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LEVEL-CROSSING PROBABILITIES
AND FIRST-PASSAGE TIMES
FOR LINEAR PROCESSES

GOPAL K. BASAK.* University of Brisiol
KWOK-WAH REMUS HO.** Hong Kong University of Science and Technology

Abstract

Discrete time-serics models are commonly used to represent economue and physical
data. In decision making and system control, the first-pessage ime wod Ievel-crossimg
probabilities of these processes against certain threshold levels are important quantities.
Io is paper, we apply an integroi-equation appmach togelher with the stafc-space
representetions of dme-series models to evaluare levelcrossing probabilies for the
AR(p) und ARMA(1, 1} mudels und the mean first pussage time for AR(p) processes.
We also extend Novikov's martingale approach to ARMA(p. ) processes. Numencal
schemes are used to solve the integral equations for specific examples,
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1. Introdoction

leté .t e Z=1[....—2—-1.0,1,2, ...} be a sequence of independent zad identically
distrbuted {i.1.d.) random variables on a probability space {Q, ¥, ). A geoeral linear process
{X) can be defived as X, = ¥ 5o aibr—i, where {a;} is & sequence of teal numbers, The
autoregressive AR(p), moving average MA(g), autoregressive moving average ARMA(p, ¢)
and yutoregressive miegrated moving average ARIMA( p, 4, ¢) models aie all special cases of

the linear process. We define a stationary ARMA(p, ¢) process to be a process satisfying the
foliowing equation:

i=d Yo+ -+ @pYiop +01E1 +- -+ 659 + &, (1.1}

where r € Z, ¢y, ..., ®p. Bl . ... 8, ure constants, and where ¢, . . ., $p are such thal all the
roots of the chusacteristic polynomial of the AR{ ) part (that is, ®(z) = 1 — ¢z — ¢pz% —
sor = ¢p2P) are outside the unit disk. When 6y,...,6; are all zero, we say that the above
process is a stationary AR(p) process. In this case,

Vi=¢1Yi1+ -+ Ppki—p + 3. (1.2)

In this paper we study the level-crossmg probabilities for ARMA(p, g} processes using
two techniques: (i) the martingale approach uged by Novikov [7] and (ii) an integral-equation
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spproach. These processes are commonly used in economewics © model varions data, In
making decisions, we may want to know how likely it 1s that the process will attain a cermin
high level before it drops back to vr even below the presem level, or we may want to know
the expected time for the process to reach a certain level. The results of this paper answer (he
above guestions for some of the above-menfioned linear processes by evatuating the following
quantities: (1) the probability of crossing a level & before a level 2 and {ii) the expectation of
the first-passape times 7 (b) and 7 (4. b) defined as

T(h) =inf[s: ¥, = b}, b=xp, a9, X _pyr,
Tla,by=inf[t: ¥ = borY; =al. B Xk laei Xoppr > a

The paper is organized as follows, We present background material in Section 2. Section 3
deals with the representation of mean first-passage times for ARMA(p, g} processes using
the martingale approach of Novikov [7]. We extend his work from AR(1) to ARMA(p, g)
processes. In Section 4, level-crossing probabilities and mean first-passage times for AR{ )
processes are discnssed with an example, Section 5 deals with ARMA(L, 13 processes with an
exaniple while Section 6 gives conclusions and discussions. Seme of the detailed calculatians
are given in the appendices.

2. Background

In this section we discuss some background material. Section 2.1 deals with the state-space
representations of AR(p} and ARMA(p, ) processes msed in Sections 3-5. In Secdon 2.2,
some of the theary of Fredholm integral equations of the second kind is deseribed, These results
on Fredholm-integral equations are ased throughout Sections 5-5. Section 2.3 describey the
collocation methad, which is used in Section 5.

2.1. Statespace representation and stationarity

For the stationary time series satisfying (1.2), we have the following state-space representa-
tion:
y,=GX, 1¢Z,
e I @)
Xrp1 = FXy + HE, ted,

where
i' _— I:FI_P""]-‘ R Y]_lg 1’:]1—'\
H=(0.....0,17,

G=1{0.....0,1),
0 1 (b D
D 0 1

F=1: -
0 .- .. 0 1
Gp Ppt - d2 B

The state equation demonsicates the underlying Markov property of the AR{p) mode] that
iz crucial in our discussion. ARMA(p, ¢} processes, defined in (1.1, can also be given a
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strte-epace representation:

Y,=GZ, 1&7%,
. _ {2.2)
Zer) =FoZy + 5, ted,

whete

B Fecpns oo Bt Fotgrn 807 = ().

