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Abstract. The problrs of mtevnal wave seatterng by the sdgs of & somi-infinite insctial mufece portly
covering an exponentially skratifiml ncompoesdble liquid of ioknica dapih 8 imeeed pated In thia paper, Assoming
Bnear theory the problem is formulated Mo terms of & functlon reated tu thea slream function describing the
mation in tha ligeid. The relutand bovmdary value problien Invedves the Klein-Georden equation whick 1a & FDE
of byperbalic trpe. The BYF in solvad with the aid of Wianer Hopf terhrinues spplied b0 5 sllghtly smove gotwtol
protdein nod precing oo to the Hmit 1o & manner 80 a8 to obtain the stotion of the ahgined prebieon. The
eckbtered feld @ obteimed in torme of integrals which are valunted amympbotisetly in diferent regions oy large
distance fiom the odge, The siymptotic lorm of the wawe fied in plottad graphically for varkows cases Lo visustza
tha nature of the seattatsd wave Fisld.

1. Ipireductinn. In the mathematical mocdelling of wave phenomena in « deep Lgeid, a
part of witich i coverad by an inertial siirface compuosed of o thin but uniform distribution of
no-interacting floating partloles {e.g., broken ive, floating mat on water) while the remalning
part i free, the surfnce boundary condition beccomes diveoulinuous in the sense that thers is one
condition at the inertial surface and another condition at the free surface. For & homogencous
liguie {r.g. weater), Poters (1960}, Weitz and Keller (1950) developed mathematical modals to
Iovestigate scattering of surface waves travelling from the fres surface region and nonoally or
obliquely incident on the line separating the froe surface and the inertial surface. Gabov at.
al. (1989} peneralised these prohlems for two immmitcible homopensous liguids for which haif
the interface 19 eovered by an inertial surface and the other balf is a free separating boundacy
cf the two ligmids. Recently Kenoria et al. {1993) investirated two mixed bonndary wvelye
problems involving surface water wave in deep waiter [or interface wave in two superposed
homogenenous Tigmbds) arising dus b oe or fwo discutinlities . the surface (or interfuce)
boundary conditions. "The governing pertial differential equation in these problems is the
Laplace equation which, together with the boundary conditious, i= generalism] to the Halmbolte
equation alongwith slightly diferent boundry conditlons by inttoducing & complex parameter
to farilitate the use of Wienor-Hopf techigue In tiwe mathernatical analyass. Ultimately this
parameter Is made to tend o zero to obtaln the solotions of the ariginad problens.

Instead of a hemogeneous Hquid, I we here a straclfed Lguld o which the density varies
exponentially along the wertleal direction, then the governing PDE descriling the propsgetion
of steady state intcrnal waves becomwes the Kiein-Gordon equaticn (Gabov and Sveshnikev,
A2 and Vaziamoy, 18983, 1985]. Let the siratified liquid ocowpy the yopion y < O when at
rest, wherein the y-sxiz js chosen vertically upwards so that the upper surface of the liquid
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at the rest position coincides with the plane y = 0. The liquid is exponentially stratified
along the y-direction so that ite dengity in the imperturbed state is sssemed to be of the form
pol(0) exp{—28y) {f > 0} whera po{0) 1a the density at the tap of the liquid.

Wiiting the stream fanctior
¥z 11t} = u(z, y, t) exp{By), {1.1)
it can be showm that w satisfies the PDE

i{?’u-ﬂ’u}-l-uﬁ——w =0, (1.2)

whers V? denotes the two-dimenslonal Laplacian, and we = (28g)/? is the so-called Brunt
Valsala frequency.

