Complexity analysis,
uncertainty management and
fuzzy dynamical systems

A eybernetic approach

D. Dutta Majumder and Kausik Kumar Majumdar
Blectronics and Commmpmcation Sciences Unit,
Fndhan Statistical Insittute, Calntta, ndia

Keywords Cybernedics, Chaos theory, Probability coloulaBons, Furay Iogic,
Umcertainty managomen!

Abstrast ln this paper, we prevest a brizf siudy on verioks paradtems by fazkls comlexity or i
oiher words mangge uncertarty in the context of undersianding sclonce, sociely ond nahure Fuczy
real niembers, fuzzy logic, possibibly fheony, brobabelity theory, Dempster-Shafer theory, ariifical
reural nels, newro-puzsy, fractel ond mulbfracials, ele. are some of the paradiems o Al us 2o
undersinnd congler systems. We present a pery defaded discussion on (e marhematicl Mheory
of fuzzy chamizal systemt (FDS), which is the most fundemenial theory from the point of wewr of
euolehion af any fuzzy systent We have nuade considerable extersion of FDS i Mg paper, which has
preal pracicalveluedn studying some ofthe very complex sustemsin vociety and noture. The theories
of fuzzy comtraliers, fuzmy paltern recogrition and fury computer vision are but some of the mast
promuinent suboiaszas of FDS We enunctate the concept of fuzzy diffevential inskision (ol sguation)
it fuzey aftracioy. We aitempt fo present His theoretical framewerk Lo give an inlerprelohon aof
eyckgenssis in abmospheric cybernefics as g case siucy. We also have presented o Dewpster-Skafer’s
emdence theorelic cnalists and a classical profalidy fheorefic analusis (from peneral system
theoreliz outlond) of corvinagenesis ax ather intgvesting case studies of bin-cybermatics.

Introduction

Any mathematical madel of a physical phenomenon consists of a number of
variahles and parameters, each of which is measurable. But unfortunately,
any measurement Is prone to error. The more we want to make a measurement
error-free the more tine is needed to accomplish that measurement. So achieving
accuracy is a ine-complex {apart from other complexities) task. We can reduce
this complexity by allowing and accommodating uncertainties in our
measurements. Fuzzy sets as enumelated by Loth Zadeh are the hasis of fuzzy
uncertainties. Apart from fuzzy uncertainties other unceitzinties are also
there, The mote the uncertamties involved the more complex is the system
(Dutta Majumder, 1993). To model these complex systams, uncertain systems
are born, where complexaty 15 reduced by accommodating uncertainty. In this
paper, we have discussed vanious wicertainties and their role in modeling
complex zensral and cybernetic systems.

Complﬁxlw

1143

S

Emerald

Yol 5 Ko 7, 20N
L 1EGEFing

Progress of sciences and all other components of civilizarion can be traced to ©F nead Gonn Rablishng Lanied

certam types of challenges and resporses. The subject of cybernetics emefreged



1144

- -

through the interaction of traditional sciences when scientists faced a set of
problems concerned with commumication, contol and computation in
machines and living tissues. The foundation of cybernetics was lad and its
basic principles formulated over centuries by the work of mathematicians,
physicists, physicians and engipeers. Though the decisive factor in the
emergence of cybernetics {Wiener, 1949) was the swift development of
electronic automation and especially the appearance of the high-speed
computers which opened up boundless vistas in data processing, simulation
and the modeling of control systems {Dutta Majurnder, 1975, 1979).

A problem of fundamental importance in nature, man, society and machines,
in developing 2 general theary of physical systems is the system causalty
Dutta Mayumder, 1979). From this comes the notion of general dynamical
system, By a dynamical system we mean a systemn which changes with respect
to time. Like Euclidean geometry a general dynamical system too has a few
undefined basic concepts. They are precisely three in number, namely 4me,
state (phase) spoce and Fme evolution law (Fatok and Hasselblatt, 1995).
Although time is generally regarded as an undefined concept, Majumdar
(2000a) has recently proposed a defmition of time frem a2 mathematical
analytical stand point, which is different from the notion of fime a3 presented
by Covehey {1588} When we inftend to mathematically model a physical
phenomenon, we identify a set of attributes (2g. mass, length and tme m
physics). Then we “gquantfy” each attribute, ie construct a real valued
fun¢tion over the domain of that attribute {this way we obtain an unit for
an attnbute, eg. second for time, ete). Collection of all such independent
(i.e one's value does not depend on any other} attributes make the state space.
If there are .n independent attnbutes the dimension of the state space i #.
Let this n-dimensional state space be denoted by X,. The time evolution iaw is
a contimugus function f: X, % T—X,, where T is the space of time.
Additionally f also satisfies the following two conditions.

(0 fix, Y =x, for any z € X,,.
(@) flx,5s + 8) = f(fx,5),1) for s,t € T.

A dynamical system 15 formally denated by (X, £) or just by £, when there i3
ng confusion about the state space A,

The concept of state has long played an mportant role in the physical
sciences, It was towards the turn of this century that the concept of state was
given 2 more precise formulation by H. Poincare and later by the subsequent
wirks of Brkoff (1977), Kalman (1962), Markov (1931), Nemytskil &f &
(1963). The concept of state space is 2 great unifying tool in the theory
of general dynamical systerns and in the theory of cybernetic systems
Muitta Majumder, 1979).



For any physical system (X, /) to determine the systen it is essential to be
able to measure each mput state and each output state. In other words, we must
be able t measure each point in the State space X, But by Heisenberg's
uncertainty principle, for any physical dynamical systeny, we have

Axbt = hfom, an

where Ax 15 the ervor in measuring x € X {assuming the siate space to be
one-dimensional for simplicity), Af is the error in measuring £, % Planck's
constant. According to eguation (1.1}, if we want to make Axr— 0, we
automatically get Af — o, That 15, if we employ a computer {or an automaton
more fundamentally) to “exactly” determine the location of a point in &7 it will
take infmite time. A more realistic interpretation of this fact is that, “The more
we wigh our computer o be acarate in locating a state in the state space the
more time it will ke Or in other words, “The more is the demand for
accuracy from the computer (in determining a value) the more time complex the
job will be for the machine.” So the inherent (and insurmountable} uncertainty
in determining a state in the state space gives rise to complexity in a cyberhetic
or a general dynamical system.

Heisenberg's uncertainty principle gives the ultimate limit of uncertainty or
indetesminacy in a dymamical system. But in our day-to-day real life we even
need not go that far to find an uncertainty. Suppose a die is thrown and you are
asked to puess the top face. Your uncertainty about the cufearne is attributed to
randomness. The best way to approach this question might be to describe the
status of the die in tesms of probability distribution on the six faces.
Uneertainty that arises due to chance is called probabilishic uncertainty (PU}
tPal and Bezdek, 1954).

Te make the situation more complex, suppose an artificial vision system
analyzes z digital image of the top face. Based on the evidence gathered, the
system mighit suggest that the top face is either a 5 or 6, but cannot be more
sperific, This kind of uncertainty arises from limitations {for example, sensor
resolution) of the evidence gathermg system. Uncertminty in the second
situation reflacts ambiguity in specifying the exze! snlubon, and is calied
non-specificity by Yager. Pal and Bezdek {1994) have preferted to use the
alternate term resolufional uncertainty ®U), If we are certain that the op face is
etther 5 or 6, this case involves only nonspecificity. More generally, the vision
systern might also supply a certainty factor with its informztion, For example,
the system might suggest that the top face is either a 5 or § with belief of 0.8,
In this case, uncectainty due to chance ¥ also present because the top face can
takte any valve, 56 the system contains both FU and RU {Pal and Bezdek, 1694).

Finally, you are asked to interpret the top face of the die as, say, kigh (or low).
Here-a third type of oncertzinty appears due to linguistie imprecision or
vagueness. This is called fezzy wncertmnty (FU). FU differs from PU and RU
because it deals with situations where set boundanies are not shaply defined.
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PUand R are not due to ambiguity about set bonndaries, but rather, about the
belongmgmess of elements or events to crisp sets (Pal and Bezdek, 1994),

Uncertainties in information theory have been categorized differently by Klir
{1991). There he talks about probabilistic and possibilistic uncertainties, both of
which are special cases of Dempster Shafer theory of evidence (Shafer, 1976).
In the next section, we shall describe various forms of uncertainties.

Different uncertainties
Webster's New Twentieth Century Dichionary gives the following six clusters
of meamng for the term uncertainty:

(I} not certainly kmown; questionable; problemetical;

(2 vapue; not definite or determined;

(3) doubtful; not having certain knowledge; not sure;

{4 ambiguous;

(51 not steady or constant, varying,

{6) liable to change; not reliable or dependable.

I Indian languages, particularly in Sanskrit-based languages, there are other
higher (spiritual) levels of uncertainties, the approximate meaning of which
are mysterious and unknowable (Dutta Majumder, 1993; Klir and Folger, 1988),
We shall not deal with them here

In our view, these six or saven or eight levels of uncertainties are linked with
different levels of human cognition (accarding to the Buddhist philosophy there
are eight levels of cognition). But these six semantic clusters indicated above
emerge out with two distinct groups or forms. The first group of three s under
the form vagueness and the second group of three is under the form ambiguity.
Some of the concepts connecied with vagueness are fuzziness, haziness,
cloudiness, unclearness, indistinctiveness and sharplessness. Some of the
concepts connected with ambiguity are nonspecificity, one-fo-many relations;,
variety, generality, divergence and diversity (Figure 1.

Fuzzy sets and fuzzy measures reflect two fundamentally different types of
uncertainties, namely:

{1) vagueness, and
(2) ambiguity
» Type 1 ambiguity. Nonspecificity in evidence (measures of
nonspecificity).
« Type 2 ambiguity. Dissonance of evidence {measures of dissonance}).
» Type 3 ambiguity. Confusion in evidence {measures of confusion).

It can be seen that the concept of fuzzy set provides a good mathematical
framework for dealing with the concepts conmmected with vagueness,



For dealing with the clusters of concepts commected with ambiguity the concept
of fuzzy measures provides a general mathematica) framewnrle

& fuzzy measure is defined by a function
ng{X}—‘[ﬂ,l],

which assigns to each crisp subsat of X a number 1n the unit interval [(, 11
It shauld be noted that the domain of the function g 13 the power set XX)
of ¢risp set X and not X)) the collection of all the fuzzy subsets of XL
When 2 number is assigned to 2 subset A £ POX), glA) represents the degree
of avaitable evidence or eur belief that a given element of X {g pron nonlocated

in any subset of X) belongs to the subset A (Figure 2).
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Figure 1.
Summary of seven

wcertaindy measureg

MECESHITY MEMSLRES

FLUEZIY MEASLIRES
POSSIBILITY
MEASLURES
PSEIBLTY
NEASURES
FROSARH B ALISIBILITY
BELIEF LIy MEASURES
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MERGORES e “EORY OF
— EYIDENCE

Figore 2.
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Some approaches to tackle complexity
Cotplex systerns are much less understood and not even well defined
mathematically, They are in the frontier between simple and chaotic systerns: a
complex system is & dynamical system depending on many parameters, in
constant evolution and distances along kajectories increase (decrense)
polynomially and not exponentially. One considers that the brain's neural
network = one such system (Palis, 2002). Some salient features of complex
systems are:

(1} itisa dynssmical system in constant evolution formed by a great number

of units;

(2} some characteristics of the system are randomly distributed; and
(3) the system may have several attractors {Palis, 2002).