T

G={0,....0,1,0.....00 (a{p+ q)-dimensional vector with 1 at the pth place),
Bpo= (0., 0,5,0,..,0, )75y (a (p + g)-dimensional vector with £, at the pth

and (p + q)ih places),
Fij Fm)
Fi
ﬂt(le Fr
with F|| = F, Fa1 = Ogxp.
1 0 ... 4
6 0 - 0 _
. . A . u ﬂ ] Y
Fo=)|: + >~ 1. pme=l. . . . .
o 0 0 50 .. o3
8, d,_ 2 (RN
7 Pl ! 00 .. 0 0

Thus, the Markov property also holds for the state equation of the ARMA(p, g) model.

12. Imtreduoction te integral squations

In this section, wa will only focus on resulta that will be useful in later discussions and
the theorems stated here will not be proved. Background watarlal in this and the fallowing
subsection is mainly tuken from [1]. The equations that we are interested in are of Frediobn,
type of the second kind. The general for is

J..x{.t}—f Kit, shx(syds = y(r}, te D) FED
D

where D iz a cloced and bounded =et in B¥ for some m = 1. The function X(-.-) is calied
the kerne} and is assumed to be absohmely integrable. The fanction x(-) 13 the enkaown to be
g0lved for. Since the probabilities and expectations we consider should be continuous fimctions
of the initial states, we zssume that () € C(D). Next, dafine tw mtegral operator X by

.Kx{t}=f Kir, rixig) ds, re D, xeC(D). 2.3)
F

Definition 2.1, Let & and ¢ be nommed vector spaces and let X : & — € be lincar, Thea K
is compact if the set

[Kx}=l =1}
has compact clogure in €.
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Theorem 2.1, The iniegral operator X defined in (2.3} is bounded and compact in C(Dy)
eguipped with the supremum ror || - | o Znder the following conditions:

{iy Kis,1)is Riewemn integrableins foralic e D;
(i}
lint max max f 1K, 3) — K{r, 5)|ds =1;
A—brraD t—1|=h g
{iif}
maxj |& (¢, | ds = oo,
g Jn

Notice that the above conditions are filfilled if K\t 5) is contitaions in 3 and ¢.
For compact operstors, thete 12 a cesiral theorem [1],

Theorem 2.2, (Fredholm altemative.) Let B be a Banach space and let . 8 — B be
compact. Then the equation (3, — J)x =y, k # 0, kas a unigue solution x € B if and only if
the homopeneous equation (h — J)z = O Ras only the trivial solution 7 = 0. In such g CaE,
the operator & — X+ B — B has a bounded inverse (3 - Xy,

Next, we state & version of the useful contraction mapping theorem [1).

Theorem 2.Y. Lei B be u Banach space and et A be a bounded operator fram B into 3, with
Al < 1. Then i — A : & — B is one-to-one and onto and (I — Ay iv a bounded finear
operator, where I 1 B — B is the identity operaton

2.3, Collocation method

The collocation methed is avenverien method commonly used to solve integral equations. A
generdl introduction can be found in [1] #nd beve we give 3 description for our case. To evaluate
equations Yke (5.3} in Section 5 numerically in bk domain 8 = Cle, 8], we introdnce the
Lagrange basis functions for piecewise linear interpol ation:

-l .
fi(r}=ll_'_'_h'_t k-1 Erfrﬂrls i_ulli-‘-inl

J otherwisc.
Hrbh=oth=F5=nt+ikfori=1..., r =1, & = (f —«)/n and we define e
following projection operator on Clir, 8]: for f € Cla, g1,

Fpfx)= frix) = Zflrf}iftx}. y=a+ik i=01...,8 xelnfl. (24
i}

It was proved in [1, p. 59] that & is a bounded linear opemtor and 7 f — fasn —
for all f € C[o, £]. The projection operator /2, maps any f € 8 to a funclion f; in B,
the {# -+ 1)-dimensional subspace of B that contains functions of the form ¥ v f XM ().
Thus, if we represent equetions like {3.3) in the form of an operator equation {with P in (3.3}
replaced by f to avoid confusion and P, as defined in Section 4.2), we have

=-XKuf=P., fe8 {2.5)
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We intend to spproximate the salation of 12.5) by the solution £, of the following equatiou;
M =F XK fa=P, fus B (26

We state the following theorems for peneral Banach spaccs from {1, pp. 55, 57} which ensure
the convergence under certair conditions.