Fer plane wave solutions, the time dependence can be chosen to be harmonic so that u(z, g, t)
can ba written as Re{u{z, y)exp{—iwt)} where u{x, y) is now complex valued, v is the circular
freqiieney, and the same notation u is used without any confusion. If exp(ik,z + ikoy — iwf)
represents a plane wave solution of the PDE (1.2}, then the dispersion relation is

waks
W= H+k§£|-ﬁ*

(1.3)

mmmmquﬁ(%,gg)umohtmedm

by = &?‘T;ﬂéﬁ_{;ﬁ}:ﬂz (kg + ﬁ21 "'kl'kﬂ]* {1'4]

Thua the directions of the wave vector & = (k,42) and the group velocity vector ¥, do not
oodocide unless by = 0. Since the direction of v, determines the direction of energy flow in the
wave, the direction of wave propagation is to be taken as the direction of v, rather than that of
k. Also, thﬂdiﬂpmunrelanun{lﬂjmnmthutplmewmtypesnlutmnsmpamiblam]?
when w < 4y, and this will be assumed all throughout here,

The complex valued function (=, ), which is related to the stream function, now zatisfes
the Klein-Gordon equation

Fu 1 #u
@—ﬁﬁ‘lﬂ:ga—ﬁ, {15]

2
I w§
o i = 2 1. (1.6)
Thus the governing differentlal equation (1.5} here is a PDE of hyperbolic type i contrast
to PDEs of elliptic type encountered in the classleal diffraction theory.

Gabov {1982), Gabov and Sveshnikov [1982) investigated scattering of two-dimensional
steady-state internal weves in an exponentially stratified incompressible liquld by the boundsry
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of a solid helf plane. This models interaction of waves with a rigld fce fleld covering half
the surface of an infinitely deep ocean whose density varies alomg the vertical direction in
an exponential manner. They used the Wiener-Hopf technique in the mathematical analysis.
Several resesrchers, mostly Russiens, soon afterwards investigated s number of variations of
these problems by using the same techniquae. For example, Varlamoy (1983, 1985) investigated
internal wave scattering by a sexni-infinite horizontal wall present inside the liquid and by »
semi-infinite elastic half plate present on the surface of the liquid.

In the present paper, the problem of internal wave scettering by a semi-infinite inertial
surface partly covering an exponentialiy stratified ligquid is investigated. This may be regarded
as B generation of the classical scattering probiem considered by Peters (1950) for surface
wator waves in the prasence of an inertial surface {e.g., broken ice, Soating mat) to internal
wave scattering by an inertial surface covering an expouentially stratified liquid. Assuining
lingar theory and under Bousslnesq approximation with constant Brunt Vaisala frequency, the
problem is formulated as & bowndary value problem involving the Klein-Gordon equation wth
discontimious surface boundary conditione. The problem is bandled for its solution with the aid
of Wieper-Hopf technique after introducing a small positive imaginery part in the parameter o
defined by the relation (1.6), as well a8 by slightly generalising the surface boundary conditions,
the edge conditions and the infiniky requirements, and ultimately passing on to the limit as thia
small imaginary part of a tends to zero. The diffracted fleld 1s obtained In terms of integrals
which are evaluated asymptotically for large distances from the edge of the inertial surface by
the methad of steepest descent and interpreted physically, The asymptotic form of the wave
field is piotted praphically for various cases to visualize the nature of the scattered wave field,

2. Formulation of the Problem. Let anh incompresgible inviscid exponentially stratified
liquid accupy the half space y € 0 when at rest, and the haif-plane ¥ = 0, x < 0 be the rest
position of the free surface while the remaining half plane y = 0, £ > 0 be the rest posltion of
the inertial surface with area density o,

The linearised free surface condition for the complex valved function u({x, ¢} is

g Pu  Bu
ﬂ#ﬂmg+ﬂy+ﬂ1“='ﬂﬂny 0, z <0, (2.1)
while the lnearlsed condition at the inertisl surface can be obtained as (cf. Petera [1960)}
c PFu  Bu
Pﬂﬂ#w+3y+ﬁu=ﬂany_ﬂ,=}ﬂ, {2.2)
where pp = pof0) and
¢ = gpo — ou>. {2.3}

We can assume that the comstant ¢ Is a positive quantity so long as w < wo. This is due
to the fact that umder actual conditions concerning a stratified ocean, w@ = 10~4 Hz? and
when the ocean is covered with ice which is modelled as a thin elastic plate of surface density
o, $8% 25 10H»? {cf. Varlamov 1985). In the present case when the ocean is covered with broken
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ice (inertial surface) we can assume that %2 is also in the same range. Thus w3 < o and
henee ¢ > 0 since w < wo has plready been assumed. .

