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A CLASS OF DUAL INTEGRAL EQUATIONS

Q.H. BERA AND B.N. MANDAL
(Recctved 29 March 2007)

Abstract, In this paper we introduce thres simple azproximede procedurss to solwe 4 palt of dual integral
squutions with Bessel function of zero ovder as kornel both analytically and myumericlly after reducing it 1o &

Frodbolm imtegral expation af the second limd.

1. Imroduoction. Dusl integral equations arles in a natural way in the course of solving
¢ mixed boundary valoe problem. A typical boundary vaive problem of mixed type Is one in
which the boundary condition on a part of the boundery surface is given in gne form while on
the remuining part of this surface it is given in some other form. A fairly extensive account of
duil integral equations with kernels as trigonometric functions, Bessel functicns and Legendre
functions etc., are available in the books by Sneddon {1966 and 1972), Sneddon and Lowengrub
{1969) and Mandal atd Mandal (1999). A large number of researchers contributed significantly
to the methodology of sclution as well ax applications of dual integral equations with other
spacial functions es kernel.

In the present paper, we study the pair of dual integeal equations in the form of equations
(2.1} and {2.2), A slight varlation of these arises while studying the problem of heat conduction
with mixed boundary conditions an the surface of an isotropic half-space {of. Mandrik, 2001).
This peir of dual imtegrai equstions is Frat reduced to a Fredholm integrsl equation of the
secomd] kind by a suiteble choice of the unkmown function. Next we study the solution of
Fredholm integral equation by thres methods, the first one iz analytical while the second and
third methods are numerica! and the numerical remilts obtained by these three methods are
camnpared for two special forms of the forcing function.

2, Method of Solution. We consider the palr of dus) jntegral equetions given by

[7 4@+ it nlands = ), o<y <o, (21}
¥

fm Alx)a(zy)de =0, e<yp<oo, {2.3)
1]

where Jo(zy) is the Bessel function of frst kind of order zern, A iz a constent snd f(y} is the
known: forcing term. If we choose the undmown function A(x} in the form

r .
Al) = ey [ s/ E R 23)

Sl
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where ¢(£) is an unkmewn snalytio fanction, then noting the result (cf. Gradshéeyn and Ryshik,

1050)
fwsim‘;t rﬂ+h’}%dﬂ:= fﬂ for vyt {24
¢ + 167~ )2 oos(0/P =3P for y <t 4

we find that the equation (2.2) 5 automatically satisfed.
Substituting (2.3} into {2.1) and changing che nrder of inteagratinn wa ohtain

j: #{t) { -{I m rJo(xy) ﬂin(hm}dm}dt = f{y), O0<y<a. {2.5)

The relation (2.5} reduoes to

a 2 Jy(zy) coslty/ET + A3)
j: M) M)+ fu tﬁ{t}{ f S iowr A dz}:#

= [ otlo)do, 0<y<a (26)
afker Integration hetween 0 4o 5{< 6). Multiplylng bath sides of (2.6} by

Zucos{A /42 — ud)
VrEr
sod integreting with respect to u between © = ) to & = g, and then differsumtisting both sides
with regpect to p, we find that ¢{y) zatizfies the Fredkoim integral equation of the second kind

given by
} sin{Afy —£)} _ sin{Aly +12)}
“”]"Ef"'m[ G-  @+d ]‘ﬂ

2 j“’ eos( /1 — A2
= - f <y <a. {ET.]
x| i) I dp, y
An anelytical method is employed by which $(y) can be obtained in terms of a- power series In
A, the coefficients being functions of y, which are cbtained recursively. This series for ¢ will
produce the unknown function Afx). Also two enllacation methods to solve (2.7) are used, The
methoda are described below :

METHOD L. Tke unknown function ¢(y) aatisfying the Fredholm integral equaion (2.7) can be
tapresented In the form of the seriea (Mandrik, 2001)

$ly) =2 %" Adnly), (2.8}
Rl

where $y () (R =0,1,2,---) are unknown fusctions,
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spbesituting (2.8) in (2.7} and After some ealoulations, we obtain

Zl‘ﬁniﬂ DIPIL =2 [ ooty (-0 — g7}

n=0 m=3

X

= EJ‘“ Z (: ;r]| mj(:,?) : fﬂﬂf{ﬂ}(? ¥ — g ¥ dp, {29)
i y=i]

Pquiting the coefficients of ' in both aides of {2.8) we see that ¢n(y) satisfies the recurrence
relation

dnlt) = 2 z 2T o e

2 2 @ - o e

n=0123..; 0<y<a (2.10)