Thworetn 24, Ler B be a Bawach spoce and assume that X : B — X is bounded and that
1 - K5 — 8 isone-fo-one and oxto. Furtherwore, assunr that

HE - PX| =0 avm— 00,
where Py i5 as defined fn (2.4). Then the solution £y af (2.8) comverges waformiy to the solution
foff2 i

Theorem 2.5, Let & be some Bemach space and let 8, be a fumily of bounded projections on
B such hait

Pof > F asnowforfeB
¥ . 8 — Bircompact, then
|K — P X — 0 asn — oo.

3. ARMAJp. ¢) processes: a martiogale approach

The approach we use here comes from Movikov's work [7] on AR(1) processes which we
madify for ARMA(p, g) processes. Tt is clesrer If we start with AR(p) proceeees. We have to
impose a mild condition on the saaricnary AR 2] processes woder consideration. For an AR(p)
process satisfying the state-space vepresentation (2.1), we assume that ¢, = 0. Under this
constraing, e coeficient matriz F is nomsinguler. Since the characteristic palynomial of #
B Bpla) = kF —gyx? Lo g m =y, DRI = =, < 0 and Bpix) — oo 86
¥ — &, This means that the characteristic polynomial of F haz a poritive root, ie. F hac a
positive eigenvatue, say &, Assume that the comesponding raw eigemvestor is ¢ and notice that
0 = A < 1 by stationarity. We can then rewrite (2.1) an

E.EH_] = E"Fi'; + fH E .
By choosing & such that FH = 1 or such that the et alement of £ is 1, we have
ey = WEKe+ by ERY
Thas, W; == ¢X s satisfies an AR{1) equation,
Wil = alb, L &,

with(d < 2 = 1,

We now develop a similar AR 1) equation for ARMA(p, ¢) processes. Begides stationarioyr
andinwextibifity of ¥;, we fuethet sssume that the characieristic polynomial for the antoregressive
part and the characieristic equation for the moving average part have ao commen roots. This is
2 quite natoral asswaption in order 1o have a unique causal representaiion of an ARMA process
F;. With the sarpe notation as in Section 2.1, we observe that

det(iSpeg — Fp) = det(nt, — FIAS.
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Therfore, the eigenvatues of 7y are the eigenvalues of F and g zeros. Henee, for ¢, = 0, we
gqtapuslmremgemallm this eigenvalue is A, as above. We take the same eigenvector & and
uhaemal:haicFu +aTF31 = lcfornﬂyq—dlmsnsmnalvﬁctmdas Fap=0md Fji =F. We

ﬁnddby golving the following {equivalent) equationy;
CFu+dFp=3d,  cplbg.... 00 +dFy=2d, AT —Fun)=cplé,.....0).

The solation is mpique siace, whenever 0 < 4 < 1, Al — Fy; is nonsingular (in fact, det{rf —
Fop) = &), Algo, it e be noted from the above eguations thai

Cpﬂq z‘:‘-dl.
epblgy e =Adpyr fori=1,...,9 -1
Henoe, cp8 + dy1 = Ady. Notice that, if 4y = —cp, then, from (3.1),
=aldy = oy,

"

(3.2)

= afd, — cp (Mgt + A%z + -+ 28778
= —cp(A? + 26, + A2+ + AT 18y).
This iinplies that
Catllly + My—1 + 3203+ - + A1 L AN =0
amd, since cp #£ 0, this means that & is a mnt of the chamctenstic polynomial of the moviag
average part a2 well. But, ;s £F); = AC, A is a0 eigenvalue of Fyy and 2 is also a rooi of the
characteristic pobyagenial of the autore gressive part. This is not possible under the assumption

that the antoregressive and moving average parts have no common roct. Hence, d; # —cp.
Now take 1

cp -y
with 4 as above and where g = {1/{cp + dg))é and dip = (1/lep + d.;}}t]". Then & is the
eigenvector comespoading to the eigenvalue . Hence, if we define Vy = ¢; Z;, then

] =

(, E) = {1, t_itm}.