Let from the region x < 0, y < 0, » plane wave field represented by

gulz, y} = exp{—idy + ikz), (2.4)

where
kg=ﬂ=(bg+ﬁ2}, [25)

and & and k are taken to be posltive, propagate from infinity and be incident on the edge of the
inertial surface separating the free surface. The group velocity, given by the relation (1.4), for
this wsve is directed towards the edge of the inertial surface while the phase velocity is divectad
awny from it. The total wave fisld u can be represented in the form

u(z,y) = dolz, ¥} + dr{z. 1) + P2, 9} (2.6)
where
¢1(z,y) = Rexpliby + ikzx}, (2.7)
with
ib— B+ 85
R_:_Hﬁ_%;. (2.8)

a0 that it represents the wave reflected from the free surface, and ¢(z, y} is the diffracted
field. ¢{z,y} satisfies the boundary value problem described by the Klein-Gorden equation

i 1 8

E&;""‘ﬁgtﬁ=‘§@, y <0, (2.9)
and the boundary conditions
ig:g*“giw'im“ on y=0, <0, (2.10)
&%
mir’ﬂ:f + f;$+ﬁ¢=ﬂﬂp{ik=} on =10, x> {2.11}
where ,
A= ke (2.12)

g ib+ﬁ—§u'-‘§-)'

To apply the Wiener-Hopf technique for finding the solution for ¢, we assume that the
constent ¢ occuring in the PDE (2.9) hes a small positive imaginary part ¢ so that the constant
k defined by (2.5) has a positive imaginary part §{=) = (8% + 42)"/2¢ which tends to zero s
£ — O+.
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Also ¢ satisfles the edge conditions

6] = 01}, [V4] = O1), [V?6] = O(1) as 7= (a® + 37 0, (2.13)
and.the condition at Infinity, as given by

Il + |Vt + | 55| < const. exp{—x{ejr) s 7 = (2 + )% = o0, (2,14)

where { < x{(¢) < min(z2, 5(£))} = £7 so that x(e} = 0 as & — 0.

The condition {2.13) follow from the fact that the energy flux through an arbitrary closed
surface encompassing the edge of the inertial surface is equal to zero while the condition [2.14)
follows from the requirement that the diffracted waves ¢arry energy away to infinity.

In the next section, the Wiener-Hopf techmique is applied to the generalized BV satisfying
the Klein-Gordon equation (2.9) involving the complex parameter 3 = a; + £, the surface
houndary conditions {2.16} and (2.11), the edge conditions {2.13) snd the infinlty requirement
(2.14).

3. Bolution of the Problem. Let $(a,4) denote the Fourier transform of #{z, &) defined
by

H{o,y) = | d(z,y)expliaz)dr
—of

where o = o + 7, o and 1 beiog real. Then

@(ﬂ'ry] = @"({!1 y} + @1-{&: y]‘l

o, . = fﬂ ", f  ${my) explian)ds @1

Now using the condition (2.14) we find that ¥, (o,y) is regular in the upper half plene
7 > —x{¢) and ®_{c,y) I5 regulor In the lower half plane 7 < x(¢) of the complex a-plane.
The edge conditions (2.13) alongwith the Abellan theorem {cf. Nobel (1958)) ensure that

|81(a,0)| = O{l™") 8s |af — o0 in 7 & Fx(e)- (3.2)
To use the Wiener-Hopf procedure, the boundary conditions (2.10) and (2.11) are rewritien
A5
Qﬂ% B [ D om y=0, z<0,
o T T j@) on y=0,2>0, 3:3)
c EF:;.'I 8¢ r g(z) an y=0,z2<0,
sna ot 5‘:1:2 y +5g = Aexp(ik.'n} on y=0, 2 >0, (34)
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where f(x) {for = > () and g{z) (for = < 0) are unknown funciions. The edge conditiong (2.13)

ensure that

if )| = O(1) s 2 — O+,

lg(z)] = O(l)asz — 0. } (3.5)

Now, use of Fourier transform to the PDE (2.9) produces the ODE

d* P .

o 12::{:}* =0 ¥<0, (2.6)
where:

12[“ = ﬂ’ - u'il'ﬁﬂ!

and we choose that branch of the function y(o) = (& — ¢*8%)"/2 for which 4(0) = —iag in
the complex o-plane cot along the line joining the polnts —(a) + ic)8 and (a; + ic)3 through
Infinity.