This can be written in the form

$nly) = Z{“"_ *-—Ll f pl(pH/ v — &) dp

1 N Lal, m—]. { } e 1 -l {t trdt
= 3 Y e R ey - i ¢M )
himd =0
n=90,123-.; 0<y<e. (2.11;

The recurrence relatlon (2.11) produces ¢y (3) (¢ = 0,1,2,-- -} successively. In particular,

ﬂf{p}
_ p.f{P}
hily) = ﬂfn N Era

2 a? * pfip) _1 . d].
h(ﬂ}—;['z—j‘;ﬁdﬂ zj:ﬂf[ﬁ}\.r’y“ pidp
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(V¥ - )
oo, (Z12)

Thus all the dq's are determined analyticaliy in principle. Suhstituting (2:4) in {2.3) and using
{2.12) we got the unknown function A(x) setisfying the pair of dusl integral equatians (2.1
sod {2.2). Thus A(r) is obtained analytically in principle.

METHOD II. For aimplicity we write the Predbolm integral equation {2.7) in the form

3 R . a
ﬁ{y}:;[?f 2/7) dpu%fpﬂﬂ)v?“p‘dp]—%_[} M{f}tdt,

#0) = st0) +a [ GIKE, A, 0 <y <a @13)
whara
_ s{ily— )}  sin{My+e))
H[y. t:l - {y = t] - I:y + t:l r {2.1{}
_ 3 v cos{AP - p7)
o(y) ﬂfﬂ pf(s) e dp (2.15)
and
1
p= -

Let ua divide the interval {0, 4) inte k parts by the points

J
mE=0, gy =t =) hn, J=1,2,+,k

rml

wheye by =20 - gta 1, 7 = 1,2,-+- k. Uslpg the approximate quadrature formula

k
j: Ky, 08(tMt == 3 by K (4,42, (218)

i=1
we ace that the equation (2.13) takes the Sorm

[
$ly) = gly) + 8> R K (y,t;)8(t;) (2.17)
=l

which must haold for all values of y in the interval {0,). In particular, this equetion iz satisfied

at the & points ¢, ¢ = 1,2,--- . & This leads to the system of linesr eouations for ¢{#)
{imliil"'}k}

&
Bl =glw) + 1 Y MKy, 1)), i=1,2, -,k (2.18)

F=1
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g
e gln) =0, olt) = Ms) =¢5, Kpatyl =Ky (2.19)

ghe eystemn of gquatlona {2.18) is writter in the complact form
kE
$i-n3 hKyby =g, i=1,2---k {2.20)
=1

The values of ¢ are now obteined by sclving this linear system. These values of ¢; can be
regarded as approximate salutions of the integral equation (2.13) at the poirds yi,ve, -+, 2.

METHOD 1IL To solve the Fredholm integral equetlon {2.13) by Gaunss’s quadrature approx-
imation method, we change the variable by the substitution 2i = a(u + 1) sod 2y = a{v + 1),
thenn tha limite of integratlon of {2.13) becemes —1 to 1. The Fradho!m intsgral equation (2.13)
bacornes .
Po) =he)+ & f Pk, L <v<l (2.21)

where

$iv) = ¢ ()

hv) =9 (“{“; 1}) ,

Ko.u) = K (ﬂ{u;— 1]l u[-u.z-l— 1)) _

Using the Gauss’s quadrature formuls, we cbtain

1 k
f w{u)k{v, u)dy =~ Z wy (g bele, 1y (2.22)
-1

i=1

whers wy are the weights of the Gauss’s quadrature Sormule corresponding o the Gausa's
quadrature nodes uy. The equation {2.21} talea the form

k
Wiv) = h(v) + %wa Wl (v, ) (2.23)
#hich mgt hold for all values of v in the interval (—1,1}.
In particular, this squation is satisfied at the & Geauss's quadrature nodes {cf. Scarborongh,
1958), te(= we), i = 1,2, -, k- Thus

| 3
vi{w} = () + %ij wiupkly,w), i=12,---& (2.24)

=1
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Witting
B{og) = he, 0lu) = ) = i, Rty u5) = by (2.25)
aquation {2.24) is written compactiy in the form
k
'i&f%.zl:‘"ikﬁ‘ﬁﬁﬁﬁ =1,2,-- k. (2.26)

Piws values of ¢ and hence ¢ (o (2441)} are now obtained by solving this Unear system by any
sbanderd method.