Ohr view of cotnplexity is slightly different from that of Palis (2002). A& chaotic
1s also very much a compliex system. Therefore, the trajectories may vary
exponentially also. Not all uncertainties i a complex system are essentally
statistical in nature. There may be other uncertamties too as we are going to
describe below. The possible notions of appheations of complex systems are
siot yet conclusive, like the case of the hrain, origin of life, evolution of tumour
(Majuradar and Dutta Majumder, 2004a), economics, etc. Some of the methods
of dealing with complexity, in general dynamical and cybernetic systems, used
to madel scentific, social and nateral phenomena are described below
(Majumdar, 2001).

(1} Probabilily theory 15 the oldest branch of science dealing with complexity
due to uncertainty in a system. Like fuzzy measure probability is akn
a2 measure, But probability measure is much more restricted compared to
fuzzy measure. Each probability measure js to satisfly a set of thres
axioms due to Kolmogrov. In a dynamical system far an « if f(r, )
cannot be determined exaetly for any ¢ > 0, instead f(x, {) takes 2 value y
with certain probability, we call the dynamical system a stochastic
process. Stochashc processes are certainly more complex than the
ordinary deterministic dynamical systems.

(3 Fuzzy sef theory unlike probability theory is based on nonstandard or
many-valued logic. A dynamical system whaose state space is a fuzzy set
15 kmown as a fuzzy dynamical system {FDS). In a fuzzy state space each
point is 4 fuzzy point, ie. each point is a fuzzy subset In a dynamieal
system fix,) we can neither specify the initizl value x, nor can we
specify the final value £(x, ¢}, morecver we cannot measure the inherent
uncertaintes in determining x and f(x, /) by probahility measure but by
fuzzy measure only. In that case, the dynamical system is a FD3, Clearly
an FDS is even more complex than a probabilistic dynamical system or
a stochastic process.



(3 Chaos theory is alse known as appiied nonbinear dynamics. According to
Devaney (1989, a dynamical system £ is said to be chaotic if:

+ f has sensitive dependence on initial conditions. That is, for any
E >0, 38> 0, such that, |x —y} < &, there exists ¢ for which
If{:! f} _f{}'rt}! > '5:

v fis topologically transitive. That is, for any two open sets &, & in
the phase space, such that, ¥ Nv = I, there exists # for which
fa,ine D

+ the periodic points of fare dense in the phase space.

For 2 given x, we cannot, in general, assign any probability or fuzzy measure
to f(x, ). That 18, the uncertainty involved in determining f(x, {) is neither
fuzzy nor probabilistic in nature,

(4) Dempstar-Schafer's theory of evidence is a unifying approach for fuzzy
set theary and probability theory. Both possihility o fuzzy membetship
measure and probability measure folkyw from this theory, A brief outline
of the theory is as follows.

Lt X be an universal set. PX) be the power set of X Then the
Dempster-Shafer theory (DST) (Shafer, 1976) is based upon a function

m: PX)y—[0,1), 3.1
such that,

m(@ =0 and ¥ mid)=1 (3.2)

where [ is the mull sef. The function m is cailed baste probability asstgnment.

and the quantity ##{A) = called A’s dasic probabikly member, and it is
understood to be the measure of the belief that is committed exactly to A, But
m{A) is not the total behef committed to A, Te calculate the tntal belief, Bel(4).
commited tn A

Bel@é}=?;mm. @3

A function Bel : P(X)— [0, 1] is called a befief funchion over X if it is given by
equation (3.3} for some probability assignment »t : P(X)— [0,1). A subset A
of X is called a forn! element of a belief function Bel over X o m(d) > 0.
The pair (F, w1}, where F denotes the set of all focal elements of s, is called the
body of evidence. Arcording to DST, belief measure s jess than or equal to
the probability measure, and probability measuse is a special case of belief
TEAsUTE,
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Another fundamentally important measure of DST iz the plewsibifily
measure, denoted by Pl and given by PiA) =1 — Bel(A"), where &' s
the complement of A. We have, Bel(4d) = Pi(4} for all A £ X. According to
DST plausibility neasure is greater than or equal to the probability measure
When all focal elements are singlefons, Bel(d) = PiiAd forall A C X and we
have Bel(4} = Fl{4) = probability measure of A,

When all focal elements and hence,ajsoﬂiebod}'ﬁfﬁvidmce,mnested,
ie ordered by set mclusion, then the beltef function is sard to be consomant,
In this particular case, the plausibility measure is called Dossibilly megsure,
denoted by Pos, and the belief measure is called necessiy measure, denoted by
Nec. Pos is described by a possibifity distibution funchion r - X — [0,1] via the
formula

Pos(4) = max r(%), (3.4)

forall A C X. Also for all A C X, Nec(A4) = 1 — Pos{4").

Let A be z fuzzy subset of X g : ¥ —[0,1] is a membership function
denoting the grade of membership (degree of belongingness) of any point
& X to A I », is the possibility distribution functon over 4, then Zadeh
{1978} has proposed that,

ra(x) = pafx), {3.5}
for all x € X. Also for all B € P(X}
Posa{B) = maxya(x). (3.8)

In this interpretation of possibality theory, focal elements cortespend to distinet
a-cxets of the fuzzy set A Zadeh {1978 has taken equation (3.5) to define r,4 over
A in terms of p4. But we propose to just reverse this approach here to chiain
a definitton of w4 In terms of 4. Yen (1990} has generalized the DST to fuzzy
sety, He has suggested methods of Enear programming problems to calculate
plausibility measure. So by that method Pos{Myx)} may be calcwated, where
N(x) is an infinitesimal neighborhood of x. This way by substituting Mx) for 4
in equation (3.4) we have ryg{x) = (e for any £ ¥ pyin(s) = 0 for
y & N{x) then,

pa(xy = ;unmm 3.7
A=UNEI NDONOG2E for oy

This methed of calcylation of aa will work s most (but not m all) practical
situations.

Some other soft-computing approaches obtained, including fusion methods
(the methods obfained by combining mare than one method out of fundamenta



methods, described in (1), {2), (3} and i) above, to tackle complexity) to tackle
complexity i science, society and nature are
+ (enetic algorithm {ponlinear dynamical system combined with
evoluttonary optimizaton). The direction of evolution (biocybermetic in
mature) 15 modeled either by stahshcal or possihihshe inference;
» artificial neural network (ponlinear dynamical systemn modeled after
neuronal bio-Cybernetics);
» neurofuzzy {fusion of arificial neural networl and fierzy set theory);

+ Tuzzy penctic elgorithem {fusion of fuzzy set theory and genetic algorithm);
and

« newrn penetic algonthmn fusim of neural network and genetic algorithm).

Concerning all the above uncertainties, three major areas of investigation for
engineering applicabons are:
(1} design of control systems for diverse applications;

{2} pattern recogmtion and machme Jearning systems design;
(3} uncerlzinty management i {1} and (2) above and many other
applications in scieoce, society and natore.

in a recent paper, Yajnik (1999} has identified and separated regularity and
irrepularity, which remain intertwinad in a complex system. Regulanity means
existence of perodic trajectosies or existence of periodic part in an arbitrary
teajectory. On the other hand, irregularity mesns the existence of nonperiodic
frajectnries or existence of nonperiodicity 1n an arbitrary trajectory. This
means that 2 complex system can be demnmused into fwo mutually disjomt
systems, one regular {accurate prediction is possible in this part) and the other
is irregular {prediction will fail exponentialiy n this part). It points out to
an aspect in the analysis of a complex system, ramely the optimum analysis
of 2 complex system will be one in which the maxiraal regulsr part is identified,
the complement of which is the minimal mregular part The most efficient
predictton. making will then be possible for the systern There may be
a potentially remarkable application of Yamik's {1999) method in the dynamics
of evelution of turmour i bumas tssues. Yajnik's (19499) method can be applied
{o 1dentify fnaxamal regular and minimal iregular paits of the dynamics of
tumour evolution. Onge this bacomes possible we shall be able to accurately
predict which therapy will have how much effect withmn cerfam range.

Yarious dynamical systems
() A gemere! dynamical system consists of a continuous function
f:X»x T—X, where X 15 the phase or state space and T is the space
of tirne, such that, fix, 0} = x focallx & X and f(z, s + £) = f{fx,9),1).
When f is obiained as a solution of a set of differential equations,
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the dynamical system is called & differential dyngmical system. The

17 dynamical systemn is tinear or noplinear depending on whether £ is linear
’ or nonlinear.

{2 Cybernetics is the systemic study of autormiatic activities of animaland, in

particular, human bedies and their systems of cantrol on the one hand

152 and the study of machines particularly for mechanization of thonght
process and its mathematical counterpart, namely mathemnatical logic
(standard or nenstandard) on the ether. So the mathematical model of
a cybermnetic system is any dynamical system f such that £ is common
toa given biolagical and a given mechanical system. In the application of
cybernetics, we derive fin biology and implement it in engineenng.

(3) Fuzzy dynantical systesn is a dynamcal system whase phase space is the
collection of fuzzy subsets of some given set. An FDS is often understood
as & fuzzy set of colection of crisp dyiamical systems representing some
uncertain or impracise system. We do not know which (risp dynamical
system exactly models that imprecise svstem Instead each erisp
member of the fuzzy set has certain possibility or membership grade to
represent the wncertain systemn. We shall discuss FDSs in detail in the
next section.

(4 Chaatic dynamical systzm s a nonlinear dynamical system f, such that,

+ £ has sensitive dependence on mmbal condibons (for any € > G,

35 > 0, such that, |¢e—3 <€ there exists ! for which
{f(x, 5 = F{n 0] > B);

+ fis topologically transitive {for any two open sets #,v in the phase

space, such that, ¥ N p = &, there exisis Hor which f(u, #) N v 2 @),

« The periodic points of fare dense in the phase space

(5) Attractor is the asymptotic phase space of a dynamical system. That is if
X is the initial phase space (i.e. the dynamical systern may start from any
point of X) then a subset A of X is called the attractar of the dynamical
gystem fiff

lim fCX, = A.

When f is an FDS, A is called 2 fuzzy attractor. Of course, a fuzzy
atiractor is a fuzzy subset of the state space.
In practice, a chaatic dynamical system f is characterized by:
(1) sensitive dependence on initizl conditions {e.g. by measuring Linpunov
expotients); and
(2) by the presence of a strange aftractor, ie. a fractal atiracting set.



By a fractal atiracting set we mean an aftracting set (attractor) whose
Hausdorff-Besicovitch dimension strictly exceeds the topological dimension.

