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1. Introduction. Recently many authors have been interested in the problem
of estimating the spectral density function of a weakly stationary process. Under
assumptions of linearity of the process and existence of derivatives of the specteal
density, U. Grenander and M. R blatt (1] have investigated the ssymptotic
behaviour of various estimates. E. Parzen [2] bas investigated the asymptotic
behaviour of different types of errors of the estimates under ptions of
fourth order stationarity and exponential or algebraic d of the covariance
sequence.

In this paper, the problem of estimating the spectral distribution as well ay
the spectral density (if it exists) of a weakly stationary process is solved under
the sole assumption that the sample covariances converge almost surely and in
mean to the true covariances. The relevance of Bochner’s work on Fourier
analysis (3], in obtaining more exact expressions for the bias of estimates, is
pointed out. The existence of estimates which converge uniformly strongly 1o
the spectral density of the process is proved under the assumption that the
density has an absolutely convergent Fourier series. It should be added that
only questions of consistency are di d here and, no attempt is made to
derive the asymptotic distribution of the estimates.

2. Estimates of the Spectral Distribution Function.

Definitions: We suppose that 21, 22, - - - Zv are observations at N consecutive
time points on a discrete weakly stationary stochastic process

lzd(¢= -, =1,0,1,--),
with the well-known spectral representation (cf. [1])

(21) z,= _{:: ¢%dzZ(\); En=0;, p=p,=Enzy = [:e"‘di(x).

where Z()\) is an orthogonal atochastic set function (cf. [1}]) and F(X) ia a mono-
tonic right continuous function in [—, x]. It is easily seen that
(2.2) B b = (B2 + o Tz /(N = | v])

is an unbiased estimate of p,. We shall consider the following estimate of the
spectral distribution:
+R{N)
23) Pa) = 1/26 50 aue (m/ik)e",
RN
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1 — jmplies the usual weak convergonoco of distribulions.
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vhere the term corresponding to k = 08 acs(A + x), and the a,.y are con-
wanta chosen such that the following conditions are satisfied:

1) ew— 188 N — o for each fixed k,

Naw=0a4n,
3) Px()) is a distribution function.

\sis known from previous work [1], [2], it is advantageous to choose R(N) =
4Y). We shali now state, without proof, a theorem concerning the convergence
o the estimates F()).

Tneorem 2.1: If {z,} 18 a weakly stolionary process with a spectral distribulion
f{A), and the sample covariances converge almost surely to the true convariances,
W PPy — F) = 1. If, however, F()) is continuous, then

Ploup | Px(A) — F(A\) |~ 0aaN — w] = 1.
(L1114

If, Jurther, the sample covariances converge in mean lo the (rue covariances, then
lim E sup | Px(A) ~ F(A) | = 0.
New |l gI¥
Toe first part of the theorem is contained in Doob {4]; the second part follows
byan application of a theorem of Pélya to the effect that the weak convergence
dr sequence of distributions to a continuous distribution implies uniform con-
regence; the last part follows from an easy coruputation.
The choice of the consiants aa.x : Our main object is to make a suitable choice
o the constants a, » , and to examine the order of the bias, convergence, etc.,
o the estimates thus obtained. The method we use for this purpose is simply a
Twrier analysis. It is based almost entirely on the work of Bochner [3). We now
wate the main result of Bochner, in the form required bere.
Let f(z) be a continuous periodic function with period 2x and let
sin t/2Y *= (sin 2\
K = (—(/2 ) .M [ ( ) o
IK(OY
M(r) °*

-
Sp(z) = L fz + 0O R/r K(RY) di.

K.(1) =

Tugorem (BocuNER): For any continuous periodic funclion, f(z),
| Sx(z) = fz) | = Olw(4r/R) + 47},

vhere
w(z) = max |f(z) — f(z)].

in=mi<e
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Write
1 & S10+Y) * R Ru
(24) 50 = g [ | B=e ™| 2K (_) du
and R
25) o) = [ e

Then it i8 possible to write F¥(\) a8 given in (2.3) and to show that all the
required conditions are satisfied. Thus, by Theorem 2.1, Fy is s eonsistent
estimator of F under very mild conditions. We now statea theorem concerning
the bina of Fy as an estimate of the spectral distribution.

THEOREM 2.2. For a weakly stationary process, {z., with a continuous spedral
distribulion, P, we have

Ig}l<p | EFp(\) — F(A)| =0lw(4r/R) + 47 + R/Nw(R™)),
where w(z) = max |G(\) — G(M) |, I8k
IM=dal<s

and
G\ = FQ\) — (A + 7)/2x]o0 .
Since the above is an easy consequence of Bochner’s theorem, the proof is

omitted.
CoroLLARY: If F(\) satisfies Lipschilz’s condition, i.c.

[F(\M) — F(a) | < ¢|M = Ml
where ¢ is a constant, then w(z) < cx for any x > 0, and hence
sup | EF3(A) — FQ\) | = OF/R + 47 + ((R)/M)].