A solution of the equation (3.8} ie

To,py) = Dajexp (%Ely) y y<h, (3.7)

where [Ne) is en arbitrary function of a. Using Fonrier transform to the conditions (3.3) and
{(3.4) we find that ®(c, ) must satlsfy

v
(8- 55 ) o0+ Tt 0) = Fufo, (458
s cor dP A
(Iﬁ - m) ﬁﬂ',ﬂ']‘ + E[ﬂ}'}] = —m + G._{ﬂ], {33]
where the unknown fimctions

Ptz [ fe)emtanias wd G.()= [ gfa)explios)is
ate regular in the two overlapping half planes v > —y(z) and 7 < x{z) respectively with
|[Fa(@)} = O{lal™") as o] — co in 7 > —x() and [F_{a)| = Ola]™'} a5 [a] — oo In T < xie}.
Using {3.7) in the conditions {3.8) and (3.9) and eliminating D{a), we obtain the following
g'lmer-ﬂnpf relation, for the determination of the two functions F, (e) and (_(a), 8s given
Fy (o) A 0
K{a) + G {a) = :1-——-—{{! T E {3.1 )

valid in the strip 7— < 7 < 7y where 3 are chosen auch that —x(=} < 7. < 0 < 74 < x(2)
and

o) = M __gm _ Ha) —ief lﬁ:___. {3.11)
Sy —f-22 ¢ yin) - iapeepslise
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To solve the Wiener-Hopf problem. described by the equation (3.10), It 1 pDacessary to
factorize the function Ko as X{a) = Kif{a)K_{a)} where K.{a) is regular in the hnlfplane
v > v~ and K_{o) is regular in the half plane + < 4. For this purpose, the cages a? < 1 and
aZ = 1 are t0 be considered separately. Here of course o iy congidered as a Teal qusntity. We
note that far 6% < 1, w < wo/+v/2 = w,. In the cage the quantity 2agg — {1 + a®)¢ cecturing in
the demominator in (3.11) is always positive. However, far o7 > 1, 2009 — (1 + a3)c ia positive
a0 long as w, < w < w, where

wd -l (1 %)_l (312)

and this is negative when 1 > ti,. These observations are to be kept is mind while factorising
Ko}

(a0 <at<t
Ko} can be expressed as
-2
winie |
L(e) = 7ie) — iafT 2, (3:13)
and

pn — {1 + a%)e
{1+ ad)c

I+ ig obvious that for the above choice of the branch of y{ee}, both L{x) snd ¥{a) bave no
zeros in the strip — < 7 < 7y, and these can be factorieed sa {cf. Noble (1458))

Nia) = (o} — a8 (3.14)

L{o) = Ly (o) L-(a), N{e)=Ny(e)N_[a), (3.15)

where L_(a) = Ly(~a}, No(a) = Ni(-a}, [Le(ai = Olaf'/?) se jof =+ oo in 7 >
7, [Ny (o)) = O(laf*/?} 88 |al —+ oo In T < 7, 304

L. lo) = (_ fffi)lﬂ
X exp Uﬂ (5 —:. o {ﬂ, Ap (or,) = € As {E}}) F——] (3.16)

"“ £-on  Zop—(1+al)e
”"{“3"( {1+...=:..».- Uﬂ { i+ e

x(ao Ay (o} — €Ay {£)) } E;r%] ) {3.17)
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with
2000 \° daif?
a?’-un_ﬂ:[l' (1+n2)|!} ]1 a3=(1+ug]gr {313]
- of (@) +£—0f
N -
ﬁ+(ﬂ — I'[E_! - ﬂiﬂ-ii-ﬂ;hl {T{ﬂ) _£ s ﬂﬁ} 1 h—(ﬂ = ﬁ“l"[_'ﬂ* {319]
Thus
M 1/2 L [ﬂ‘.
Ki(e) = (-£2) N:{n}
iy for {658 + s lan s (o) — €A {E}}} p%";r] -
exp r i-,ﬂﬁﬂ?(—(-lﬁ;ﬂitnnm(ﬂn] —en @) ais]
snd