Fuzzy dynamical systems

When a sclentific, sociat or natural phenomenon is studied not all of its aspects
are studied sirmultaneously, The agpect which is identified for study is modeled
for analysis and understanding. To mode]l a scientifie, social or natural
phenomenon the identifiable aftributes are quantified often by real numbers,
£g. MAss in physics, price in economics, etc. After that we determine relations
among these quantified attributes in the form of a set of mathematical
equations (often differential or difference equations). If the system is changing
with respect to time then the solutions of this set of equations are fime
dependent functions. The set of these time dependent functions is the
mathematical dynamical system modeling the corresponding scientific, social
or nafural phenomenon. Each quantifiable attribute must be measurable.
This means locating 2 particular value in the set of real numbers. The mare
complex the system the mote 15 the difficulty to measure a value of an atinbute.
Nevertheless, each and every practical system is endowed with uncertainbes,
fesenberg’s uncertainty principle is for microlevel in physical systems.
But something like some form of uncertainty principle is irtherent in micro and
middle levels of biological systems and at all levels of nabwral and social
systems. Acoording to Zadeh, “Fuzziness comes from description of complex
systems.” The more the complexity of 2 system the greater is its uncertainty
due to fuzziness. That is, each quantity we want to measure becomes fuzzy
valued instead of precise valued. Thus, the set of erisp numbers 1s replaced by
sot of fuzzy numbers, When more than one attribute is involved, we obfain
multdimensional fuzzy munbers, i.2 fuzzy vectors (Majumdar, 2000b, 2002a),
Equations become fuzzy equations and differential equations become fuzzy
differential equations (FDEs).

The potential application to systern theory has from the beginning
significantly motivated and influenced the direction of development of the
theory of fuzzy sets. Fuzzy systems were first discussed i 1965 by Zadeh in his
expository paper (Zadeh, 1965). The first systematic trezbment of abstract
FDSs was by Nazaroff {1873}, who fuzzifed Halkin's cisp iopological
polysystems to obtain fuzzy topological polysystems. These were further
investigated by Warren {1976). They, however, suffer the shortcoming of not
explicitly exhibiting the time dependence of the systems. Time dependent fuzzy
sefs were gonsidered by Lientz (1972), but wete not, strictly speaking, F¥Ss as
they did not admit variations in initial conditions. Kloeden (1982} defined and
developed the notion of FDSs on line of the classical notion of mathematical
dynamical systems developed since the time of Poincare in the 1880s.

In a parzllel deveiopment almost at the same time, FDS theory was
developed from a more system thegretic and less topalogical outlook
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In a syatem, where pome deterministic dynamical characteristics are unknown
or deliberately ignored as well as uncertainties attached to their mathematical
modst, prebahiliztic approach cannot be used. This chservation Jed Chang and
Zadeh (1972} to the concept of fuzzy system. Da Glas (1983) considered FDS
{or fuzzy dynamicai system as be himself liked to call it F as the fazzy set of alt
possible crisp dynamical systems representing an uncertain dynamical system.
He even conssdered a-cuts of this fuzgy set to signify the syster behavior with
the degree of possibiity o or more, De Glas (1984) was the first to consider
stahility and attractor of an FDS,

BefuredeﬁnmganFDS,Letusdeﬁneamufhmfuﬂurma&zed
semi-dhymanacal systens as a prereqrusite. From this pant onwards, we shall gall
it generalized dynamical system (GDS) only.

Basic definition of fuzzy dynamical systems
Defimition 5.1, GDS is defined axiomatically in terms of an attainability set
mappmg F: X x T'— (€, k) be the mehie space of all nonempty compact
subsets of X with the Havsdorff metric k), where for each {x,f) € X x T the
arzinability set Fix, 1) is the set of all points in X attamable at time t e T
funless or otherwise mentioned T will always mean the set of bme in this
chapter) from the mitial point x, satisfying following four gensralirtions of
axioms {I)-{4}

(1) Fis defined for all (x, 5 € X% T;

B Fix,0) = {s} forallx e X;

@ Flo,s +8 = FiF(r,9,80 = U{F(3.0, 3 € Fz,9} for all = X and

s;te T,
{4y Fis jointly continuous it (, §).

Definition 5.2 ﬂ#ﬂjﬂfﬂﬁiﬂt:aGﬂSFiSdEﬁrﬂﬂtUbeaﬁingle—mlued
mapping ¢ [f.h] — X for which

) € Fid(s), 1 — 53, (5.1}

forall fp=s=t=4.
The existence of Tajectories and attainability by trajectories of al) points in
the attainability sets follows fem axioms {1}-(0). ]
Before we extend Kloeden's {1982} definition of FDS we should do a litlle
ground work. Let I} be a metric on X X J(Z = {0, 1]) defined by

Dz, 1), (e, re)) = max{dx, z), 1 —rel}, mnmEX and rrp €L

Then (X %/ D]tsalsnamplete,hcallymmpactmehmspace[u&mﬂyﬂ“ﬁx
some ). Aﬁﬁzysubsetﬂmdeﬁnedbyll:smmbershmﬁnmﬂnm X—=1I

Definition 5.3, The support of fuzzy subset jy, denoted by supp wy,
such that



supp 4 = closurefs € Xjuq{s) > 0).

Definiton 5.4 The endograph of a fuzzy subset iy, denoted by end p, is the
subset

endpy = {(x,7) € X X J|pafx) = 7},
of X x I and the supported endograpk, denoted by send x4, the subset
send pe = end g Nsupp iy X 1.

a4 15 2 compact fuzzy subset of X if 20d only if 14 is an upper semi-continuous
funchion on X and supp g4 15 compact subset of X or equivalently, if and only if
send g &8 @ compact subset of X x 7. Let # denote the collection of all
nonempty compact fuzzy subsets of X, and let 8 be the metric on ¥ defined by

B pha, par) = Hizend g, send pp),

where H is the Hausdorff metric for nonempty compact subsets of X x 1.
{ #, 8) is not 2 complete metric space (Kloeden, 1982}, The metric spaca (C, k) is
embedded in the metric space { ¢, 6) under the mapping i : C—+ §# defined by
1A} = x4, the characteristic function of A. Each individual point of X is
3 compact subset of X. So {x} CC,forallr€X So{ai C Flarr€X.

Now, we are in a position to present an extended version of Kloeden's
definition: of FDS,

Defmition 5.5, FDS {f, o) on a state space # is defined axdomatically in
terms of a fuzzy attamability set mapping (FAM) (the so-called fime-evolution
law) or: # X T— ¥ satisfying the following four axioms:

{1} ofx, )15 defined for all (£, HE Fx T

{2t olr,) = . for all 1 € F;

3 oxs+h=ooxs)foradlse Fands,teT:

(4 oris jointly continuous in (x, 2).

Since each individual point of X is also 2 member of #, 20 FDS o can start
from X as well In fact, in Kloeden's original definition of an FDS o« always
starts from X,

Definition 5.6, wix,#) is called the fuzzy atfainabifity set or fuzzy reachable
set of (F, o) at tine ¢ starting fram the fuzzy point {which is 2 nonempty
compact fuzzy subset of X) x € #, The time-evloution law o is also called
Juzzy altainalehly set mapinng [FFAM),

(1 course an attainability set is also a nonempty compact fuzzy subset of X
and hence is an element of #, Definition 5.5 is a slightly more generalized
version of Kloeden's (1982) definition: of FDSs in terms of FAMs, De Glas (1983)
has defined an FDS as representable by a fuzzy suhset of alf the possible
cisp fime-evolution laws representing an uncertain crisp system. Here also
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the time-evolution law representing a fuzzy system turns out to be an FAM
(Theorer: 4.1 of De Glas (1983)).

Axioras (1)4{4) of an FDS are fuzzified version of axioms (-4} of a crisp GDS
and because the metric space (C, k) is embedded in the metric space (&, & by
the identification mapping i : C— ¢ defined by #{(A) = x4 for each A € L.
Thus erisp dynamical systems can be considered as a subclass of FDSg.

Defmition 5.7, A juzzy trajectory of an FDS ¢ is a mapping  : {fy, ] — F
for which {f} 1s a singleton fuzzy subset of X for each fy=<¢ =< # and

HF) € a(d(s), ! — 5), (5.2)

forallfp = s=t=AH.
Unlike a arisp trajectory a fuzzy trajectory need not be continuous Kloeden,
18872). Alsonote that, far fp <=4

¥{t) = r(fxpun, (5.3

where ¢{(2) = supp () and r{) = pO(G(E). B #(#) = « for all ¢ then it iz
a-trgectory of De Glas (1983}, Existence of fuzzy trajectories has been proved
in theorem 52 of Kloeden (1982). The most important thing to note here is that
the classical fuzzy trajectary is actually a “tisp” trajectory with each point on
the trajectory having a membership value in [0, 1] Membership value of a
particular point on the trajectory is determined by belongingness (membership)
of that point to 2 nonempty compact fuzzy subset (the attainability set) of X
Le. 2 point of the state space J.

FOSs have been defined in terms of fuzzy reackable sef mapping
(Hullermeier, 1997, 1959) also. Reachable set and attaimability set are same.
Another irnportant notion of FDS is that, let 5 be the set of all possible crisp
models of an imprecise dynamical system. By a fuzzy model of the system a
suitable fuzzy subset of S is understond (De Glas, 1283). This clearly comes
down to the notion of;

(1) wentifymg and accommodating the mutial (fuzzy} imprecision by

choosing a suitable fuzzy inibal point in the phase space and

(2) then identifying and acoommodating the propagation of imprecision in

determining any subserquent state by a suitable FAM.

Obviously the descrtption of FDSs in terms of FAMs is the most generalized
and the most powerful notion so far. Also such description is an immediate
generalization of the notion of crisp dynamical systems fo the FDSs.
Therefore, it is quite natural to expect that, many impottant notions of the arisp
dyrnamical systems may be extended to the FDSs described in terms of FAMs,
Now we want to extend the notion of dissipativeness to the FDSs to define
fuzzy dissipative dynamical systems (Majumdae, 2003a).



Fuzzy dissipetwe dynamucal systems

Defmition 58 (f,0), where # is defined over X as above, is a fuzzy
dissipative dynamical system if (X, k) C o(X, 1) (o = pogr gy in fuzzy
set terminology), where (X, d, u) 16 a nonempty compact metric space, which i3
ahnaﬂmyaetmﬂlmmhem]npﬂnmhunp f1,1s € Tsuchthat ; < £5. Xis
the mitial ghase space of o, 1.e. at ¥ (the time at which the system starts} o can
gtart from any point of X K o{X, f;) C o(X, 21} holds shrictly for & << & we
call that the system is shricily discipaitve or monolonic dissipative Given the
importance of dissipative dynaimical systems ih real life Jet us suggest here an
easy-to-implement test for dissipativeness of an FDS (Majumdar, 2003a}. If
there exists a nonnegative # € R such that,

Jim X, 01X, £) < &, - 54)

holds, then we call ¢ a dissipative FDS. Clearly, X = o(X,0} and
dissipativeness imphes that o(X,HC (X, 0) for ¢ =0, which means
HeatX 0y, o{X, 15 =k for some nonnegative £ € K and all oonnegative
t€ T. On the other hand, if equation (5.4) holds and (X, H Z (X, 1) for
some ¢ > [ then we can extend X in the following manner

closure (:';Ju o(X, f)) =X (5.5)

Becatse of equation (5.4), X' 15 a bounided metric space. Being mmion of fuzzy
subsets X' iz also a fuzzy seb. But X' is not compact in general. However, in
most cases of interest, X is a compact subset of & * for some » and in that case
X being closed bounded suhset of R™ iz compact {by generalized Heine-Borel
theotern). We extend d to X and get the space (X', d, ). We just replace
(X, d, ) by (X', d, 2} and define (#", 8) on (X, 4, p). Because of equation (5.4)

}_"UES{X’, aX =k (5.6)

holds, which implies & ts disstpative on X or rather on #.

