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ON THE CONSTRUCTIONS OF PROBABILITY
DISTRIBUTIONS FOR DIRECTIONAL DATA!

ASHIS SENGUFPTA
{ Heceived 20 September 200035)

Absiract. Even though the support is finite, becansa of the dparity of the topologies betwesn the circle
and the line pnd a5 alao of the additional requirement of perlodicity of the density functions, e interesting
gituption is posed for the constructions of prabability distributicna for dimectional data. Deawing from certain
resulte o1 characterization $hecry based on the calculus of variations and on functional apnalysls, we enhance
here the degitabla properties of maximwm enteopy and conditlonsl specifications. [t ia demonstrated in this paper

brow the adoption of such principles leads to the construction of intareating and useful probabllity discxibuclons
of the cirele, torm and cylinder and their generalzations,

1. Introductlon. Directional data crise in many diverse scientific !tvestigations
encountercd frequently in our day-te-dey lifc as ochservations on directions, orentations, angular
diaplacements, periodic occurrences, ete. Construction of such distributions pose intercsting
prablems since methods for linear data eannat be directly adopted due to the disparity of the
tpoclogics an the Une and the circle. Further, the additional requirement of pericdicity of auch
distributions need to be met. Scverel disttibetions bave been proposed (Jammalamadaka and
Sen Gupta, 2001, Chepter 1) to model such data, mostly on the circle. Here an attempt is
made ta nnify certain results on characterizations of distributicns and generalize the:n to yield
not omly new probabliity distributions on the eircle but also those for the bivariale cases, such
as for models on the torus, cylinder and thelr ultivariate peneraliztions.

2, Maximum satropy characterizations. The concept of information, aquivalently of
nugalive entropy, is commonly used in statistics, We demonstrate In this section how probability
distributions may be characterized, and hence constructed, for directional data by invoking the
criterion of maximization of certain entropy measures. Widle Shancon's entropy (section 2.1)
has been the most popular one for such purpases, it is observed that maximization of certain
other such functionals (section 2.2} alse lead to useful probability distributions on the circle.
A peneralization of the basic result for the univariate case is seen to vield distributions.¢n the
torus, cylinder {section 2.3) and their multivariate extensions {(seelion 4.1).

2.1 Univariate case : Characterizations based on Shannon’s entropy. Let X be a
continuous random variable having the probability density function f{x;7). Then Shonnon’s

1Thiz paper s based in parl o Lhe Tuvited lectuke presented by the author at the Internationz! Confersnce
of the Calmitta Mathematical Snniety, Kolkata, Deeember 2602,
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140 ABHIE SENGUPTA
information is defined as the negative entropy
=
#y=~ [ s@nog simms

It fcllows, e.g., by results on mejorizetion with Schur-convex functions (Marshall and Dlkin,
1974), that this information measure ia non-negative. Let

Hen) >0, c€lab) and, =0 otherwice. (1)

Considar the class F' of parametrie density functions f{z,n) that satisfy the constrainis

b
ﬂ Ty() s ndde = 15, 3= 1,2,k 2

for a given set of integrable furctions 1) (z),---, Tk(x) on (&, 1) und constrainte 71, -- 7. Then
variationsl methods can be wsed to find the class of densities that mastimize H{ ) over the class
F. Using the Lagrangian,

k
L=—ylogy+ vy wTix)
=]
and the corresponding Euler-Lagrange equation, the extremal density functions is given by :

THEOREM 1. The mazimum endropy over the class F is attuined by the exponential family of
distributions, ie., with the density of the form

1(xin) = Coexp [ 1 mirata)] (3

where C is the normalizing constand to be delermined by invoking the constraints (1) and (2),
if [and only then) there exist gy, 1a,- -+, gy Such thet (3) satisfies the conditions (1) end [2).

An alternative proof of the above characterization result based on inequalities ia avallatle
from Theorem 13.2.1 of Kagan, Liznik and Rac [1973).