- = - = - = -+ 3 c +
Virt = et = C1RpZy + Cidp = A6 Z + £ dq-?,r H = AV £ (3.3)

cp+ dy
Next we assume that §; has finite cxpectation and that
Eexp(uér) = exp{¥(u)} < oo forallu > 0.

The function +€u) = InE{z#;) is convex and is booaded by o linear foaction for small .
Define

1
@ty =3 v, xzO. (34)
k=
Then, @,{-) iz bounded on any finite interval and
g} = ga{ha) + o (u).
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Tn the case of a normal distribution, say & ~ N(x, o2,

Yi) = pa + o,

i)
Y

1-|:+l o u? e |
3T u| = Do.

) = I

MNow suppose that iu*= (F—ptlae. o 0, Ding) T is the initial vector with ¥, y_q, ...,
Y-pt1 Z b Let F; = 0{X,).=,. Following Novikov's construction (7], we define amartingale,
with respect to {¥;).

b - -
G, = fu w™femp(ud Zy) — exp(udy Zo)] expl—ga () da — rlog(%)
= fu u” [exp(u Vi) — exp(u Vo)) cxpl(—ps (u)) du — rlﬂgG),

whenever o
j; v LexpiudipXy — gal)) du < oo (3.5}

A proof of the martingate property of G(z) is given in Appendix B.
Theorem 3.1. Assume that

fm k Vexpluk — g () du < oo (3.6)
1

Jar any positive constant K. Then ET (0, 5) < o0 and

I
bog{l 3}

This thecrem is praved in Appendix B.

The above result is particularly uzefirl when the disturbance follows a nosmal distribution.
In that case, £, satisfiss the basic assumptions and the condition (3.6}, Thuy, for siationary and
imaertible Gaussian ARMA( g, g) ptocesses with no roots common to the aotoregressive and
moving average parts. E 7'(e, b is finite for any a, b such that b = y(—p+1), ..., ¥(D) = a.

Theorem 1.2, Assume that the autoregressive coefficients ¢y are ponnegative for j=1,...,
F—1and ;= 0 and that tha maving average cocfficients 6; ave nonnegative fori =1, ... . 4.
Furthermore, assume that

EFia, b)=

oo - -
E !ﬂ " exp(kT1 Z iz ) — explud) Zg)l exp(—gy tuyy du. (3.7}

(L)
f u”lexp(uk — @i(n)ydu < 00 (3.8)
1
Jor any pasitive constamt K. Then E T (b} < o0 and
_ 1 i 1 2 o7
T = i fn u~exp(uéi 27y - expué o)l pl-ma N du.  (3.9)
This result i proved in Appendix B.

Statippary AR( p) processes are important speciol cases. We can achieve similar results with
a slightly milder assumption.
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Theorem 1.3, Assurme fhat
= -+
f w L exptull|dhall — gaten)ydu < oo,
1

where by = (b V (—a). ..., b v (—a))T and IEFI = Imiyal + - + xpxgp | for X, § € B2,
Then ET (a, b) < oo and

1 = — -k 2
E7(a, b} = Togtl /) Efn " expluc X (o) — eXplreXp)] exp(—~ g (1)) du.

Thus, for stationary Ganssian AR(p) processes with positive ¢, E7 {@, D) is linite for any
abwihé> y(—p+ 1k ....y0) > a

Theorem 3.4, Assume that ike aworegressive coefficients ¢ ; are nonnegativefor j =1, ...,
P— 1 and ¢p = 0. Furihermors, assume that

f u‘lexp{u"cga—ml[u}]du < 00, (3.10)
!

where b= (5, ..., b)T. Then E T (b} = 00 zhd
1
log(1/4)

4. AR(p) processcs: an integral-equation approach
The main objective of this section is to derive integral equations for AR(p) processes that
Isad tor the evaluaiion of {i) the probability of crossing a given level b belore another given
level ¢ and (ii) the mean first-pussage time to attain a level . In our formmalation, we depend
heavily on the Markov patare ol (be state-space represeniation of the time series. The form of
the siate veciors of AR(p) processes means that the integral aquation is of Fredbolm type of
the second kind and cap be handled through developed numerical schemes,

