake formula only in the inferval {r, 0} where r is the first hit of
(—o0, @) by (Xi). But on [0, 7), X, ,~ X, itself does the job.

2.3 In sddition $o the remarks in 2.1 above, Theorem 1.1 says $hab
|.Z,-—-E | is in fact a (special) semi-martingale. This follows immediabely
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ifwe note that {(b—a)OF:%) 18 & left continuous (and hence predictable)
jncressing process, In particular it follows that (b—e)ORt, i the sum
of the jumps upto time ¢ of the semi-martingale |X,—ZX,|. Now for &
smooth function f, we can spply Ito’s formula to |X,—X | to gob the
following lemma, when (X} is a Brownian motion.

Lemmea 2.3.1: Let {X;) be o Brounian mobion, and [ & emooth function,

Tihen,
(fb—a)—FONCFE bf(| Xe— X, | )—H(0)

= | FUX—X,, [¥(eleE,

[
g §FUT—To, ] dele) ds
+-3-(0) (B, a)-+O(, B)). o (8)

Preof : From Theorem 1.1 we have,

£
| Xe—Xy| = [ $llpls)Totg (D0, a0, B)—(b—a)0E,

For & smooth fonction f, we tecall that the Tio’a formula applied to & semi-
martingale (¥, gives

KTy =f(¥,) + ;f'(Fa-)dYr'l— %‘ jf#(:ra-)d{ Ye =y

+ Z (A(¥)=f(Fe)—=f(¥: )AT,)
LR Y Y

where < ¥¢ > denotes the quadratic variation of the continuous martingale
part of ¥ and AY, is the jump of ¥ at time 5. With ¥, = |I¢—I,‘i, one
has the following ;

:If”{.'ﬁ_]:i S L :If FliX—X, | pleids
:5‘ ‘ FY ) —f(Te)-f(Te)AT)

= ~{fb—a)—fIONCTL+F G—a)b—alCT}
1 PO = [0 XX, Wi,

0

5 FOZ X, 1) (e, 0000, B)

~§(b—a) b—a)CFL -
432
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Hence,

HIZmX o) ~0) = [ F(1 X Ko, | WoIPe)LX,
;7 nf FUX—X,,| ) Ods, a)-+Dids, BY)

]
~(fo—a)—fONORA+ 3§ I Ko Ke, [ pledde

Since for the Brownisn motion, the hitting time of [b, oc), (b, 00) are almost
gurely equal and since Q{ds, #), ©(ds, b} are supported on the sets {s: X, = a},
{s: X; = b} respectively, we have

§ /1K= X, | @ (s, 0) 14805, 5) = 01O, ) +-00, b)),

Substitnting this into tha expression derived above for f{| X;—X o, | }s the proof
ia complate.

Taking expeetations in eqn. {8) with f(z) = 4%, we get back the relasion-
ship between sojourn time in [a, 4] and the number of crossings of {a, b].

Corollary 2.3.1 :
?
E ( I [u.u{Ir}!fa) = B(X— X+ b—aF BOLYH+ B(X,— X, )

where 7; is the first oxit sime of (X,) from [a, 5] before &,

2.4 We shall ahow in Section 2.6 that Levy’s erossing theorem follows
from Theorem 1.1 on letéing b— . We now derive, a5 a conssquence of
Theorem 1.1, & closely related resulé. The crossing theorem says that
(d—a)Of4; ~ B, a) as b a. The parameter 2 is of course fixed, We wil
show that the ahove relationship holds evem if we let t—» oo i

(b—a}ORy) ~ @, a)as f— oo, More precisely we have the following theorem.
Theorem 2.41: Let (X4) be @ Brownian motion ond ¢ < b. Then almost
srely,

= {b—a)
e Ol
Progf . We will ahow that almost surely,

O, o)+ O B) 9
hI;t 20EE, = {b—a) w @
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Bf, a)— D, b}
Lt =
and rva 200,
Adding egne. (%) and {10) the proof is complete. We will prove only eqn. (8)
uging Theorem 1.1, The proof of eqn. (10} is similar, nsing Theorem 1.2.

We assune without loss that X, == @. Let (r,) be the succesaive crossing
times of the interval [«, 8]. Obszerve that

0 e (10}

T4l nyi Tk
[ viereldXe = X (—1F | oleldX,

Th-1

=3 jrm_n{ Fa)Y o)

— 3 [T poaralBeNiZele

where  Yis) = Ifmlm_xmm k=012 ..