For distributions on the cirele, it is customaty to represent the random variable X above
by ¢ and the support hy usually 0, 2} or by {—x, 7).

2.1.1 Examples. 1. Clrcular Normal (CMN) Distribution. A circular r.v. 8 is said
to bave a von Mises or a Circuler Normal {CN) distribution {(von Mises, 191B) if it has the
probability density function :

1
2] i) [ﬁ.‘-}

Fléh )= et L N I T (4)

where 0 < 2 < 21 and x > 0 are parameters. Hers J3(x), the normalizing constant, is the
modified Bessel function of the finst kind end order zero.
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By taking 7 and 77 consistent with the expectations of Tj{§} = coa(®) and T3(8) = sin(#)
respectively, i.e., by specifying the first harmocic of 8, {3) vields (4).

2. Multimodal CN distributions. A ciccular r.v. @ is gaid to have o p-moedal von Mises
or a p-modal CN distribution (p known), if it has the probability density function :

118 1.%) =

oo = 2}
TS AP , 0 <8< (5)

wlhere 0 = ¢ < 2% and 4 > 0 are parameters.

By taking 7 and 7 consistent with the cxpectations of T\ {#) = cos p(#) and T{8) = sinp(9)
respectively, i.e., by specifying the p-th harmonics of 4, {3} yields {5).

%. A skewed CN distributlon. A thtee parsmeter circular distribution which iz a
member of the exponentlal family and may be looked upon 4s a generalization of the two
parameter CN distribution, has been suggested by Rattihalli and Sen Gupta (2002). This
density {to be referred to aa the 3GR density) is given hy

F{@ b1y k1, mp) = Clexpirg cus(f — py) + xz008 26),

I 0= <21, Ky, k3 20, (B)

where £' iz the normalizing constant and cen be expressed in terms of the weighted sum of

indepeudent non-central y? variahles or may he eomputed In the same Lines as done for example
4 helow.

By tuking 7\, 7 and Ty consistent with the expectations of Ty (#) = cos{f), Ta(#) = sin{f)
sud T3(P) = cos2(#) respectively, (3) vields {8).

4., Rukhin’s generalized CN distribution. A four parameter circular distribution which
is a member of the exponential family and may be looked upon as yet another generalization
of the two parameter CN distribution, has been suggested by several researchers, c.g., Rukhin
(1972), Cox (Mardia, 1975a), Beran (1979}, This density is giver, Ly,

J(fh e 3. ab) = C explacos{f — a) + beos 2(8 ~ 7)),

<<, 0<a, A<ira>0b>0, {7}

where O is the normalizing constant, which may ba obtained as below Y{antiz end Borgman,
1952}, After calculating the Fourler serles expansiona of

F‘l ____En&m[ﬂ-—&]1 and = bcm{![ﬂ—-ﬁ}]j

and using some manipulations, it turns cut that,

C™l=9r {Il:u fa)lo(t) + 2 i {8 dpn e} cos{2n(f - ﬂ})} '

E |



142 ASHIZ SENGUPTA

bere Inla), Ta(d) are the modified Bessel functions of the firss kind and crder n, ie.,
I.(8) = 1 f&”“ﬂmsn’lnﬂ'}dﬂ, 8 = ,bh.
m Ja

By taking 71,73, 73 and 7y consistent with the exprectations of T1(6) = cos(d), T8 =
sim{#), T3{8)} = cou 2(8) and Ty(#} = sin 2(d) respectively for the above distribution, (3} yielcs
{7

Both the distributions in (6) snd (7) are capable of capturing a variety of shapres, hoth
symmetric and asymmetric, both unitnodsl and bimodal. However, note that (8] requires ane
parameter lesa than (7).