4.]. Time-homoyeneous Markov processes
We define a discrete-time real-valwed Markov process { X, } ona peohahility space 52, F, £}
wiih staiionary continitous transition depsity f(x, ¥} continuoue in both x and y. The tarm
S (x, ) denotes the transition density of reaching y ar the next step given that the present state
15 x. Suppose that Xp = xp and that we are given levels b > g, where xg = [, §]. Define
Faixp) := Py ¥ ()
=Pa=X =bh....axX, 1 =b Xg=F| Xp=x5).

By looking af the first step and using the Markov property, we have, forn = 2,

o —+ —+
ET() = g fu w N lexpluiin X ) — explaioFo) | expl—py () .

tr
Plxp} = f Fn 1032 flxn, ¥} dy. (4.1}
Summing the terms Polxg) in (4.1) fora = 1 gives
b
Plxg) = f P{x}flxn, ¥)dy + Prlxph {4.2)
a

where P(x) i= 3 gv; Fy(x). The equation (4.23is a Fredholm integral cquation of the second
kind. The first concern is the existence and uniqueness of a solation io (4.2).
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Theorem 4.1. The equation (4.2) exhibits a unigue solution: e Cla, b given that
&
f Flx.yidy <1 forallx €[, 4] (4.3)
[T

Proof. By virtue of the contraction mapping theorem (Theorem 2.3), it suffices to show that
the integral operator A{P Hx) = _,‘:’ Pix} fi{x, ¥)dy hae operator norm Iess than I, Here we
use the supremtm notm in Cle, &), The condition is fulfilled wher: {4.3) holde.

Thus, solving (4.2) leads to the probability of crossing the level & before the lovel . To
formubate the result for mean frst-passage time to a given level, we fist have the following
wall-known result which we now frove i a new way.

Theorem 4.2 Under the condition {4.3), PUT, p(x0) < o0) = 1. Here Ty pixn) denotes the
exit e of the interval [a, b] provided that the Markov process defined in this section starts ot
e [a. b

Proof. ‘We can formulate an intzgral equation similar to (4.2) by replacing P by P and Py
by Py, where P'iag) = 3 poy Paéxpl and Piixe} =Pla = y1 = b....d = Y1 = b ad
Vo = B Or ¥y = 2 | Xy = xp). Thus,

b
P'ixg) = f P9} (xa. ¥) 63 + Plixo). @.4)

We see that P/(1g) = PUF, pixa? < oo). Itis clear that P'{-) = 1 saiisfies (4.4). So, by the
vniqueness of 3 continuons solution, the result follom.

Next define Mxp. 2) = ¥ o2, Pilap)z" where 0 < £ < L. Analogo to the formulation
of (4.2), we have

h
Mixg, 2) =zf My, 2) fixg, ) dy + 2P (xp). {#5)
[

Differentiating (4.3) with respect to » and evalnating at 7 = 1 give

b B
B{%; p(x0)) = j BT () £t 10) dia + f Meu, D f(r ey du+ Pi{mo).  (46)

on the right-hand side of (4.6} surn o 1. Thus,

|2
E(Tzplx)) = f E(Ta b)) f iz, w)du + 1. &N

Although, in general, we can only solve the integral equations numerically, there as some
special cases where the integral equations can be sclved analyticelly. Qoe of these cases was
addressed by Greanberg [6] whe nsed a Markov-chain appreximation to evalvate a kind of
mean level passage time. Tn his paper, the innovations follow a hyperexponential disteibution
which is useful as an approximation €2 other posftive disoributions (see [2]).
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4.2, AR(p) processes: level-crossing probability
On a probabitity space {22, ¥, £}, define an AR(pY process as in (1.2):

Ye=@¥i+--+9plept+5&.

where & are 1.14. random variables.

Hereafter, we will assume that & has N(O, %) distribution, but the results aiso hold for most
disturbances with a continuous density fanction safisfying certain conditions, Now, (1.2) haz a
state-Space representation

Y= Gir, te g,

Xy1=FE 4+ HE, 1€,

where X; = (¥ pit, ..., ;1Y) and F, G, H are as defined in Secticn 2.1.