MNow we are in a posibion to define fuzzy attractor {(Majumdar, 2003a).
De (Glas (1584) was the first to define and dismss fuzzy attractor (or rather
ar-atiractor). Cabrelli of 28 {1952) have used the term “attvactor” only, instead of
“fugzy attractor™. In 2 recent paper, Bassanezi ef af (2000} have dealt {n a
different way} attractors and stability of FDSs from a purely mathematical
point of view. Here we have defined a fuzzy attractor in terms of an FAM o of
the FDS (7, o).

Fuzzy atbractor end stability of fuzzy dynamical systems
Definifion 5.9 In a fuzey dissipative dynamical system limp ..ol £} =
A C X, wedefine A as fuzzy attvactor of & Of course 4 is a uzzy subset of X,
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If we introduce the notion of a-cuts into, it we will obtain limy..fo(X, H]* =
[A) for 0 = @ = 1. [A]" s the a-atfracior defined by De Glas (1984).

Now, how to define the membership function g4 for A? Note that the fuzzy
trajectory given by #(f)-in expression (5.2) converges 0.4 as # — co. Alsa each
point of A belongs to a fuzzy trajectory Y for some ¢. From egquation (5.3}, it
transpires that membership value of 4df) is #if). So for mach x € A, there axists
at € T such that, x = W), and

Ha((t)) = r(t) = palx). &.7)

But through a given point x € A mare than one trajectory may pass. n that
case, to determine a unique valoe for uy(x) we are to take the fuzzy set union of
wa il (00) over all ¢, where ¥{f) is a (fuzzy) trajectory passing through .

U (9c8)) = sup: {r (] = pa(x). (5.8)

Attractors have plaved an increasingly important role in thinking about
{viassical) dynamical systems since their intreduction in the 1960s of the last
century. Since attractor is actually the phase space of the underlying dynamical
system a8 f— ¢, we may consider atfractor a5 a matured state of the phase
space. Naturally, the dynamical system evolving within the atiractor is rather
matured compared to the inital state. To understand a dynamical system
therefore the shudy of attractor, when one exssts, is of considerable importance,

Defmition 5.10.  Let fuzzy norandering set of an FDS o be denoted by
{Y{o), which is 2 fuzzy subset of X, Then, x € {}{) implies that o(x, /) T £}
forallt e T.

wan s X — [0,1} and for any ¥ € Mo} pay) = 0. Now, following
Ruclie and Tukens (Milnor, 1989) we can give the following,

Definition 5.11, A subset A of the fuzzy nonwandenng set (¥} is a fuzzy
attractor if it has a neighborhood {f such that,

rgua{U’ H=A4A. (5.9

Of course, o({/. 1) © (U, 81} for ) << s, Le o 13 dissipative.

Note that the above definition of fuzzy atiractor implies that all fuezy
trajectories sufficiently close lo the fuzzy attractor 4 must converge to A.
This i5 a standard stability condition of a dymamical system, and when this
stability condition is satisfied we call the underlying FDS &, slable. This form
of stability s knewn as Liapunov stability. Let us state this more formally in
the following.

Defimition 512 A is a closed subset (in sense of fuzzy topology (Chang,
1968)} of X with oA, f} = Ay s = pq In fuzzy set terminology) for any
f =0 will be called Lighunoy stable (also called ortataly siable) if A has
atbitrarily small neighborhoods {F with o (/. £) C U for all ¢ > Q.



There s another mpartant form of stability called asymptotical stabiiity.
Before we can defing it for an FDS we need to develop some more concepts.

Defirition 513, Omega it set ox) of a point x € X is the collection of all
accumutaticn points (y will be called an aeeummlohion point of the sequence
fo(x, B o, if and only if there exists a fuzzy trajectory through z which
converges to y for some ¢ = J of the sequence {o(x, A} 1zo-

Defurition 5,14.  The realm of aftrection of an attractor A, denoted by {4),
is the collection of all points x € X for which a(x) C A.

Obviously, for any (fuzzy) attracter A of 2 an FDS a,o(d, 1) = 4 for all
=0,

Definition 5.15. A fuzzy atiractor A of an FDS is called asympioticaly
sighle if 1t is Liapunov stable and its realm of atiraction p{A} is an opern get
{in sense of fuzzy topology [Chang, 1968)),

in the asympiotically stable case if we choose I with closure {in sense of
fuzzy topology} contained in {d), then it follows that A is equal to the
intersecton of the sequence of forward images U D (N D oD
a3y -, where {7} = o/, 9. This discussion of stability of a fuzzy
system is generalization of stability discussed by Die Glas (1984) and Tathachar
and Viswanath {1937}

Robustness of fuzey dynamical systems
Let us next extend the concept of robustmess to fuzzy atractors (Majumdar,
2003a). Agan, we shall have to do some ground worke

Definition 516, The &kely fmtit 36t A = A{g) of an FDS o is the smallest
closed subset {in sense of fuzzy topology (Chang, 1968) of X with the property
that ez} T A for every point x € X Remember (X, d) is a compact metnic
space} outside a set of lebesgue measures mro. (Lebesgue measure can be
defitied on X, for (X, d) is compact and amnbeddable in R" for some fnite #.}

Clearly, the likely limit set A is the largest attractor of o.

Defiration 517 Hausdorff distance between tero closed sefs is the smallest
number 8 such that, each closed balt of radius & centered at a point of either set
necessarily containg a point of the other set.

Defindlion 518  The hkely bmit set Ao} of an FDS oy 15 called robust of
and only if the Kkely limit set A{op) of any other FDS oy has Hausdorff
distance with A{m) & then oy converges uniformly to oy on X imples §— 0,

Fuzzy chaotic dynamical systents

Qur next target is to define fuzzy chaohc dynamical system. Crisp chaotic
dynamical sysfem has been defined by Devaney (1989). We shall make a
straightforward extension of this definition to FDS & (Majumdar, 2003a). But
fuzzy chaos has already been defined by Buckley and Hayashi {(199€) and
Klpeden (1991} Kloeden has defined fuzey chaos in terms of iferabive maps on
fuzzy sets on fine of what Li and Yorke (1975} did for certain crisp cases. Li and
Yorke's definition of chaos is cnly slightly different from that of Devaney.
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Buekley and Hayashi's (1998) approach is also similar. A chaokr fizzy set A is
represented by u 4 and this p is then taken as the limit of an iterated function,
which is known ta be chaotic under itatztions, subjected to suitabie exnditions
(e.g. the logistic function for seitable parameter values). Apart from Buckley
and Hayashi (1998) and Kloeden {1591), fuzzy chaos has alsn been deseribed by
Teodorescu (1992), Kloeden (1961) has defined fuzzy chaos for discrete FDS,
Next we shalt extend Devaney's definition of chaos to the FDS.

Dejinsiton 5,19, Let obean FUS, A point p £ X is called perfodse of period
5> 0} if and only if x, So(y, Sand yp & o(p, M forany < 5" < 8.

Clearly # i3 a fuzzy singleton of X and hence a member of #,

Definition 520 o will be called a fuzay chaotic dynamical system if and
only if the foliowing three conditions are satisfied.

{1} There exdsts € > 0 such that, for any x € # and any neighborhood
NNx) of x there exist y & Niz) and ¢ = 0 such that, &atx, §), oy, O} >€
(& is Hausdorff distance). We say that, o has sensitive dependence on
imifiod comdiftons. As usual here x, y are nonempty compact fuzzy subsets
of X, Le. fuzzy pomts of X and hence individual elements of #.

iZ) For any two nonempty fuzzy open sets A and B in (£, 8 such that,
g A pg =10, there Exislsrbﬂ, sitch that M.g}ﬂ#ﬂ#u- We call
that o 15 defologically transitive.

{31 Let P be the collection of periodic pointsof & P € _#. 1 Pis dense in #,
i.e. equivalently, in each open subset of (f, &} there is at least one
menber of P, densily of periodic points property is satisfied by .

Natice that if we take ¢ In the sat of all nonnegative integers instead of all
nonnegative real pumbers, we obtain the discrete chaotic FDSs of iterated
funicticma on fuzzy sets. But this time the definition of fuzzy chaos is on line of
Devaney rather than Li and Yorke as adopted by Kloeden {1991).

Buckley and Hayashi {1998} have iterated the logtstic fimchion for
suitahle parameler values to generate chmotic membership functions over
the set of real numbers R to get the concomitent chactic fuzzy numbers.
But in reality chaohe fuzzy sets may be far more complicated.

In a crisp dynamical system an aftractor plays a decisive rola to deterfine
whether the underlying dynamical system is chaotic. The presence of a
homoclinie point in the attractor implies that the underlyving dynamical system
is behaving chaotically.

If two curves C; and O intersect in R™ at a point B, then C; and €, will
be called #ramszersal to each ather at B if and only if they cannot be pulled
apart from each other at B by a small deformation of either of them or
both, te. in other words, their intersection at B is stable (Figure 3).

Defemation 5.21.  In a crisp dynamical system p will be 2 howeocknic point i
and only if two different trmjectories T; and T bransversally intersect at p



such that, neighboring points of # on T eentverge ta p and neighboring points
of p en T; diverge from p under the dynamical system.

Defimition 522, Tn an FDS let two fuzzy trajectories T and T} intersect
transversally at /. If membership valoes along T increase towards p and
membership values along T decrease towards i, then pf will be called a fiezzy
homocknic point of the wndetlying FDS.

Likewise, we define fuzzy homoclinic peint of an FDS m terms of changing
membership valves (Majumdar, 20033).

Horse shoe effect, described by Smale (1967), is another very important
aspect of a multidmensional (crisp) chaotic dynamical system. Like fuzzy
homoclinic point fuzey horse shoe effect can alse be defined in a similr
MANner.

This membership interpsetation of §¥ is equivalent to crisp notions of
comverging towards {mcreasing membership values) and diverging from
[dacreasing membership values) .

Defintfion 5.23. When there will be a fuzzy homoclinic point in a fuzsy
attractor of an FDS, we call that attractor fuzzy chaolic attracior,

Defmition 524.  For all practical purposes we shall call a fuzey dissipative
dynamica] system evolving in (X, d) chaotic if:

v the fuzzy attractor 4 is a fractal subset of X, and

- A containg at least one fuzzy homoclinic point,

According to the above ariterion of chaotic FDS it is clear that the shape of the
fuzzy attractor will usually be very complicated and the membership function
defmed on the attractor will fake atmuptly fluctuating values within any
arbitrarily amall neighborbood of almost every point {in sense of measure
theory} of A. Ideally, the set of fuzzy homoclinic points will be dense in A in the
relative metric topology of A as a subspace of (X, d).