2o =X, =Ky pe E=L2,

The strong renewal property of the Brownian motion and the shrong
law of large numbers imply that almost aurely,

1 Tust
- £ ¥(s)p{8)d X ,— O a8 > 00,

Hence by Thegrem I.1 we conclude that

Ly Pasn “'];"ﬂ'l’““ﬂ’ D - p-a.

Tl 0

If now 1, <« 7,45, then n—1 < O} < # and henee

1 =1y (Olr, )+ 0lr, Bl _ 1 (D, )0, B)
E( » )( n—1 ){‘Hf Oty

g_; ( " ) ( d"{’rm—vﬂ]:qu;n’b} )

w—1

eqn. (9) follows on letting = — co.

A easy consequence of Theorem 2.4.1 is the following intuitively obvious
result,

Corrollary 2.4.1: Foranya, b

o, ) _
'I-I-i'tﬂ m—lmw
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Proof : The proof is straightforward using Theorems 1.2 and 2.4.1.

Remark 2.4.1: Theorem 2.4.1, and its Corollary together imply that
for auy m,

CRy _ 1
I!-L-:Iﬂ (D{t: -'E'] - {b__'ﬂ‘]

Corollary : Leta < band o <d. Then,

almost aurely.

Ol _ d—c
‘E’m‘m ES E:—'-E mﬂuﬁ‘d‘yq

2.6 We now derive & limit theorem which ia a generalization of the
following reault :

Theorem 2.8.1: If (X,) 42 o Brownian molion end @ < b, then almogt

aurcly t
g I (o, &) [-Ks]ds
— (b0} ar f—» 0.

i -0y

For a proof of this result see Rajecv and Rao {1988). Prof. Meyer has
drawn our attention to results of Burdey ¢f al {1987) where s more general
regiilt in the context of Hmmé processes iy obtained.

To atart with, take czpectations in eqgn. (8) and divide through aut by
ECEY; and let £— o0 to get

B § (1 Xim X, | deles

= HO—3f E(®4s, o)+ DEb))
‘E’t‘ ECEY, = fb—a)--FIO—3F(0) ‘]_'-f-w il o

By Theorem 1.1 the limit in the RHS i3 just 2(b—a). Hence we have the
following lemma.

Lemma 2.6.1 : Let (X3) de ¢ Brownian mokion, g << b, and f ¢ smoofh
Sunchion. Then :
) NP B({ 1{ Xe— X, | ole)ds)
fO—a)—fO)—f0) b—a) = Lt T :
We now look at the almost sure version of the shove result, Mure precissiy
we will prove the following $heorem.

Theorem 2,5.2 : Let (X;) be & Brownion motion, ¢ < b, and f o smoolh
function, Then clmost surely

| S XX, [ e 1
Jo—a)—f0) = F@b—ay+ Tt S -
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Remark 2.5.1 : Tt is interesting to compare the sbove result with the
dlasgical Taylor's formula of differential caleulas. The remainder term is
now probabilistic | Also note that Theorem 2.5.1 follows by taking f(z) == =3
in the above theorem,

Proof of Theorem 2,5.2: We assume without loss of generality that
X, = o almost surely. Let 7x,k = 1, 2, ... be the sncecasive crossing times.

Let Vi) =X, X, E=0,18 .

Zy(s) = X X =123 ...

Takh & Ter_gh &
We note that
F III_IU"] Sple) = F{ PN o,001( Yads)), Tox € 8 < Tiayy
= f{— Za( S 0—a,0{Zs(8)): Toy & & < T
Henes

T r0XX, [tk = B [ F s 00-al Py, oM

+ B § P T\ i, o B, e
B0

Now by the strong remewsl property of the Brownian motion the two sums
in the RHS are in fact enma of ii.d, random variablez. Further during en

uperogsing (respy. downorossing) Yy (respy. Z;) behaves like a Brownian
motion ztarted at zero and stopped at b—a (respy. a—b). Henoe (see Rajeov,

1089, Car. 21), o
B '.]r f#(fl{g:l}fln.h-ﬂ] {Yk{"nf[rim fﬂ+ﬂ("}‘:aa

= B [ (BN -ommn (BN, o)