K.(o) = K (=a), |[Ke(a)l =O(1) 85 Ja| —» 00 in » > 7.,
Now the relation {3.10) is rewritten as

AK_{0)

F+{f-l} = —K_(0)G_(0) + s il

K () +{a)
which is firther rewritten oz

Frfe) AR (k) _ A
ﬁ(a} Torh = K-@G-@)+ (K@) - K (k) 7. <7 <rp (32)

The left side of (3.21) ix analytic in the half plane T > +_ and the right side is analytic in
the half plane v < 74, and as ja| — oo in the respective half planea, each side is of the order
Gllod ). Applying the principle of analytic continuation and Liouvill’s theotam, we find that
each side of (3.21) vanishes identically. Thus we find the unknown function F.{e) as given by

AK_(~k)

F.|. [ﬂ‘) wﬂ+ {Et‘} (3'22)

Now the we of {3.7) in (3.8) gives D({a) as

o = Fy (o) 3.23)
Dle} = ~ 5 itey — 0B YEf) {
BK, (k) (3.24)

~ (e + B {vle) — B L (N5 (a)’
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with

Thue by Fourier inversion, ¢{z, y}(y < 0) is obtained in this case as

. DI, (k) m(%ﬂ“_m)
Hen) < =3 | TR N 0<vE 6
where ' is a line parallel to the real axis lying [n the strip = < 7 < 7.

(b)a? > 1 (w>wm,)

For the choice of the branch of y{a) made here, the function L(a) bas zeros at a = o, for
a? > 1 where o, is defined in (3.18} while the function V{a) has zeros at o = +o0g, 0y being
defined alzo in (3.18), only when

(1+ a)e > 2gpp,

Le., only when w > ty, where
-1
w . (1 - —) {3.26)

Thus it follows thet for a¥ > 1, two sltuations arise according es w < w, and w > wy. Thess
are aleo dealt with separately.
(i) 0y < 0 <y

In this case L{a) has zeros at & = Xa, while M{a) does not have any zero in the strip
T- < 7 < 74 for the aforesaid cholce of the branch of ¥(«). We write K{} in this case ps

_ 9w of—of
Koy =~ MayVia) (3.27)

where
M(a) = ¥(a) ~ iaB %,

We note that M{o) is analytic in the strip 7— < 7 < 74 and can be factorized as

(3.28)

M) = My {a)M_{c},

where

M, (a) = (fi‘i)m

ap [ [7 (252 + Ht oA (a0 €A HE)) s, (429
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e
M_(a) = M, (-~a), |My()| = O{lod/?)

ntq]_—-rmﬁtrgf:p,.ﬂ*{n]hmﬂmmhﬂf‘mféﬁh Finally, K () in this case
in-aikpined ns

2+ o*Y{a + a.)
g

[ (52 2 s -0, 0)

ﬁ_ o {ﬁ;ﬂ"l' =+1(“= Ay (o) - EM(*E}}} dfu'] (3.30)

Jlieip) in this case is found to be

Mol = -

B .. (k) M. (a}exp (r'f‘,ﬂ#—iﬂﬁ)
#en)= S [ et B <eSTe (9

where T' I3 the same contour as in (3.25).