Fuzzy Linpunoy exponent

Liapunov exponent is perhaps the most important of all parameters of
a dynamical systern. Fuzey system theorisis have already defined and
measured various forms of Liapunov exponent of a fuzzy system (Tathachar
and Viswanath, 1997). Here, we would like to define the notion of Liapunoy

expnnmtfnranFDS,whichwiubecauedﬁmyLiaplmwaxpmmnt
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Note that we have been desaribing the FDS in terms of time series. [n this type
of description of a dynamical system the Liapunov exponents are relatively
easy to measure. For an FDS ofx,# (for simplkity we take here x
poe-dimenstonal, extension to higher dimension 15 straightorward) we define
the Liapunov exponent A as follows (Majumdar, 2003a),

Defirition 5.25. For an FDR ( #, o) evolving on (£, 8) the fuzzy Ligpunov
exponent A s given hy the equabion

A= g;qgtlmg Jm log otz 1), ofs eV — il 610)

Generally, oz, £} is a fuzzy subset of X (attainability set) for any given x and 7
S0 fuzzy Lispunov exponent A is In general a fuzzy number (because the
Hauaderff distance between two fuzezy sets can never be determined with erisp
grecision), i a crisp number eguipped with a membership value, In a
multidimensional fuzzy system if the largest Liapunov exponent tends to zero
{i.e. membership value at @ is 1 and membership values are uniformly zero
outside a progressively smaller compact intervals of R contaning 0) the system
18 said to be stable, Liapunov exponents are very crucial in analyzing local
instability and pradictability of a dynamical system,

Fuzzy metne entrofy and fuzzy Liahunov tine

Pefirition 526, In an FDIS &, evolving in (¥, 8), the local metric entrapy
{LME} 15 defined at any point x to be the sum (in the sense of fuzzy arithmetic)
of ali the fuzzy Liapunov exponents at x, where each fuzzy Liapunov exponent
is such a fuzzy number that, no crisp member of that fuzzy number is
nonpositive or in other words, this is a fuzzy number of the form gyes),2 > 0,
where [a, &] s the support of gy

Definition 5.27. Sum of all the Liapunov exponens at z s the divergence of
the phase space at x.

The greater the value of LME the more the systemn is chaotic and the less it is
predictable. We can conclude that Ty = 1/A (in sense of fuzzy arithmetic),
where A is the average value {calenlated according to the arithmetic of fuzzy
numbers) of the maximum Liapunov exponent over the elapsed time.

Definition 528, T is called Ligpunov fime, ie. the system is predictable
almost up to a time 7).

Fuzzy differentiable dynamical systems

In the previous section, we extended some important dymamical system
thearetic notions to the FDSs. In this section we shall be concentrating on the
special case when the underlying fuzzy attainahility set mapping of the FDS is
a solution to a set of FDEs or fuzzy differential inclusions {FDIs), i.e. fuzzy
differentiable dynamical systems (FDD5s).



Fueey differential equalions

Defirafion 6.1. When ooe or more of the FDEs are time-dependent we
call the system momgufonomous FDDS. Time-dependent expressions in a
nenautonomous system are of the form

LA =fr0, H0=2x (6.1)
where equatmn {&HmanFDE,f:sfuzz;rdenvahveafthefuzzyvalubd

.Ek}'ifm'wnﬁ.z‘ When none of the FDEs is time-dependent we call the
system anlonomons FDDS, An FDE of an autonomous system takes the form

()= flx), 2ty = x0. 6.2)

FDDS was first defined by De Glas (1984), But his definition of “fuzzy
derivative of a real valued funcbon® is rather restrictive, Puri and Ralescu
(1983) have presented two defmitions of derjvative of a fuzzy valued function
whose domain of definition is an open subset of sorme normed (erisp} space.
One of them s H-derivative or Hukuhara derivative and the other iz a more
generalized nobion ealled canorical derivative. Since the H-derivative had great
influenice on latter works we are presenting the following definition.

Let L/ be an open subset of B, Let So(R™) be the collection of fuzzy subsets
(0 : 0% — [0, 1]) of R" satisfymg the following properties:

(} # i5 upper semicontinuons;
00 & is fuzzy convex, ie (v + (1~ Map) = minfuis;), w(xs)} for
2,2 ERAS 01

{i) clasure(fz1™) 1= compact for a < {0, 1].

Defmetion 6.3, A fuzzy Aimetion F ;1 7 — 55(R"}, which associates with each
point ¥ € If a fuzzy subset F3) of R™ with properties (i), (i) and (i) described
ahwe:,isﬁlled H-differentiable atyy € U if there exists DF( ) € S(R™ such
that, the himits

Fim+ h} - Fiy)

i F{J'u ky

both exist and are aqual to DF{y,).

Kaleva (1987) was the first to define FDE in terms of H-derivative. At the
game time, Seikdcala (1987} also defmed FDE in terms of a slightly generalized
fmfx;gﬁHdmvauve, Their formudation of fuzzy inital value problem (FIVE) is
aAs WS,

()= fit, 1), a)=1x (6.4
whete #{f) is a fuzzy valved function defined on T {whose range set is certain
class of fuzzy subsets of R"), ¥'(f) is the H-derivative {or some generalized
form of H-dexivative) of (1), fis alsc a fuzzy valued function and x; is an witial
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value of equation (6.4), which is a fuzzy point in the phase {solution) space. In
their works and in almost all subsequent warks () takes vahues only in the
ciass of normal subsets of S5y{R™) denoted by E™. This E" is the phase
[solution) space of the FDEs,

Recently Buckley and Feuring (2000s, b) have generalized equation {6.4)
in terms of vartous definitions of derivatives of a fugzy valued function,

T=fXE), X0 =C 65

assuming that we have adopted some definition for the derivative of the
unknowm fuzzy function {f). In equation (6.5), all capital letters denote fuzzy
quantity. X . T— 5(R"), where S(R") is the collection of fuzzy subsets of
K"K =(&),...K,) is an #-dimensional fuzzy number and € is a fuzzy
mirber. X{D) is of course the initial value of X Equation (6.5} 15 the
Buckley-Feuaring form or BF-form of FDEs. In their paper, Buckley and Feuring
{20002, b) have taken Ky, i € {1,...,4} and Cas triangulsr fuzsy numbers, but
here for the sake of generality we prefer to keep them as arbitrary fuzzy
numbers. To obtain a solution for equation (65) the entire range of aisp
solution set of equation {6.5) is considered and then ¢-cuis over various fuzzy
quantifies responsible for generating that solution sat is teken. Then the
required solution set is constructed by using Zadeh's extension principle,
Buckley and Feuring (2000a, bj have also defined fuzzy partial differential
equations.

Solution of an FDE usually involves surmmation of two fuzzy numbers. But if
we add two fuzzy guantities generally the diameter of the resultant fuzzy
quantity is greater than any of the constituent fuzzy quantity. As a result diam
X(t) = oo as ¢ — vo, where X{f} is the scltion of an FI3E. This render FDEs
unsuitable for modeling. Also due to the same reason the tlassical dynamical
systerns' theoretic notions are not possible to extend to the FDEs.

Since the solution or phase space of equation (6.5} is supposed to represent
the behavior of the system represented by equation (6.9), determining the
degree of possihility of the solution set is very crucial to determine the system
behavior. In this situation, if we only concentrate on defermining the solution
set of highest possibility, which obviously represents the best system behavior,
we shall be able to reduce the romputational complexity to a great extent.
Taking the solution space with highest degree of possibility has been
emphasized by Hullermeier (1997, 1999),

FEI is a reformuiation of equabion (6.4) m a different form, where equality (<)
is replaced by inclusion (&) as formulated below:

) E S50, ) Ex &.7)



Unlike in equation {E A), in equation (6:7) x1#) is a crisp trajectary and f(¢, x(2)) is
a fuzzy set of arisp functions {achually in equation (5.7) 5'(f) € f{f, 2()) means
¥t} € [F{E, x(#1]Y). The derivative of x{f} is nof the Hukehara derivative but
the classical derivative. Equation {6.7) in more general form in terms of
arhitrary a-outs becomes

Xt € [F(F N7, 2(8) € xp (6.B)

where 0 = & < 1. x(a) € xp means x(g) € [4]°,

A classical FDE due to Kaleva (1987) o Seikkala (1987) proceeds from a
fuzzification of the differential operator and considers the entire fuzzy How (by
the fizzy flow of equation (6.4) we mean the FAM x{f) as a solution of equation
{64)) which describes the system behavior, As opposed to this the FDI
proceeds from a generalization of differential inclusion relations and considers
a fuzzy set of individual, crisp solutions, much the same way De Glas (1983)

thought of an FDS, In the original formulation of FD[, equation (5.8) has beett -

described as (0 €[ f (t, 50007, x{a) € [x]®. But in equation (6.8) we have
taken zp (that is [1]" in place of [x]™. 'Ihis]mbﬁendunﬂmkeep the
formulation of an FDI as general as possible. Qur ultimate concern in equation
(6.8) is to know the a-cut of the fuzzy set of functions f(2, x(f)). So initially we
allow x{g) to take values from whole of z,. We may restrict 1) within some
level subset of the support of x; only to determine [f{2, #({)]°. S0 Ma) €
{x5)" 15 actually needed when we want to solve equation (8.8) (step 3 of
Algorithm 6.1). At the forrulation stage, it can be dispensed with to keep the
formulation as general as possible, fust as in equabion (6.8). As king as the
crisp initial vale problem

X(E) = folt, 21)),  x(@) = X € o,

where f is & crisp member of the fuzzy set of crisp funchions f(i, x()) and A is
a cisp member of ap, has a unique solution, existence of unique solution of
erqquation 6.8) as a-cuts of fuzzy set of cosp solutions is guaranteed. The a-cut
of the fuzzy set of crisp solutions of equation (6.8) is the fuzey flow
representing the system behavior with possibility o or mose,

Be it equations {64) or (6.8) the solution is more difficult compared to the
classica] crisp differential equations, So the quest for a qualitative rather than
a quantitative solution to equation (6.4} or {8.8) iz even more natura! than the
Crisp case.

Numerical methods for salving FDIs like equation (6.8) have been developed
by Hullermeier (1999), which is as follows. The admissible domair of { is yto 8.
We partmun [, §] in 7 equal subintervals, where the sth subinterval 15 denoted

Ta obtain a solution of equation (6.8) we shall have to determine the
fuzzy reachable set df) {or any arbitrary value of ¢ Like eguation (17} of
Hullermejer {1297), we can writz
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A Ef ) (6.9)
whete fis a fuzzy valued function with values in £ Note that a fuzzy set of
crisp functions, when considered as a single function, maps a crisp or fuzzy set
onto a fuzzy set and hence may be called a fuzzy valued function. E7 15 the
ecollection of normal fuzzy sats of Sy(R™). £* is a metric space (E*, D), where D
is the Hausdorff metric on £". Based on equation (6.9) the following generalized
difference equation scheme can be defined for fuzzy valued funchon of a crisp

variable

Yt = m{y + &¢-f(4, YN, Y =1 (6.10)

Since the set Y({,) may have very complicated sbructures, it 15 generally not
possible to represent them exactly. So in addition to discretization of time,
discretization of a class of subsets of B has also been considered. Let 4 be
2 class of subsets of ™ which can be represented by means of a certain
data structure. Denote by A(Y) € A the approximation of a set ¥ € k"
The following approximation of equatton (6.]0) has been defined
Huellermeier {1997):

Zitia) = A{Uz + A ACf(,2)),  Z(0) = ALX) {6.11)

The impiementation of solution of equation (6.8) is based on iteration of
equation (6.11). The class A used in equation (6.11) for approximating sets
was implemented as different classes of geometrical badies, such as oonvex
hulls or more general classes including nonconvex sets. All this bave been
very elaborately described by Hullermeier {(199%). In Hullermeier (1999),
some examples have also been presented with simulated results. However, the
entire process is extremely computational intensive and complicated, which
may be a stumbling block to the application of FDIs to madel real situations
despite its immense potentiality. Here we have been able to find ouf an easier
method to solve FDIs. But unfortunately, this process will work only in
one-dimensional case. It is not possible to extend it to solve the
multidimensional FDIs. Nevertheless in one-dimensional cases our method
will give better result than those obtained by the method of Hullermeser (1999).