= 2[f(5—a)—f(O)—F (@O)b—a)]
The strong law of large numbers now implies that almost surely

Lt o T Ko X, ] JoleMs = fo—a}-fO—FO) 6—a). ... (12
| [}
Now we observe that for fixed o and 7, & < Tay

1 ¢ . __ i _]_- tn _
og, | FUEE, | deods = (1= ) {225) [ FUZemX,, | detelde

+ogt, | f P E0X,, | ool )
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!
he socond berm in the RHS can b domiusted by Gy gy | #lekds ),
&y Tn

{’yis & oonatant. By Theorem 2.5.1, this fends to zero almost surely as i~ o,
From eqn, (12) it followa that the firat term converges to the required limit.
This completes the proof of the thegrem.

Remark 2.6.2: The sbove theorem can also be proved directly nsing
Theorem 1.1. We give only a sketch of the proof : Let r, be the succeessive
crossing times. Lemma 2.3.). together with Theorem 2.4.1 givea

1 L.
Lt g [ PUX— X, | Jelede

=Lt o I FUX—X, | Jois)de

n--.'rw
.
= Jo-a)—fO—FOb—a1+ b o T FUX—X, | WX,

By the strong renewsl property of the Brownian motion and the strong law
of large numbers
1 Tata
Lt = J 1 |IJ~X,.|_}5H3}:|;{3]£X,—} 0 almoat  surely.

i—po B 4
This completes (the sketch) of the proof.

Remark 2.5.3 : It ia worth noting that the last term on the right side
of eqn. (11} is almost surely constant (as is also clear from the equation) hecause
‘ﬂﬂa{ls,a = i) I8 trivial. Thus in particular, lemme 2.5.1 and Theorem

-

2.6.2 together imply the following ratio ergodic theorem

] ¢
fPUE-X,  elede  B{ § (XX, | plelds)
Lt & . = Lt ) ‘ :
= Gﬁ:“ o T EOE:!,]
2.6 We now use Theorem 1.1 to prove Levy’'s crossing theorem. Levy
conjectursed the result in the following form : If (X,) is a Brownisn motion,
then Lt (b-a)DIT = @ft, @) almost surely, The first proof of this

stnkmg result, using excmrsions of the Brownian motion seerns to be in Ito-
Mekean (1365). Subsequently several proofs have heen given in the literature.
Chung and Durret (1976) use theta funcbions, Williama (1977) uses clementary
arguments involving poisson processes, Tto (aee Tkeds and Watanble (1081)) used
exeursion theory, Maisonneuve (1976) uses regenerative systerns. A difforent
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proof is outlined in Btreock (1982). In this context, Meyer (1976) discusses
the uniform integrability of the random varisbles (b—ea) UE$; when X is a
martingale. On the other hand, Karouni (1976} has shown that this
result ia #rne for general semi-martingsles, both continuous apd diacontinuous.
Here we treat essentially the Brownian motion case, nsing a different technigque,
which is suggested guite naturally by Theorem 1.1.

The idea is to exploit the structure of the semi-meartingale | X;—X, |
and show that the martingale part tetds to zero as b— a. To do thia we nse

i
gome esgtimates for moments of stochastic integrals viz. E( oj' I{“,a]{I,}eiX,)t.

Such estimates have been obtained by Yor (see Yor (1976)) to establish the
joint continuity propertics of locel times for semi-martingales. These also
play a crucial rols in the proof given in Karoui (1976).

Let (X;) be a continuows sguare integrable martingale, Then we have
the {ollowing lemma.

Lemma, 2.6.1 : There exisls o constant Cx,¢ such that for all & 2 1,
P k
E ( [ Ilum{xa]tﬂxa) € Uplb—al B < X >}
2
Pragf : With f= I, 4, eqn. (2) gives
¢ >
'.! Top(Xs) 8 < X >4 = u_f @Ot x)de.

Raising to power & on both sides and taking expectations, the RHB can be

dominated by (b—a)¥ ﬁl:;p E[®, =)k, using Jensen’s inequality. The required
24 [a.h]

estimate is then obtained by using the Tanaka formule (2) for O, ), together
with the B—D—@ inoqualities. The detaila can be found in Yor (1878).