2.2 Univariate distributions derived from other entropy measnres/Ffunctivngls,
We now briefly discuss the invocation of other entropy measures for deriving cirenlar digtribg-
tions. Solutiona (Ochoa and Delgado-Gonzalez, 1990) through variational trechniguces may Le
obtainved t¢ the classic inverse theory problem arisitig out of characterizing a density funetion
D(#) which under lsoperimetric constraints minimizes {maximizes) a relevant contbination of
some integral messure ¥ of D or a functionsl (an eniropy in most cases) Ewr various such
functional. D(#) is obtained by minimizing a fairly general functional,

$= | [FD}+ [P+ A1 cosB+ ApsinB+ Ay cus 28 + Aqgsin 20} D(8)]df

Note that our constrains corregpond to specifying the first two harmenjes of D (first two
triponometric momenta of #). Unimodeal versions of the solutions to varicus choices of F{IY

yield various circular probability distributions. Delow we show how some particular such choiees
yield familiar cireular distributions.

2.2.1 Examples. General Wrapped Stable (W5S) family of distributions, Wrapped
distributions oh the circle arc obteined by wrapping the corresponding distribution on the line,
La., by using # = X med 2. Note that the trinonometric moments uniquely characterize
a circular distribution. Further, the trigonometric moment of order p for 2 wrapped cirvclar
variable # corvesponds to the value of the characteristic function of the unwrapped linesr randem
variahle X, say (1) at the integer value p, i.e., ¢y = 6-(p) {Proposition 2.1 of Jammalamadaka
and Sen Gupta, 2001). Thus wrepped ce-stabie distributions may be constructed by using the
characteristic funetion of the o-steble disixribution of the real line, which is given by

(0 exp {«-T“H]" [1 — i spm (¥ tan %] + z',u.t} , if ee( 13 WL, 2],
= wrp i—7lt| it} fa=1,
with + 20, |1 <0 < o <2, while £ 15 & veal nuraber,

The density function of a wrapped o-stable random variable £ < [0, 2r), is given by (Lukass.
1970

L S S B b — R G ran OF
f{ﬂ}—th“Eexp{ r k=) cos {46 - k) — Tk Gran I},
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where & € (0,1) U (1,2], with 4 conveniently redefined as » = u (mod-2w). Note that elthough
there is generally no closed form expression for the demsity of an a-stable distribution on the
real line, we are able to write such demaity for the wrapped case, et least aw an infinite series,
The particular case carresponding to 2 = 0 gives vs the symmetric Wrapped Stable {SWE)
farmily of circular densities, to be simply veferred to a8 Wrapped Stable {W5S) family, given by

FO:p.00) = -+ 2 3 7" con{ikld - ), (®)
km]

where g = &xp(—7"). For further discusslons see, e.g., Jammalamadaka and Sen Gupta [2001).

When g = 0, we got the Clrcular Uniform {CU} distribution, & = 1, and 2 give the Wrapped
Cauchy (WC} (Levy, 1939) end wrapped norme] {WN) distributions, respectively. Further, if
culy the first term in the sumemation is retained, owe gets the Cardicid distribution,

Ohzerve naw that optimal selutions to maximizing the functionsl ¥ for varioua cholces of
F{DY yield familiar circular distributions. For example, F(5) = —~in D yields the WC density
{Lygre and Krogstad, 1986); F(D) = —D'In D yields the CN or von Mises density (Burg, 1975)
- recall {Collett and Lewis, 1981) thet any CN distribution may be represented for all practical
plrposes by the corresponding WN distribution; F{D} = D? viclds the Cardicid density (Long
and Hassclmanm, 1079). Other appropriste choices of F{D} wlll vicld new circular probability
distributions. However, the ldentilication of the general Iunctivnal F{O) with corresponding
suitable constraints which will yield, at least, the symmetric wrapped stable family i= still an
open problem.

Use of distributions from the WS family enables nne to capture higher kurtesis in the data
which is otherwise oot possible through the CN distribution. These distributions have been

found wseful {Beal, 1991; Tucker, 1991) in the context of several aspects of wave theory. From
both thecretical and parametric “complete class” of useful unimodal distributiona for circular

data.

The ahapes of the various distributione discussed ahove, as displayed over the circle. may be
viewed through the statistical package DDSTAP developed by the author (Sen Gupta, 1998).