A method for sobving one-dimensional fuzzy dz;j’erer:#af inclusions

In one-dimensional formulation of an. FDI in the form of equation (6.8) the
graphof x(f) isa {msp} trajectory in K% and f Ur_l x(f)) 13 afuzzy valuad function

(as a fuzey set of crisp functions) defined on R* with values in £ x(g) € R is

an initial (crisp) point {that is at { = ). x5 15 & fuzzy point in K. x(2) varies over

all crisp members of the fugzy point X, % is known as the fuzzy initial point.

{ iz always a crisp quandity. Then £{!, x(1)) 18 fuzzy valued because x(f) can



start [at ¢ = &) from any member of the fuzzy point x5 and some fuzzy valued
parameters may aiso be present in £{Z, x(1)). Let fo(f, £(f)] be a arisp member of
S, x(1)). We may call £, a representative member or seed of £ We shail attemnt
to obtaio the fuzzy solubion of equation (6.8) by "fuzzyfying” 4. The algorithm
is calted ervstelinge clgorithen (Majumdar, 2002d), where the entire fuzzy
solution 2et of equation (6.8} i built around the seed salution just like formation
of 2 aystal around a seed In 2 super-saturated bguid. The ordmary aisp
numbers have also been considered as fuszy numbers. Crisp numbers are gnly
special fuzzy numbers. The set of all fuzzy real numbers is denoted by &.

Algerithm 6.1 {Urystalline Algorithmy

START

Step 1t Let folt,xi2)) =Dy, ..., L, 2(1)). 2} starts from g orish

member X of [xol¥ Solve (directly or numerically) £(hH=
Fo(t, (D). . LA}

Step 2: Fix o £ [0, 1.

Step 3: Le! 2() = ¥a1,... dm, D) bt the solution of (A} in step 1. Back
i = g; for some jom > B). g = A E [%5)°. If fo 45 fo vory over af
members of f then each g; must belong to @ fuzzy number, that is,
& € 2, 0); (& 5] e b)) € R, But we are to make «'(H) =
Folt,alt)y € [ft, (ENV". This imphies g5 € [pugg 50)° for ol  and
2@} = A= gm € [26]"(p = fifa, pop)-

Step4: Takexit) = ¢{as, ..., a0, t).. (Brendxit) = $(03,... &5, 4). . {O),

where [igq, 1) * = (a7, 7). The region on R ? bounded by (B} and (C)

D 15 the solution or phase space of equalion (6.5).

Salution of a very impertant ope-dimensional EDI has been obtained by the
above procedurs in the next section. In step 1 standard numerical methods for
solving ordinary crisp differential equations are to be employed when methods
for direct solution are not available.

Justification: Now, let us justify Algorithm 6.1.

In practice in step 1 we just need to consider a crisp version of the expression
£ x{2)). We accomplish this in two steps.

(1) We st choose a crisp member from each fuszy parameter (constant
fuzzy number) and substitute the respective fuzzy parameter by the
chosen crisp number i the expression of £{f, x()).

(2} We treat any fuzzy variable as an ordinary crisp variable in the
expression of (¢, (f)).

This way we obtain fo(t, x(t) = {py, ..., 4, 1, 5(). Then we solve {directly
or numerically) the ordinary crisp differential equation #(F = fof2, x(5) =
P, Pyt (1)), This way obtaining the seed solution as =
Wd1, .. ., 0m, !} is completed. x(f,.1) satisfies the following equation up to the
desired degree of approximation
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2t} = 2+ M folty, 2(80), xi@) = A
from which we cblain

Atw) = E!E'm{x + Atfoltn XN, Xigt==x (6.12)

X{#) iz an approxination of the fuzzy attainability set obtained at tima ¢ by the
fuzzy flow of solution of eguation (6.8) starting at £ = a. So by the way of
equation (6.12} we can reach at an approximation of the fuzzy attainability set
givert by equation (6.10).

In siep 2, we fix a, where 0 = a < 1. The more the value of o the higher is
the possibility of the solution set of equation (6.8} to represent the actual system
behavier. Often nnly the highest value of & is taken to represent the best
gystem behavior,

In step 3, by allowing sach aisp parmeter value g; to vary over the whok:
range of the corresponding fuzzy value we actually determine the whole range
of the fuzzy valued fanction (as a fuzzy set of crisp functions) £4£, £(2)). In this
algorithm we actually pever try to approximate the fuzzy attainability set by
X(f) of equation 5.12) but in step 3 we directly try to determine the fuzzy
attainability set (given by ¥if) in equation {6.10).

In step 4, we demarcate the o-level subsct within the fuzzy attalnabilivy set
by specifying the boundary of the a-leve] subset, In step 4, we achieve the same
goal, which is set to be realized in Hullerrieser (1997) by iteration of equation
{6.11). Unfortunately, this technigue of curving cut the ee-level subset out of the
fuzzy attainabiliry set will not be effective in multidimensional case, This is
precizgely where the zlgorithm ails in mulbdimensional case

So far, the theory of BDEs or FDIs has remained confined fo treating
first-order and first-degres equations or inclusions only. The orystalline
algorithm i3 also designed to solve first-order first-degree FDIs like
equation {(68). But in the following example we shall solve a simple
senond-order FDI with the help of this algorithm.

Exomple 6.1, (Mapmdar, 2002d). Find the solution representing the best
possible behavior of the system given by

(0 E [k )® (6.13)
ke (KT (6.14)
20 € [L1° for x(t) € (M1 (6.15)
20 € {x)° (6.16)

where £°(f) = d¥'(f/dt, 2'(H) = de(fifdt, K is 2 trapemidal furzy numbg.r
given by Figure 4, L is a triangular fuzzy number given by Figure b, M 1s
a tiangular fuzzy number given by Figure 6 and xp is a fhangular fuzzy



——

nurmber given by Figure 7.0 < o < 1. Also shown is the simulated state space Complexity
of the systern. amalysis

Sohtion. in search of a "serd” snhution we shall have to fix a representative crisp expression

in the fuzzy expression (ke 1™ or (k1™ on the right of equation .13, surly k€ [K ).

Motice that we are to determine the sohetion representing the best system behavior enly.
Inthatcase a =150 k € (X1 = [0.5, 1] (Figure 4). x(5 is a crisp variable it of0) can take

any crisp value from a fuszy mumber. This contributes to the "fuzziness” of #(f) (there may be 1169
other factors as well to conirixete in this direction), that & x(f} becowoes & arisp member of
& fuzzy set of crisp functions. So, i seacch of 1 seed sahstion it suffices to take

By =be {8.17)

where & & {0.6,1) and x i5 an ordinary crisp variable We shall prooeed by sobving
equation {617) just fike an ordinary crisp differential equation. Multiplying both sides
of equativn (6.17) by 2¢'(£) and then integrating we obiain

(P =kt C {6.18)

where C i5 an integration constant. From equation l@.weuhtamﬂmt:’{ﬂ)E[Ll‘
:{:}E[Ml“,wluchmns:’{D}E[L]‘fm:(t]E[ S L, M are traingular hezy
numhmmvmby?weaﬁmd?mm?e]}rwﬂmvef{m 0 for aft) = 1. Heno= fiom
equation (5.18) we cbtain &= -4, Or,

ity = Jhrt - 12 619

Solving equation .15}, we phiain

Figure 4.
Trapezcidal fuszy
number £

0 04 06 112

; B Figare 5.
| Triangular fuzzy
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Figure 6.
nmeher £

Figure 7.
number Af

sin~lx(t) = JfRt + D, {6.20

whert: D i an integration constant and we are considering the positive square root of & only.
r[hg}mmﬂ{l-" ﬁ%ﬁ}énﬂubhm:w:lli[m]' But we are interested only in M € k]’ ar
e

A} = sinl JAt), 6.21)
where & € [05,1]. The zeed sohution of squations (B13HE18) for any A€ [06,1]
To determine the fuzzy flow ceresponding to the best possible behw uftbesyslun

mﬁﬂqmﬂmt&]&{&lﬁmhpﬁmmmﬂuﬂmmd&m
the boundary of the fuzzy flow in B2 The boundary is represented by the graphe of
i) = sin(0.77464) {curve *1° of Figure 8) and x{f) = sin(!) {curve “2° of Figare 8]

Stabekty afaﬁmymtmwwdbyamafﬁwwm
0 course the FDSs theoretic notions defined and discuessed in the last section
£an be applied to the FDIs in a very straightforward manner, Let vy describe
the notion of stability ic terms of eritical points (not in terms of attrackors)
in case of a system of FDIz defined aver a two-dimensional phase space.
Let a system be described by
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Netes: Fuzzy iate space of the system sepreseated by (6.13), (6.14), (6.15) and (6.16) state space of the
mhummm Wn'me‘m of the baﬂ)&nd 12’({“:}'4: right muivn :t:! ;: Frozy o

baerd). Only the region repressnting the best svetem hebaviour hae been congidered

(6 € [Fox, 507, {6.22)

y'(f) € [x, 0%, 6.23)

where F,G:R*— El In order to sclve this system we may write the
equations as

{6.24)

dv _ [Glei®
dr

dr  |Fix,»)

The systemn represented by equation {6.24) will be stable on all pomts
(x,9) &€ R? such that, 0 & [((x,)]* and 0 & [F(x,y)* for any o> 0.

Definition 6.4 In the systern descnibed by equations 6.23) and (6.24) if
Po = {xp,¥g) 15 2 crisp point on the phase plane (i.e. two-dimensional phase
space) such that, 0 € [Flxg,yp))® and 0 € [C(xg, yo)]* for & > (then we call Fy
a coitical point of the system.

If S is the region of R consisting all the critical points of the system
represented by equations (6.23) and (6.24), then the system is stable at any point
in the complement of S. For an implementation of this criterion let us consider a
system represented by FDIs in Hullermeier {1999). Under certain assumptions
dynamics of the corresponding economic system is described by the crisp
differential equations

7} = axltanh(x + o7y) — x)ooshixyx + o, ), (6.25)

¥t} = aftanh{x,y + o,x) — yxcoshixy + 0;7). (5.26)



Here the state variables —1 = ={f), y{f) = 1 characterize the stages of business
cycle. The parameters ay, ay, &, 1y, 0y, @y, Which have certam esonomic
interpretation, not only influence the guantitative but also the gualitative
behavior of the system.