3. Numerical Mlustration. As numetical flustration, we fivet consider the forcing
faneticn Fy) = o (constant) then the equation (2.11) reduces to

WO S italcaas 1.
)= S G

l n m.r--lm_u sln{%ﬁ) . . : .
+tm2-32 e e (GO} T j:-sbnm{ﬂt di

rud}
n=0,123---; 0<y<a (3.1}
Thizs
) = 22,
i) = 22
v _ 2clfa'y o] | desly
$s) = 3 [E ﬂ]+ 9n3 !
y
buy) = 7 [‘: -5+ 1y:n] +¢;:y‘ et (32)

We chooee the constant ¢ =1, and A = 0.1, o = 1, 1 = 2. Then the unknown function $(y)

ealculated at the nodes (Scarborough, 1958} gy, k = 1,---,9 by using (2.8), {2.20} and (2-26)
are presented in Table.1.
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Table-1 : Value of ¢(ys) at

Un Method-I | Method-II | Method-III
(.515918 0.010135 0.610136 0.010135
0.0431984 0.052193 0.062197 0.052186
0.193314 0.123082 0.123070 0.123069
0.337873 0.215063 0.215073 0.215071
{.500000 0.318194 0.318526 §.318200
0.862127 0.421245 0.421250 0.421245
0.806686 0.513039 0.513037 0.513032
0.918016 0.583663 0.6836564 0.5683648
0.954080 0.625338 0.625525 0.625518

Using the above values of ¢, computed by the three methods, we obtain the values of the
unknown function A({z) of the dual integral aquations st some representative points given in
Table-2. A(x) is computed from (2.3) by empioying Gausg quadrature,

Table-2 : Value of A{xy) at ¢

T [ Method-I | Method-1I | Method-III .l
T.E_l 0.084381 0.084392 (.0843351

0.6 0.245126 0.245158 0.245124

0.9 0.351238 0.351283 0.351233

1.4 0.484640 0.484710 0.434637

1.9 0.549322 0.549412 0.549320

24 0.539428 0.539533 0.539428

2.8 0.4B1870 0.4819082 0.481871

3.1 0.415003 0.415117 0.415006

.7 0.242005 0.242117 0.242012
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Next we consider the forcing function f{y) = ¢°, then the eqeation (2.11) reduces to
g™ f ﬂﬂﬂ{‘tﬂ i3

4,1:-:!
%(y}-;jz_;{ﬂ

— NG+ G +3)

- Ty f (B

n m-—l ain
+%E Em-l (I%E){( l}r
m=3 re(
n=0123,...; 0b<y<a.
;|
boly) = .
dily) = 4;—:3
z
o< 4[]
4 [a® 8c®
w0 = 1[5 - 50|+ G
4,3 2 7 5
bulg) =[50 - S L L] S,
etc.

Table-3 : Value of ¢(y) at v

Then ¢(y) calculated at the same nodes by using the thiee methods are presented in Table-3.

e Method-1 | Method-II | Method-IiI
0.015019 | 0.000002 0.000002 0.000002
0.081984 | 0.000234 0.000236 0.000235
0.193314 | 0.003065 0.003070 0.003069
0.337873 | 0.016369 0.016376 0.016374
0.500000 | 0.053041 0.053258 0.053047
0.662127 | 0.123158 0.123161 0.123158
0.806686 | 0.222668 0.222666 0.292663
0.918016 | 0.328107 0.328006 0.328091
0.984080 | 0.404115 0.404054 0.404090
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Using again the above values of ¢, computed by the three methods, we obtain the values of
the unkmown function A(x) of the dual integral equations at scive representsative points given
iy Table-4. A(x) 18 computed from (2.3) agaln by employing Gavss quadrature,

Table-4 : Value of A{x,) of 2,

ap | Method-1 | Method-I1 | Method-III
0.2 0.033730 0.033737 Q.033729
06 | oo0otats | 0.00739 0.097374
04 | 0138256 | ©.138286 0.138254
14 | 0185929 | 0.185974 0,185926
19 | 020675 | oz20173 0.201673
24 | 0183661 | 018379 0.183661
28 | 0147719 | 0147792 0.147720
(31 | oarmi7e | ooy 0.111175
37 | 0024032 | 0.025006 0.024988

Conclusion. A pair of dual integral equationes 18 solved here by reducing it to a Fredbolm
intepral equation of second kind. An approximate analytical procedure is employed to solve
the Fredhalm integral equatlon in terms of a serias whase terms are vbtained recursively. This
Predhclm integral equation is also solved numerically by employing two quadrature rules, one
is baged on the mid-point rule and the other is the Gauss's myle. Az numerical fiwstrations, twao
forins of the fareing function is chosen, The unknown function satisfying the Fredholm integral
equation and also the function aatisfying the dual integral equations are compubed at & number
of point by following the three procedures, and displeyed in a number of tables. These three
methods produce alinost the same numerical restilts for the unknown function Alz).
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