2.3 Bivariate Case : Characterizations based on Genperalization of Theorem 1.
Suppose that we arc interested in distributions defined over a space § amd that these
distributivns are to be represented by densities relative to same familiar measure such as
Lehsegue, Harr, etc. Jet £1, ¢, represent apecified ¢ real valued measurable functions over S
such that no linear combination of £, -, %, Is constack.

THEOREM 2. if for a probability density function f(z)

(i} 8 is the support of fiz) where z £ 5,5, C 8,

':.ﬂ:' E{til:j')} = & {I‘Ifdil i = 11-' ol
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(Hi) the entropy (s marimized,
then fixr) should be of the form

g
=) -exp{fiu+zj;ﬁ£h{3]}: z € 5, (%
provided there exist by, by, - -, such that (9) satisfies (i) and (ii). Purther, {f there enists suet, o
densily, then i ia unigue.
Proaf: Bee Thearem 3.1 of Merdia {1975b).

2,31 Examples, 1. Distributions on ¢he Torus. Let ¢ &€ 8, i = 1,2 Lx
E( ;l:'] h Et 'gn] and Ef fl _.fz} be specified. From (9) this yields the ;istributinn an the $orus
given by (Mardis, 1975b).

f(8,¢) = L. explms cos{f — p) + ma con(d — v} + plrina) om0+ -0},  (10)
whete, {1 = (cosd, 5in @), &z = (cosd,sing), 0 <8, ¥ < 2, K1, K2 > 0,0 € u, v, 9 < 27 apd

C = Jo(aMo(wa)lo { p(raa}'/? | + zzfp(m)f (ra)lp { plrcix2) /7 } eos py.

=1

Using the same constraints for the marginals bul invoking the constraint for 2 joint moment
a8 E{ain{@ - p)sin(¢ — v}) being specified, Jammalamadeks aud SenGupta I[El.'lﬂl} obtained
another distribution on the torus given by

J(8,8) = C.exp |« coa(f — p) + ka cosl¢ — v) + sy sinfd — p)sin(g — v}, (13}

where ' is the narmalizing constant.

This distribution imbeds the biveriate normal distribution with a small range for the
abservations, permitiing the quadratic and linear terms of the lutter to be replaced by thelr
cireular analogues. The distribution in (11) has been used by Singh et al, {2002} for probabilistic
mirdelling of torsional angles in molecales.

Recently, Arnold and SenGupta (2002) has suggested the distribution given in {15). Because
of its gepesis as discussed i saction 3.2, its functionsl form and other details are given in
that section. However, we note that this distribution corresponds te the meximmm sntropy
distribution obtained on specifying the first margina) and first joint harmonics of & sad ¢.
Le., on specifying E{cosd), F{sinf), E{cosd), E(sing) snd Ecosdcosg), Elcoad sing),
E{sind. coz4), E(sin &-sin ¢,

2, Distributions on the Cylinder. Since the supports for the randow veriables i
theorem 2 are guite general, the joint distribution of a linear random voriable and a circular
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random varizble may he derived from it using suitable constraints, This enebled Johnson and
Wehely (1978) to present » variety of distzibutions, as given below, on the eylinder.'

{2.1). The denslty function of (8, X) given by
£18.3) = (A* = &2)/320)" ) ewp {2z + kmcos(f — p)},

where 0 = #,.2m, c > 0, 0 < k< b, and O = i < 2w, s the meximum entropy distribution
subject to E{X), E{X coa#), and £{X =in&) taking specified values which are consistent with
expectation with respert to the above distribution,

(2.2) Let (8, X} hewve the joint density

# Ar  kr
fo,x}=C EIP{—F t5+ ?mﬂfﬂ—ﬁ}}f
where ' > 0 is a constant of integration, —o0 < 2 < o0, 0 < 8 < 2w, —o0 < A < oo,
k0 > 08nd 0 < g < 20, Then f(2,r) is the maximum entropy snguler-linear digtribution
subject to E{X), E(X?), E{X cesf) and E{X sin8) taking specified values consistent with the
expectations with respact to the above distribution.