But in an economic system precise values of the parameters
fug, &y, Kz, Ky Ox, &5 May oot be known. The uncertaitity remains involved in
equations (5.25} and (6.26) makes it more appropriate to formulate the system
in terms of FDIs, which takes the form

') € [ay(tanh(xz + o3 3) ~ Xicoshi{ks + ary))° (6.27)

#'(6) € [atanhixy + ;) — Ycosh(ky + o,2)]° (6.28)

where each of the parameters oy, oy, K2, &y, ', 0y 138 been trezted as a fuzzy
number. It is easy to verify that the only cribical point of the systam is (0, 0.
Also 0 must not belong to the support of fuzzy mambers a;, ay,; we, Xy, Tx, & 0
make the system stable.

let P, be an isolated critical point of the system represented by
aquations #.22) and 623} If Py has a neighborhood NiPg) with diameter
& > 0 such that, all trajectories starting from any point P € M(Pg) converges
to Py then Fy is called 2 Liapunov stahle critieal point of the system. This
notion of Liapunov stability of the cnbeal paint Py follows directly from
Definition 5.11, where Fy is an attrackng criticad point. In the systemn given by
squations {6.27) and {6.28) (0,0} is 2 Liapunov stable critical point.

Case studies

To demonstrate the efficacy of FDI relations m modeling very complex natural
phenomena let us describe a case study here. We have in mind cyclogenegis, i.e.
genesis of cyclones (Majumdar, 2002a, by, We shall apply Dempster-Shafer's
theory of evidence in medical image fusion {Bhattacharya and Duttz
Mammder, 2000; Dutta Majumder and Bhattacharya, 2000). We bave also
presented 2 statishical analyss {from general system theoretic potnt of view) of
the development and regression of cancer in humar body (Dutta Majumder and
Roy, 2000). As a very interesting example of atmospheric cvbemnetics,
following Majumdar {20022, b), here we shall propose a FDS modeling of
a climatic dishurbance created by winds coming from different directions and
eolliding to give rise to a vortex under certain conditions. Under favorable
condibions, this vortex may lead to the developimerit of a cyclone {Case study I).
Then, following Bhattacharya and Duita Majumder (2000} and Dutta
Mzjumder and Bhattacharya (2000) we shall present a novel bio-cybernetic
fusion technique for multimodal medical images by applying Dempster-Shafer
theory of evidence (Case study T Finally, following Dutta Majunder and
Ray {2000) we shall present a path breaking bio-cybernetic and general system



theoretic approach to induce spontaneous regression on malignant tumour by
means of large fuctuating pertwbations.

Case study I Evoluhon of cyclonic weather ~ cyclogenesis

Through sustainied research, partiewlarly after the Second World War, the
ph}rmcsbdundﬂ:egmmanddevehpnmtofampmlstmnhasahady
been understond to a large extent. It is well known that despite the prevalence
of favorable geographi: and climatic conditions over a large part of the globe
during the storrn seasons the achal occurrence of & tropical storm is a
relatively rare phenomenon, Even when a tropical storm is developed, ahout
the half of all of them cannot reach hurricane strength (say of intensity T 35 or
more in the Dvorak {1984) scale}. The reason behind the relative rare ocourrence
of a strong tropical storm [called Harricane ity USA, Typhoon ir China, Cyclone
11 India, etc) is that, a sufficiently strong initiat disturhing vortex is essential to
give rise to an intense tropical storm (Emannel, 1988}, So not ondy the favorable
geographic and climatic conditions are essential prerequisites but alse a
sufficiently strong initia] disturbance iz required. Following Oovama (1965
there have been mnumerable models of steady state cyclones. But there is
almost no model for the inibial strong disturbance ingtrumental behind the
genesis of a cyclone. Here we shall present a skmple but elegant model of this
strong initial disturbantce. Normally it could have been a very complex task
But due to the inherent efficiency of the FD}s to moded complex systems it has
become a rather simple task.

To present ot dea in 2 concge form et us asswme that not one but two
initial disturbances are needed to give rise to a strong initial disturbing vortex.
Each of the dishurhanee is in the form of linear wind jet propapating parallel to
the ground. Ome of them is very strong (speed more than 40 ken/h) acting in the
cross-radial direction to the vortex to be created and the other iz very weak
{epead about 5 km'h;} acting at the radial direction of the vortex

With respect fo 2 ¢ylindrical coordinate system expressions for the radial,
cross-radial and verticat components of the velocity are as follows.

dr/dt = radial component;
#{df/di} = crossradial component;

dz/df = vertical component.

We know that the shape of a cyclonic vortex, as observed through the satellite
1mages and also through the RADARS, is Jog-spiral. But to have a leg-spiral
{or equiangular spiral) shaped vortex qut of Jmear wind jets the ratio of radial
and cross-radial corponents of the velocities must be a constant. Since the
linear wind jets propagate parallel to the ground the verlical component of
the velocity 1s zero. So the model of the initial disturbing vortex is given by
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dr/dt

W= m (2 constant). {7.1)

Bot equation (7.1) in its present form is trivially inadaquate. It can never model
the real situation, because m being the ratio of two wind speeds cannot be a
fixed value over an interval of time needed for the formation of the vortex. m is
liable to fluctuate even within a very small interval of time. But surely s will
not g0 bevond certain range. That 1s, the values of = will always lie within
some interval of the real Ene. So we find that m takes values from a fuzzy real
number M. »1 35 not fixed. But M as & fuzzy number is fixed. M is a trapezoidal
fuzzy number {g,c,d, b} 28 shown in Figure 9, which hehaves as a (fuzzy)
constant

Let us explain why we have taken the fuzzy constant M as a trapezoidal
fuzzy number, M ; K~ [0,1] is of course 2 membership function. M{m) =
if m & [0, b). This means that the created vortex for m & [a, ] will notbe 2
stable one. Vortex created for those s will collapse shorthy due to the wind
shear, As the valoe of s moves from & to ¢ the possibility of the created vortex
to become a cyclone increases under favorable climatic and geographical
conditions. When s € [¢, d ] the possibility of the created vortex to mature into
a tropical storm of hurricane strength 1 the highest under favorabde climatic
and geagrapmczl conditions although Mm} = 1 for m € [¢, d ] thns does not
mean that a tropical storm wili develop without fail far m € (¢, 1), Again as
values of m progress from  to b the possibility of the created vortex to mature
inte an intense tropical storm ever under faverable cimatic and geographical
conditions diminishes before finally becoming zero for s = &, Values of a,d. ¢
and & will have to be determined experimentally. We have inferred the valuoes
of a,b,¢c and d for the northem hemisphere with the help of numerical
simmiation on synthetic data. These values are given in Table .

So formulation of equatim (7.1) as an FDE rather than a crisp differential
Equation is mare realistic. But as we have already explained the limitations of
FDEs in modeling and simalation, it is better to give 2 FD relahon formulation
of equation (7.1}, whmhwﬂlhethePDSmudﬂlmgofthcunnalclunahc
disturbance leading to the genesis of a cyclone.

...
-
.,

e
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(@) € (@], r@) € [n]" (7.2)

Equation {7.2) is the FD! relation forrmilation of equation (7.1}, #5 isa friangular
furzy nurmber given in Figure 10.

Typica! value of »{) iz 1,000 km. But some inaccuracies always remain
invatved in its measurement. So we have taken #, 2s a irangular fuzzy number,
which is the fozzy set of all possible values of #{0}.

Now we are in a posifion to present the phase (solution) space of equation
(7.2) with the help of the orystalline algorithm described in the last section,
which is the simulated initial dishrbing vortex. We shall opt orly for those
solutions which represent the hest possible system behavior, That is, we shall
consider the solution of equation {7.2) for & == 1 anly (Figure 11).

Case study [T Multymodal medical tmage fusion for cancerous cells
A more exciting case study is treating the very complex development of
diseases in human body fiom a bio-cybernetic and general systems' theoretic
point of view as proposed by Dutta Majumder and Bhattacharya (2000) and
Dutta Majumder and Roy {2000}, Hers, the complexity iz due to the extreme
difficulty in determining the systems parameters and the exact relationships
among them,

Duttz Majumder and Bhattacharyz (20000 have mzde 2 very novel and
interesting application of Dempster-Shafer theory of evidence to combine (fuse}
three different kinds of images of brain tissues of an Alzheimer’s patient

The combination of information from multintodal imageries as a fused image
would provide ophimum information (Hall, 1958), The multimodal medical
image fusion may provide integrated information to the medical practiioners

=02 ~0i - {05 -1
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Figure 11.
Numerical sipulation of
equebor (7.2)

for improved diagnostics and therapeutic planning (Dutta Majumder and
Bhattacharya, 1997, 1998, b, ¢, 1999). The objective is to indicate an approach
based on soft computmg methods in uncertainty management for
dectsion-making in context-dependent and context-independent systems of
datz fusion for medical images.

Tet A; be the class of images of brain tissues of an Alzhemmer's patient
obtained by using 7, weighted MR, A3 be the class of images of the same
brain tissues of the Akzheimer’s patient obfained by 7y weighted MR and A5
be the class of images of the same brain tissues of the same Alzheimer's
patient obtzined by CT imaging. From Dempster-Shafer theory of evidence

(Shafer, 1976, we obtain
Bel(A; U Az U A3) = m{A;) -+ mi{Az) + m{Ay) + m{A; U Az} + mlAz U Aj)

+m(ds U AD+ mid; U A; U As),

where m 15 the measure of the basic probahility assignment. Let the frame of
discernment #be the set of all elementary propositions #2{#), which is the basir
probability assignment indicating ko what extent a sensor i able to distinguish
any elementary proposition.

Thus from the D-8 theory a number in the interval [0,1] i used which
indicates the degree of evidence to support a proposition. Thus, m: 2% = [(, 1]
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=1,00G F
1800t
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D000 200 000 0 100 2000
x. = A O THETA, ssp(m. THETA)
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Note: Where o.= 1, that is, the phase space is showing the Ruzey flow (the entize region
enclosed betwesn the fwo curves including the rurves elso) represanting the best system
bebavionr anly. This flow teoda to con ha{fu:ﬁy} poict of the [fuzzy) phase space,
wh:chmknmuthe aftracloy of this voriex winmately matores into a
severe cyclonic storm this attractor will become the eyc of the eyclone



and Zm(A) =1 for all A contamed in # and m{Z) = 0, where & is the null
hypothesiz A are the focal elements of 8 having nonzero »z values,

The two images Iml (Figure 12fa}) and Im2 (Figure 12{b}) are
complementary to each other. By the DS method of fusion the basic
probability masses are assigned in an area where the union of classes defined
is

Experimental procedure and result
In Im] and Im2 the classes are discriminated in:
{1} gray matter;
{Z} white matter;
{3) cerebrospinal fluid (CSFY;
{4) ventricle:
{5) bones.