() uy < < vy

In this cape L{or) has zeros st o = +o, and N(a) has zeros at a = +ay in the strip r_ <
T < Ty, wo st K{er) can be written as

(o —a3) P(a)

L]
o) = = W~ ad) M(a)"

(3.32)

(1 +a%}e — 29
(L+a%e °

which Is analytic in the strip 7_ < 7 < 7. P{a) can be factorized as

Pla) = via) - (3.33}

P(o) = P ()P- (),

o= {0122 e [ 5

32
L J’{f j"?}T—(m Ay () — & Ay {e;-}} ] (3:34)
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snd P_(a} = Py(—a), [Pele}] = Olcl'?) 8s la] ~ o0 x 7 2 1, Py(a) in snelytic for r >
7. whils P_(cx) ¢ analytic for 7 < 7. Thue, we find that in this case

K{o) = \/ﬁm( WTE) “EE;‘

mjf"f:g—nf—a%;’;mmmﬂu} ¢r O atgl
exp | o {650 + tton Ay () - €14 6€)] 2]

Finally, ¢(z,y) in this case Iz obtained ag

(3.35)

B4R Py {a)M_(a)exp (i"{'.ﬂﬂ - mﬂ
o) = S R e B W << 63)

whete I’ is the same contour mentioned earlier,

Now by passing ot 4o the limit s £ — +0 ir the results (3.25}, {3.31) and (3.36}, we obtain
the finsl result in the campact form

BR (k) = Shio)ep Ty - wrm)

Hay) = 2r S, (et B v(a) - mﬂ}ﬂz{ﬂ} (3.87)
where
1, 0 < 1w < w,,
hie) = { M_(c), Wy < W Sy, (3.38)
Polo)M_[o), wp, < w < 1wy,

(o — 0 )V (ex), Wiy < W 5 Ay, {3.39}

L"{H}N+[El:|, 0 <1 =y,
{iz2{a) =
(o — o {4+ o} Wy << W< g,

and K, (k) having appropriate values in the differemt ranges of w. The integration in (3.37) s
taken along the real axds of the o-plane with indentation ehove the negative poles and bedow
the poaltive poles. In the next section we analyse the aolutions (1.37) asymptotically.

4. Asymptotlc Analysis of the Solutions. For esymptotic analysis of the integral in
(3.37), we introduce the polar co-ordinates (r, ) defined by £ = rcos#, y = —rsind, 0 < § < x,
where §# is messured m & ciockwise sense from the r-axis. We note that the characteristic
equetions of the PDE {2.9) represent n pair of straight lines y = Xax passing through the
origin and form a characteristic cone, These stralght [ines are inclined at angles 8, and © — 9,
with the x-axis where #; is defined by tan . = a. Let & be defined by tan fp = 22, then 6y is
the angle which the gronp velocity vector of the incldent wave field ¢y makes with the z-sxds.
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From the representation (3.37) it follows that ¢z, y) is continuouns in the reglon ¢y <
together with its gradient, but the second order derivatives are logarithmically divergont

ewerywhere on éhe boundaries of the characteristic cone given by the lines § = §

ﬂ?'ﬂzf—ﬂﬂ
which pass through the origin. This means thet the logarithmic singularity of the secong

evder derfvatives of the diffracted fields on the edgeﬂth&ineﬂiﬂm&mmm the
characteristica of the governing PDE.

Asymptotic estimptes of the integral in the represevtations (3.37) in different regions are
cbtaited by the method of streepest descent. The final result for the total wave field o ig
obiained in the following form

Ga+ 05 +rs, 050 <,
B i+ +dis, Bo<d <8,
il A A ) #. <8 <n—4d, (4.1)
¢1+¢‘&l}+¢n TG <0<,
where ¢ 38 given by (2.7),
ck? + potr (ib — 8)

_ {BK, (k) {~aq) B{(1 +a®)c~ 2gps} . .
d1s ck—uu}{—r{au)—mﬁ}ﬂ;{—me’“’( (@ +af)e ”*‘“““)*
_ iBK. () (o) B (0?1l — %ials
b0 = e o) oy ™ (e - Dy -2 }) ’
4 - BK., (k)0 (o) 1

(v o) (o) — 1B)alal) Cror PN
X “’;,?;ﬂ exp (i {ﬁrP{ﬂ} + E} [1 +0 (I;;)D ,

oD = iBE (ke 1
¢ B+ a®) (1) - iafite(a®) {228 Q(9) 177

it en 0o 3)])