(2.3). Let (8, X) have the joint density
Fi8,2) = Chexp{—he + szeosl(d — gy} + woos(@ — pa)l,

where 0 8 <27, 0Cx oo, A k>0 0 < oy, fig < 21, and

i —1
G = (AT — x2)1/2(27)), {Iﬂ{y} = EZPPI,,{E} cos[p{ *—.ﬂ!-a}}} '

¥ml

p=alh+ (3 = &1,

with I,(-} being the modified Bessel function of the first kind and other p. Then fi{F,z) Is
a maximum entropy density subject to E{X), E{cos#), Fisind}, £iX coef, and E{X sin &)
taking specified values consistent with expectation with respect to the ahove.

The proofs of the above reuslts 1-2 are quite straightforward on noting thearem 2,

3. Speciled Conditionals Family Characterizations. Often it j= desirable to
epecify the conditionals of a multivariste distribution. Arnold and Strauss (1991) gave an
itified approach of characterizing the class of bivariate distributions such that the conditional
distributions belong to any specified exponential family. Even though they consideved Hnear
vectur variables, we show below that thelr results can be exploited to yield also distributions
on the totas, cylinder (section 3.1) and their generalizations {section 4.2).
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3.1 Bivasinte case : Characterizations based on conditionals exponential family
specifications
THEOREM 3. All solutions of the equation

Y fl@aly) =0, TESX) yeSV),

-y )

can be writien in the form
(flﬁif]‘\ f’ﬂu 12 - ﬂ-lr‘\ f"h{:n}‘l

falz) a3y B2z v Oor Do{z)

\ Jul) ) \ @1 Gpz - Gar ] &\ Bp(T) /

f.fﬂ(?] \I ( blr-{-l blr+ﬂ bln \

f wﬂ-l{y}
b -r* pae
o) | | )
- 'F[f:‘
k gﬂ{y] ) K bnr+l bm“+2 et bﬂﬂ j h‘ {yj

where r i an integer belween 0 and n, and &,(x), Bg(x),---.$.{z} on the one hand and
U r1{2), Trpalz), - - -, Tulx) on the other are arbitrory systems of mutuelly lineerly independent
functions and the constants a;; and by satisfy

( a4 4nn - am ( rpr begz -0 bin
@12 @32 ' Gng bars1 bargz --r Ban | g
k Air G2 ' Opr k‘ bart1 Bardz - Ban

Theorem 3 in the well known Aczel's theorem, As a simple corollery to it, we have the following
(Arnold et al. 1999).

CORDLLARY. All solutions of the equation

D fil2)®ilvy =)o (0¥;(m), 2 € S(X), weS(Y),

rm1 J=l

where (&)1, end {¥;};_, are given systems of muinally linearly independent functions, are
of the form
f(z) = C¥(z) and gy} = DL(y), where D=C"
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For consiructing jeint distribotions with conditiongls being specified, the above resylts are
gxploited to yield the fundarmental theorem.,

THEOREM 4. {Arncld and Stranss, 1991} Let fi{xin) end fa{y:T) denote membera of two

¢y« und £y-parometer ezponential famiiies. Let J{z, 1) be o bivarigte density whore conditionel
denstties satbisfy

Flzly) = filxiqly)) (12}

and

Tyle) = falys o)) (13}
fer suine funetion gly) ond £(x]). It follows thut f(r,y) ia of the form

Fla, gy = ru{adrg(y) expl{g'V (z) M PNy} (14)
where

¢V (z) = (molz), qu(#) (), - e},
g2 () = (qeolt) 21 (¥) qaalvh - -, qubalw)).

whem gip{x) = gw(y) = 1 and M is a matrix of constants parameters of approximate
dimensions {i.e., {&; + 1) ® (€2 + 1)) subject to the requirament that

[ f 1z, Wi (@hdualy) = 1.
n, Ing

Yor convenience we cen pertition the matrix A as follows :

[ mgg | mg e Mgy
o
M= My |
| M
\ Mo | ]

Note that the case of independence is included through the choice M = 0.