Using the above lemma and the B— D—( inequalities it is easy to see theb
: o
B ( [oloWtedXs) < Ousp—opB <X > e (18)
1
We now state and prove the crossing theorem.

Theorom 2.6.1 : Let (X) be & continuous aguare integrable martingale ond
D, ¥) @ jointly continvous version of s local time. Then for each =,

Lt 60" ¢ oq= D7) almost surely.
£—pl [#—? ﬂ"l"f]
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Proaf : Wl‘bhamﬂl* b = g+—, Theorem 1.1 gives

[ sdolpoXy = o +1X X
PR

o g healoer)

Applying (18) to § 0.6}, wo get fur all &3 1,

3 ak
E( ] ali@X, ) < CuB<I>Pm o
A standsrd applicstion of the Borel-Cantelli lemma ahows that

t
L8 9,0V, aeM T, = O almost surcly.

Further we note that |X¢,—Ig’|¢: %—rﬂalmmt purely, where of =, for
]

thointerval | &~ sl a+5r |

By the joint combinuity of ®{, %),

‘;' ("(“’———)Hﬁ( +21,])—y¢(= %) almost surely,

so thab,

1 F
n:!:-‘j - ﬂ!_' Gf#-—-#. =+2_:|F_] = Q(‘: ﬂ:} almost !‘Ell‘&lj"

Finally we note thet if ———; :{%, then

<
. OE" | 1 ]QEC'X"’

(H‘l) I m—ﬁ;—. =+W [ﬂ*:ﬂ" ¥+ %_.]
1 _X,¢

<=0 1
" T-gmime “amim)

Hence Lt eOp"', ] ®ft, %) almost sursly.
2

R

Using sqns. (4) snd (7) of Section 1 and Lemma 2.6.1 we can prove in &
gimilar manner.
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2.6.2: sl =1
Theorem eI_fne [ E t 'E‘ ] 3 ® {4, z)
wd Lt et ® (t, ©) almost surely.
&= 0 [¢=-—.=1=+ ]_.,_. ( m}

Remark 2.8.1 : Wo conclude thess invesbigations with an indication of
the relationship between Theorem 2.6.1 snd the ‘classical’ form of Levy’s
erossing theorem. Suppose we define

U Zf, = the largest integers &, such that there are pairs (t, &)f_,

)

wi'th ga.and}i'_}bandﬁ Bty <<y Ty < e

We note that in the definition of UL}, in See, 1, strict inequality was used.
Then of course for general semi-mertingales UZX4y and U, are different.
For instance, if (X) is reflected Brownian motion then, D, = 0 always. On
the other hand if (X;) is Brownian motion, ther the law of Iterated Logarithm
(or & weaker version thereof) along with the strong mexkov property yields
that for every fixed ¢, «, b, Dl = D4y almost surely. As & consequence
uging arguments s in proof of Theorem 2.6.1 it iz not difficult to see that in
¢age (X;) is Brownian motion,

Lt ¢ DY, Gft, 0) and
=30

and
Lﬁ E U[__.’[“ =— 0 ["'.l 0]!

80 that Lt ¢ DIl = ®(¢, 0). This is the classical’ version.

3. CoxoLusion

We conclude with a few comments on the proof of Theorsm L1. We
could have used techniques similar to that used in (8) to prove Theorem 1.}
But the proof we have givon here is more elementary. We havo essentially
used only an L.-version of Levy's crossing theorem and the fact that the
limit in the crossing theorem has nice L, proparties in the space variable.
We have ued Tanaks’s formula only to identify thiz limit as the local time,
More importantly, the approzimation (6) of the sot {0 < s<<#: X, €[q, )3
by a decreasing limit of wnion of stochastic intervals, which plays a crucial
role in onr proof, works for any continuous &7; adapted process. This suggests
& method for studying the process |X;—X, | for more general X —gb lanst

433
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thoss for which the orossing theorem is true. Lastly, in the approximation
{(6) we have used cromings of closed intervals [a,, &,] ), 5. We conld
well have used open imtervals (z,,b,) Dls, b]. In ecither case the result---
Theorem 1.1—isthe same, For the Brownian motion this can be expected —aa
we have noted earlier CTL4=0%%, almost surely. But for general remi-
marhingales the situation can be quite different.

Acknowledgement, The author is grateful to Professor B. V. Rao for
sevoral useful discussions,
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