Thus, in order to obtain an asymptotically unbiased and istent esti
of F, we have only to choose r and R such that r = =, B — », r/R > 0and
R/N — 088 N'— o in Fu()).

For Gaussian processes the following theorem can be easily proved.

TacoreM 2.3. For a Gaussian process with a square inlegrable speciral densily
we have

EIS\;]:'I Fx(\) — FQ\) | = Ol(log B/(N)") + w(4r/R) + 47).

3. Convergence of the Spectral Density. In this section we shall discuss the
choice of 7 and R 8o that the estimate fa(A) given in (2.4) converges (almost
surely) uniformly to the spectral density of the process. Our choice will be such
that r and R are not only functions of N but of the observations themselves.
It should be noted that, even if r and R depend on the observations, Theorm
2.1 remains valid provided that r and R diverge to infinity with probability one
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We require the following

Leoaua 3.1. For any weakly slalionary process z,, sf Y. 2)/N s convergent
wih probability one as N — o, then, for ¢ > 0,

Plup sup |B| < w] =1,
¥ oxrgHIe

where 1 19 63 in (2.2).
Proor:

L) H=k N
18] = (1 Xz D/ = k) $ YO = BIZ 2D (XA,
=] 1 1
© tat
» »
G mp |A4lS VN =-NTYED <X /N -2
1gigni=e T ¥
for N 2 2. Since by assumption (Zf /N converges, the expression on the

rght ide of 3.1 is bounded with probability one. This completes the proof.
Qur estimate of the spectral density function is

20) =1/25N [:'

which can 8lso be rewritten as

» 3
2 P { R/r K, (Ru/r) du,

+n
[#2) fr) = 12w 1 o rm/R)(L = (/) e,
here
w0 = [ K(2) da.

We now prove the following

Tazoren 3.1. Let |z.| be a weakly stationary process, with speciral denssly
ludion J(\) and covariance sequence (g}, which has the property that 3 12 [ pu | is
oarergent. Suppose, further, that the sample variance and covariances converge
dost surely, and 1n the L, mean, lo the true variance and coveriances respectively.
T there exist R(N, 21, zv -+ zw) and (N, 2y, 23, + -+ zx) such that

aup [fv(\) = J(A\) [— 0
<y

dnoaf gurely a3 N — .
Proor:

fiA) = l/2r_2'v'("n/ﬂ)(l = (Iml/N))(Ba = pu)e™

] 4R
+1/20 28 (rm/RY(L = (ImI/N))pue™ = Si + &, say.
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For §, we have ,
supr | Si1 S 1/2 31 g = pml 5 122 [Bn = 0n1
4 Wi
@ s 1R L (182 = pn )/
if R < [N'™|, e> 0,8 > 0. Sincefor each m, | a — pm | — 0 with probability
one, and by Lemma 3.1, 3 {"""™" (18 — pul )/m*"" is bounded. we g by
Toeplitz’s lemma |5) the following:

Plim S (15 = gl V™ 1/m" = 0] = 1.

{3.5)

We choose R such that R — «, with probability one, R < [N"™'], and
LG RIEY]

(3.6 R= o[ );, (180~ pal )/m"'l:|

Then

P[s;xplS:l—-O a8 N> o} = 1.

Turning to S, we have

OIS0 =100 = [ et +0 - s01r/r K, (R a
where
(38) frd) =120 2200 = (ImI/N)pne™

is the Nth Fejer mean of f(A). Since 2_*= | p | is convergent, f(A) is bounded
and continuous. Since f() is symmetric in A, f(x) = f(—rx). Hence, by Fejer's
theorem,

(3.9) lim Iﬂu‘glh(k) -f)l =0

From (3.7) we have

4o
sup |50 — SO | S sup [ 1/ +0 =0+ 0]

(3.10) +
(R/KARYr) et sup] [ O+ 0 = SOV (R/MK Ry d

8ince [X2(R/r)K.(Ri/r)dt = 1, the first term on the right of (3.10) goes to
zero 89 N — . If we choose r such that r — « and (r/R) —» 0as N — w, il
is easily seen from Bochner’s theorem, that the second term also goes to tert
with probability one.
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We remark that, if we choose rR = o{N) and r = o{R), the theorems of U.
Gresander and M. Rosenblatt (1) on the consistency of the spectral estimates
jor linewr processes become applicable.

Finally, let us consider the behaviour of the periodogram of a stationary
(aussian process. It is well-known that the periodogram does not converge to
soy modom variable as the sample size increases to infinity. However, the fol-
jving theorem holds.

Tazonex 3.2. For a stationary Gauasian process with a spectral density f(A)
ngfying Lipachitz's condilion,

= &3

. 1 .
Plimep s, N Toglog W T RSP o N logiog =/
The proof follows from the acalyses of W. Feller [6] and G. Maruyama 7.
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