3.2 Examples. Even though Arnold and Strauss (19%1) used theorem 4 to construct
blwariate distributions for only Enear randum varinbles, i is easy to gee that the result extends
to 2 general vectar varieble with both or obe of its components being circular, Thue, through
thiz extension, bivariate distributions on both the torus and cylinder may be derived,

1. Distributions on the Torus. Consicer first Mvariate distribntians ot the torus with
CN conditionals {CNC). Since CN distributions are members of the exponential family, theorem
4 readily applies to vield the CNC distiibution {Axneold end SenGupta, 2002)

10, ¢) =expl (O} Mg{d)], (8, ¢) € [0,2%)° (15)
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Ton Tt Migs

and M = ™Min M1 Mo

Moy el o

M ie the matrix of parameters with mp, a function of the other m,y;s, being the normalizing
congtant,

The marginal densities are not CN densities nnless independence holds—the same is true
for the distributions on the torus obtained in section 2.3.1.

&

Z
%,
5
g,
i
=

-

Fig. 1. Scaled pdf on the torus for (mgg, mgs, myg, ML, Mg,
Moo, Mgy, Mgz = {273:4: ulﬂ: 5'1- I:}'I D}
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1
g0y 1 11342 1.314

Fig. 2. Sealed pdf on the torus for (magr, mas, 7o, My, Mg,
Map, oy, g = (.03, .03, .04, .06, .06,.07..08,.09].

Figures 1 and 2 depict the shapes of two distributions on the torys with their corresponding
perameter values, the former being for two independent circular variables, Note that both the

distributions (10] and (11} are obtained as special cases of {15) by setting mppropristely eome
of its parameters to be zeros,

2. Distribuiions on the Cylinder. Leat,

fd o} = exp- [ (A)Mo(z)], {8,x) € [0,27) x R

where
1 1
Pi)=1 cos¢ | and g{z)=| =z
gin & d

L

Then f{#, =) above defines the CN-normal (angular-linear) conditionels family of distributicns.
It ia obvious from the above detivations that one may derive a spectrum of bivariate distributions
on both the torus and the cylinder by this conditional approach. One may thus obtain CN-CN,
CNRukhin, CN-8GR, SGR-Rukhin, ete. conditionals distributions en the torus. Similayly
CN-Exponential, CN-Beta, CN-Normal, Bukhin-Normal, SGR-Normal, etc.  conditionals
distributions may be sasily derived for random variables jointly distributed on the cylinder.
Exploiting the same theorem one may also construct joint distributions when the finear variable
heppens to be discrete, a.g., UN-Poisson, CN-Binomiz!, SGR-Paisson, Rukhin-Polasen, ete

148
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conditionals distributions. Figures 3 and 4 depict the shapes of two distributions on the cylinder

with their corresponding parameter values, the former being for two independent linear and
circular variables.

T

0 50 100 150 200 250

Fig. 3. Scaled pdf on the cylinder for {may, Mou, M10, M1, Mz,
Tan, a1, e = {—1,0,-1,0,0,0,0,0).

Fig. 4. Scaled pdf on the cylinder for {mey, Mos, Mig. Fizg, Miia,
Mag, gy, Maz ~= {.ﬂE, ﬂ:], .U"l, .ﬂf."r,, .ﬂﬂ, .'DT, .DE, .Ug}.
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4, Moultivariate case ! Generalizations. Both the approaches discussed above may
be generalized to yield jeint distributione for the multivariate case, i.e., when all or sorne of
the variables are circular random variables. We discuss below these situations briefly. The
generalized forms of the distributions may be written down with some care-however, the details
are omitted since the notations beceme increasingly complex.