P = (a®cos® 0 —sin’ &2, 0< P <8, 7-6,<B<T,
Q) = (sin? 9 — @’ cos’ 9)V/?, 4, < B < 7 -4,

o) = _FBeost o ia’Bomd
o T T Tom
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In (4.1), §; is the incident internal wave field, ¢y ia the wave reflected from the free surface,
P4 is the wave reflerted from the inertial interface, @75 in the wave due to inertial enrface, which

enciste only when wy < w < why, ¢5 ir the surface wave which exista whew 4, < @< wy, snd
¢51], ,i,ff} are contributiona due to diffraction, Thia asymptotic analysia is consigtent with a
gintilar snalysie by Gabov and Bveshnikov (1932) and Varlamov (1685) in conrecton with thely

studfes on imternal wave scattering by the edge of an ice field svd an dlastic plate in the form.
of a helf space respectively.

b. Discussion. The terms ¢q, ¢, $2 represent the zeroth order approzimation terms in the
representation (4.1} of the total wave field in the sense that they occur according to the laws
of geometrical optics and without considering diffraction by the inertial aurface. This begomes
obvious when the area density o of the inertisl surface is made equal te zero. In that case,
do = ¢y and ¢ﬁ“, f", s and g vanisl: identicaliy o8 expectod since no difiraction can occur
In the absence of the inertial surface.

Fig. 1. Waves reflected fom the inertial surface
(% =509 =152 ~ 101, = = 1)

In fig. 1, f3 i.e., the wave reflected from the inertial serface, is plotted againet bz and by for
fy =5.0, W =15, %2 =101 It is observed that these waves prapagate in the region under
the inertisl surface withaut any decay of its amplitude.

The terms ¢} and ¢3 are due to scattering. ¢} arises when 0 < @ 8. ad m~ . <f <7
i.., in the region within the cheracteristic cone. Fig. 3 deplcts o) in the region 0 < # < &,
against br and fig, 3 depicta §3 in the regiom 7 — 8. < § < 7 ageinst br for 25 = 5.0, 2 =15,
520 — 1,01, 22 = 0,01. From these figures it is observed that the diffracted waves in the region

0 < 8 = 4, decays faster than those in the region 7 — 8, < 6 < « far sway from the edpe of the
inertial surface.
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Fig. 2. Waves due to diffraction Fig. 3. Waves due to diffraction
nd<f<8, nr-~-8.<@<nx
(& =502 =15 (% =502 =15
x 2
2 < 1.01, % = 01) e = 101, 2 < 01)

The tetm tﬂ atises in the region #, < @ < 7 ~8,, L.e., in the region outside the characteristie
cone. In fig, 4, ¢3 is plotted agalnst br for -;'-,?r =50, B =13, 24 =171, ﬂff = 0.01. We
observe from this figure that ¢3 has no wave like character and it decays exponentially far away
from the edge of the inertial surface.

Fig. 4. Waves due to diffrartion in 8, < 8 < 7 — &

(B=s0m=132-1m 2 = n)

The term ¢, exists when w, < w < wy and arises in the region 7 — . < 8 < 7. Fig. 3
depicts ¢, agalnst br and by for 23 = 5.0, % = 1.3, 22 = 1,01, &£ = 0.0L It is observed
from this Sgure that the waves propagate under the free surface along the negative z dlzection
without any decay of its amplitude and decays exponentially with the depth of the liquid.
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Flg. 5. Waves under the free surface inr — 8. < 0 < »

(gﬁ =50, =13,% = 10], 7% = ,[11)

Finally, the term ¢y exists when wy < w < wg and arises in the region 0 < § < 8, In Fig. 6,
@15 is plotted against bx and by for & = 5.0, % = 1.3, 22 = 101, =% = (.01, It is chserved
that the waves propagates under the inertial surface along the positive z-direction without any
decay of its amplitude and deeays exponentially with the depth of the liquid.

Fig. 8. Waves under the Inertial surface in 0 < & < 8.

(;"% = 50,40 = 1,3, 9% - } 0], ¢ =~ '.m)

From figs. 5 and 6, we also observe that the wave generated dus to the presence of the inertial
surface is at higher frequencies than the wave generated on the free surface of the liquid.
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