The gray matter and the white matter together constitute the brain region and
according to our notabion this 1s class &, while the ventricke and the CSF
together are denoted by C;. The overlapping regions of £y and C; are denoted
by €y M Cz = Cs and the outer bany layer of each slice is denoted by Cy. So the
four classes of brain matter are defined as (h, 5, G5, Cy. To assign the
probability mass for each class a central or focal element is chosen. This central
glement 1s related to each class of the Iml and Im2. The null mass m{0) is
defined for each class which is not assigned. To detenmine the probability
masses the frame of discemment is proposed as 8 = (£, Cz). The power set of
8,2% = (8,(),Cy, €y U £5). The mass functions are assigned for two images
as m and #ip, respectively, and mass functions assigned for the classes are
amy{(C1), my(Ca), m{Cy U Cy) for Im] and as wung(Gy), ma(Cy), ma(Cy U Gy}
for Im2 such that, m(C) +m(Cy+m(C1UCo) =1, where 1=1,2
bel(C1) = m:(Cy) and bel{Cy) = m{Cz), bel(C; U Co) =my(Cr) + milCy) +
m(CiUC) =1,

In pixelbased classification the distribution of different pixels over a
specified gray level is considered. In Iml, the pixels are spread over the
range 20-190, Primanly we have considered the distribution of pixels aver
the range below 130, between 130 and 190 and abave 190.

(2) Imege }Im!) {b) Image 2(Im?2) (c) Fused image
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Figure 12,
Fusion of madical images
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When A 15 the number of pixels lving in the region over a specified gray Jevel
and if NV is the dimensian of the region (V = N X Ny) taken as small image of
the brain:

(1) for pixels having gray values less than 130, mr(Co) = 1, my(Cy) = 0 and
MG UC=1

# for pixels with gray level values greater than 190, mn{Cp =1,
ma(Cz) =0, m(C; U Cp) = &

(3 for pixels with gray level values between 130 and 196, m,(C) = 043
m{Co) = (.3 and an (G U &) = 0.193.

Similarly for Im2 the range of gray levels disinthuted over the pixels:

(1) for pixels having pray values less than 90, #a(Cy) = L, m(Co) =10,
MG UG =

(% for pixels having gray values 90-135, #ia(Cod = 0, #(Cy) = 0552,
malCy U Cg) = 0.498;

{3) for pixels having gray values between 135 and 140, mp(Cy) = M /N,
mz(Cy) = Mﬂfﬁ”l and mziGGUCH=1- M‘?NF +M‘;_ﬂ'lu"1, thus
mz((3) = 0.01, mp(Cr) =0, ma(Cr L C) = 0.98;

) for pixel gray level values from 140 to 197 ({3 =003,
mz(Ca) = 0.07 and ma(Cy U G3) = 0.5,

5] for pixel gray level values between 187 and 256, swpilyn=0,
mz(Lp) = 0.9 and ma(Cy U Gz = 0.7

The: pixels at the specified gray kevel walue ranges are classibed fram both
the images of 7} and 75 weighted ME images of brain md are fused after the
registration in a common teference frame using Dempster-Shafer accumulation
theory. The fused images of both the modalities are shown in Figure 1),
For 2 puel the decision is taken in favor of either () or (; as to whether
bel((71) == bel(Cy) ar vice versa. Thas, the belief measure indicates in which
¢lass a pixe! belongs to the fesed image (Figure 12(c).

Case study 01 A generd system theoretic analvsis of cancer self-remission
The dynarmics of cancer development and regression ave given by the following
equation {Dutta Majumder and Roy {2000}):

dM/d! = g + [sM{1 - {M/K}}] — /M), (7.3}

where M is the density of tumour cells, ¢ {a constant) s called maligmant
cellular transformation, i.e. the rate of normal cells to malignant ones, The term
within the square bracket is a Fischer logistic growth term indiczting the
incresse of tumour cells with replication rate s {constant) and maximem
carrying of packing capacity K (constant). The last term rA%) denotes the
rate of destruction of tumeour cells by the immune cells, where r {tonstant) i



the rate of turmour eell destruciion and AM) s a funchon in M. In a
dimensionless form equation (7.3) can be reformulated using rescaled variables
and a rescaled time § = (s — g):

dm/fdf = v+ m(l — unt) — r{m/(l + m)}. (7.4)
Let »; denote the fluctuation of v about 2 mean value of ». Then 7, is
given by

r =¥+ of,, (7.5)

where K, is the statistica] perturbation with standard deviaton o It is
clear that for nermal cytotoxic or immunological interactons these
fluctuations vary much more rapidly than the macroscopic evolution of the
tumour., The probability distribution function Pim) has been calculated by
Dutta Majunder and Ray (2000} as

Pony = expl2/ e —v/m + (04 2 —u — rym — (1 — 2ym?/2

—wm3 34+ (- 1-r-oB)nm+ il 4 m)). {7.6)

We now wish o find the effect of increasing the fluctuation of the tumour
cell destruchon rate r, that is increasing its o, and chserve the consemquent
change of probability Ap). Dutte Majumder and Roy {2000) have kept the
range of mncreasing o as 0 = ¢ =< 3, The cancer cell reduction rate r can
be fluctuated by perturhing vanious parameters which influence r, such as
perturbing any of the folljwing parameters:

{1} radiation flux;

(&) cytotoxic chemical flux;

(3) mmune cell concentration;

{(4) tumowr temperahure;

(3 glucose level of the blood impinging on the tumour;

{6) oxygen partial pressure, pOs, i.e. oxygen level in tumour matrix;

(7) haemeodynamic perfusion of the tumour; and so on.

We know that variations in these parameters are reflected as random
vaniations of indices like » which give them a stochastic charzcter {Lefever and
Horsthemke, 1979). We sez that, as o increases from 0.5 to 0854 to 283, the
probability density function P{m) exhibits a non-equilibrium phase transition,
apropos the Glansdocff- Prigogine (1971) theorem. The peak probability density
of tunour ¢alls shifts towards very low value of tumour cell density JX; for
instance, tumour cell density X shifts from 4.3 (macro-cancer focus) to 9.46
(micro-cancer focus), i.e. there ocours the phase ransifion:
Macro-cancer focus — Micro-cancer focus.

o
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This corresponds to regression and elimination of malignancy. Hence, we infer
that if one of more parameters such ag, oxygenation, radiation or temperature,
etc. are varied then the turnour may have 2 predisposition to regress and
destahilize if the standard deviation  of the parameter's variabion crosses the
following threshold.

The tumour regression thrashald : o = 2.83.

We can thus enunciate the corresponding stability principle for hwmour
regression and malignancy (Duttz Majumder and Roy, 20000

General stability principle for turmour regression. A humour may
have predisposition fo destabilize and regress if there &5 a suffficient fuctuation of
the matignant cell reduction rate, so that oris 283 or above, which may be solneved
by correspondingly kigh variation of lemperature, oxygenation, radiation, ef.

A successful implementation of the above principle has been christened as
mullipivahve fluctualion as a new multimodality therapy in Dutta Majumder
and Roy (2000). Here perturbations have been used in the form of:

(1) increasing arterial s to 90 mmHp, decreasing venous 04 to 20 mmHy;

(2) using hyperthermia up to 105°F;

(3) byperglycaerma up to 600mg percsnt blood glicose level, which also

produces pH perturbations {up to 6.5 from the normal fissug level of 7.8).
Owing to vanation of oxygenation there is perturbation in the oxygen index of
the blood as 185 < 7 < 42, The treatment was administered daily for 2h for
a period of 18 days. In terms of the number of tumour cells destroved the
technique presents a hndred-fold increase in cell kill leading to regression of
a huge clear cell tumotr above the knee with a size of 2kg (Dutta Majumder
and Roy, 2000).

Exploring new ways in this direction is still on. The treatment process
towards this goal in M-thermio (Dutta Majumder and Roy, 2000), it is a
combination of Ayperglvcaemia (ghicosa level is vared hetween 400 mp/i00ml
hlyod and normal level of 100 mgf108¢ m! blood) and Avperthermia {temperature
variation used is from 98 to 103°F, using high-frequency inductive heating).
pH fluctuation and bi-thermia have been devised in Dutta Majumder and Roy
{2000). Much higher fluctuanion can be achieved safely by temperature
variation from 96 to 102°F with o = 5. This has resulted in disappearance of
metastatic spread in a lymph node in the waist (Duita Majumder and Roy,
2000).

Conclusion

In this paper, we have studied various uncertain dynamical systems and
cybernetics as conveniemt tools for modeling various complex hiclogical,
physical and natural phenomena We have first discussed various uncertainties
and then their roles in modeling various dymamical and cybernetic systems.
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We have presented a very defniled discussion en FDSs. Although the
mathenatical theory of FDBs iz the most fundamenta) of all fuzzy systems, of
which fuzzy controllers are perhaps the most prominent examples, the
development of this theory so far did not get the attention it deserves, In this
paper along with presenting a review of the up to date important developments
of the mathernatical thenry of FD)3s we have attempted to extend the same on
line of the development of the mathematical theory of classiml arisp dynamical
systems. In the process, we have made a slight extension to the Kloeden's
{1982) definition of an FDS Then we have introduced the notion of fuzzy
dissipative dynamical system. We also have formulated an easy to implement
criterion to test the dissipativeness of an FDS. Then we have given a very
broad based definition of fuzzy attractors in terms of fuzzy attainability set
mappings. We have defined stability of an FDS in terms of the attractor,
We also have introduced the nolion of whustness for an FDS in terms of its
attractor. We have extended Devaney’s {1889) definiten of chaes to the FDSs,
Along with this the concept of heranclinic points bas been extended to the
FDSs. Then we have defined fuzzy Liapunov exponent, fuzzy metric entropy
and fuzzy Liapunov time. Fuzzy differential dynamical systems have been
discussed in a separate section, where we have given an algorithm for solving
one-dirnensional FDIs. Sclving ope-dimensional FDIs by this algorithm takes
much less number of computations (1 enly calculates {he boundary of the
solution set rather than the whole set as done in the existing one}. A stability
eriterion has been formulated m terms of aritical points for a fuezy system
represented by a set of Fhls.

Fmally, we have presented three interesting case studies invelving
atmospheric and medical cybemetics to show how some of the theories
described in the earlier part of this paper actually warks in real Life. [ the
second case study we have later extended the model of cycolgenesis from
two dimension to three dimension (Majumdar and Dutta Majumder, 2004b),
In the third case study, we have presented the bigcybemetic model of
cancer regression in terms of PU. We have already made an FDS mede] of the
evolution of tumour in human tssee (Majumdar and Dutta Majumder, 20042}
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Abstract In his shedy, the &im is fo soke o dass of boundary syslems, using the Adontian
decomposition method This melhnd gave very gaod resulls for soling algebraic, differential
fniegral and portial differential equations

1, Introduction
In this paper, we consider the solution of a class of boundary systems vsing the
Adomian decomposition method {Adomian, 1988, 1994; Adomian and Rach,
1993). This method has already produced very good results {Abbaoui 2f af,
2001; Cherruault, 1998, 1999). The boundary problem (P) is defined by the
following differential system:

(%) + &2} () = flu(x), x)

Pl u@ =ao

uby=p

where

x Ela, i,
A =(gj), l=<i=sn 1=j=n a;€CadD

a=(m,...,m)ER, A=(F, . .BIER

W=z, ... %), JS={f1,....fa)

In the first part of this work, problem (P} will be written inte a canonical form
a3 in the work of Benabidallah (2004).
In the second part, we adapt the process used in the work of Benabidallab
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{2004) by changing the canonical form, introducing a new operator at each step. © Emerak! Group b Linduct

This allows us to give an approximation of the exact solubion of system {P).
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