4,1 Maximum entropy distributions
4.1.1 Examples

1. Distributions on the Hypershere, Let ¢ € 8, i = 1,2, and let these two random

wvector variables be correlated. Its easiest to apec:if}':he firat order margined and joint moments,
E{ El}, E{ Ei} and E(f: Ezj' ln this case, the maximum entrepy density from theorem 2 is

Cexpie 4+, 6+ 8.6 e

g | it Qe

where 7 is the normalizing constant. The distribution given by (16} is tetmed (Mardia, 1975h)
a generalized von Mises-Fisher Distribution.

For p = 2, we get the distz{bution on the torus as given in section 2.3.1.
2. Distributions on the Hypercylinder, Let,

cosdy - cosnd; gindy - sinnfhy
H{&) =

eogfy -+ - cognby, sind, -« - sinnd,

Let 8 and X have ths joint density function

F{8, ) = C.exp {—%x‘z_lm + X5 by + n{&}'z_lﬂ:} ' (17)

where O is a constant of integration, a(8) = (a:1{8),- -, a — g{8}),

[~]-

a;(f) = . @ gk 00S(k{0; — piise]]

1

[
Il

I
[~]-=
7= il-

[ﬁijk mﬁ{kﬂg] + ﬁijiz Sin{kgf:]L 1= 1: e
1

an
T

2

LT H
[

£ € R?, 0 ¢ [0,17)7, and T is positive definite. Then (Johnson and Wehrly, 1978) (¢, x)
maximizes the entropy of multivariate angular-linear distributions sabject te E{AX"], E{X],
and E[X & H(8)], where @ is the Kronecker product, taking specified values consistent with
#Xpectation with respect to the distribetion {17).
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Note. The conditional distribution of X given B = # ia g-dimensional multivaiate norme)
with mean ) + a(#} and covarience matrix } . Consequently, this mode! leads to & natyry
method of predicting a linear vector variable X from a elrcular vector variable # of directions,
The conditional distrlhutlon of 6 given X = @ may be related to a multivariate cireols
distribution with independent components. Being a member of the exponential family, this j;
sasily seen for n = 1 to be a epecial case of the multivariate CN-multlvariate normal conditionels
distribution to be discussed in the next section.

4.2 Multivariate conditionally specifled distributions, [t is indicsted in section &
of Arnold and Strauss (1981} how the result in theorem 4 may be generaiized to the case of
k > 2 varlables with the conditional density of each being a specified member of the exponentis)
family. Ths resulting joint density is again s member of the exponential family. We extend
thia generalization to cover multivariate eircular as well as linear-cireular variables, Consider
first she joint denaity of k circular random varlahles 8 = (8y,8a,-++,0:), § € |0,27)*. Let us
characterize the class of densities for # such the copditlonal density of each 8; given the rest i
B CN density. Since the CN density ie in the exponential family, it follows from Arneld and
SenGupta {2002} that the family of joint densities is given by the {3%—1) parameter axponential
family of degaities :

3 9 2 k

fE{E} = exp { Z Z T Z By yig onis [H '-'Ii_fl:ﬂj]] } . E € [ﬂlﬂw}h [151
1ymel] iy e} iy =0 S

where we have defined functions go,q1 and g2 88 : gofu) = 1, g,{u) = cosu, and g{u) = sinw,

For k > 2, setting some of the parameters equal to zers will yield sybmodels with a lower
dimenasional parameter space,

It is obvious from the above construction that, In lieu of the CN density, ather circular
densities in the exponential family, e.g., the p-modal CN, Rukhin or SGR densities, can be
taken as the conditlonal densities to yleld a specirum of multivariate cireular distributions
which are all different members of the expomential family.

Now suppose that we are interested in deriving joint distributions of random veriables
defined over the hypertorus, i.e., when some of the variables are cireular while the rest are
linear, Let us impose the constraints that the conditional distribution of each variable {linear
or circular) given the rest is specified as o member of the exponential family with parameters
poseibly being functions of the conditioning variahles. It is then abvious from the derivation for
the multivariate circular case above, that this jeint depsity will be & member of the multivariate
multiparameter exponential family and can be written down sxplicitly.
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