Notice that the state vecter X; consists of exactly the past p states of the original process.
This is erucial for our integral equation to remain of Fredbolm type. Anelogous to the previous
gactim, we define, form = 1,

Palip) 1= P&P(g)
=P <y £b....a < -1 < b.yn > b | Xo = Tp),

where ¥g = (¥_p41. ... ¥-1.30) anda < y; <bfori =0,-1,...,—p+ 1. So,

L b fh {u — o)
Funtio = 7 [ a2 D
Whmi]_ = (}'—-—p‘-'-]-'r et B H]T aﬂd&; = [¢Pp nmay ¢1}T.

Define P(Xg, 7) = 3} 7, Po(¥p)z® for z € (G, 1}. Then, multiplying (4.8) by 2" and
samming over all # = 1, we pet

(4.8)

b 2
Plo,n = f P(il,z)mp(-%)du LA, (49)

The integral equation of the probability generating function wilt be nseful in determining the
mean first-passage time. For calcnlatiag the level-crossing probability, set z = 1 and repame
P(¥y, 1) as P(¥y). Then iterate (4.9) p times to get an inteeral equation of order p:

- 1 b B
me]:mj; L P{H1,H3,...,HP}

F - 7= b
o lepXi — @ixiag)
® HP(_EI ! pzu_g

£
)dup codug + Y PlEo), (4.10)

i=1

whece -i:ﬂ = [}'—F‘H' LRy }'ﬂ}.l: fl = {¥—pt2s -0 M “I]Ts J—:.? = {y—p+3« coas FUa M1, EE}TII
etc., and ep = (0, ..., 0, 1)7,

The equation (4.10) is & standard Fredholm integral equation of the second kind, The
existence and uniqueness of a continuows solution is puarantsad by the centraction mapping
thesrem because the kenel is just a p-dimensional Gavssian kernel and the integral is taken
OVCT 8 Compact sat
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4.3. AR(p] processes: mean first-passapc time

[ this subsection, we wanl to calculate E(Th(xp)), that s, the mean first-passage time over
a given level b of an AR(p) process starting at an intial state vector &g We proczed by adding
a lower boundary a first. Let B, p(Xp} he the first-passage time of an AR(p) process over the
vpper level b or the lower level a given the initial state vector Xp in fa, £]7, let

P =Y PE

Fmm]
and .
BB =Pa=y=zh..esvic1=sburboun<al|Xo=x).

Tn line with the arpument of Theorem 4.2, differentiating (4.97 with respect to 2 end evalvating
wr=1 EJVE

1 4 Fan ( — piig) Ly
b f P ”ﬂp(_%)dﬁmm. @.11)

From a result analogous to Theorem 4.2, we find that the last two terms on the sight-hand side
of (4.11) sum to 1. Thus,

. 1 b . — @Fp)?
(7, i) = —o— f E{?}m[xll,'lﬂp(——m o )du+l. 412
' [r]

Through iterating (4.11) p times a3 in the formulation of (4.10), we get a Fredbalm frtegral
equation of order p and we can caleulate E(F; 5 (%)) Tor any given a, & and initial gtare vector
X [a, B]F.

Since Lty »13n)) coaverges monotonically to E(¥p(¥g)) 28 @ — —oo, we can get an
approximation of E(75 (o)) by evaluatiug E{T; p{¥n)) as 4 — —o0 insteal

Notice that. under the suificient conditon (3.10) of Section 3, E(73{%a)) < co. Clearly, the
Chaussian kernel satisfies this condition,

4.4. Mumerical example: an AR{2) process
As shenwn in previous subsections, the deicrmination of P(xp) sl E{%; 3(Tp)) throngh
solving (4.11) and (4.)2) in general can only be treated numerically. In this subgection, we give

a numerical schete for an AR{2) Gaussian ptocess and some sumenical examples. Consider
the integral equation

bk Ak
f{x.y}zf f Kooy £ nFEmdEdy+Wix, ), ) € [ b) x 3, 5], (417

where the function £ : [a,#] — B is continuous and integrable with yespect to all variables
and the function © @ [#. 5] — R is continuous in both variables and is not identicaRy 0,
We adopt the Nystrdm sethod and a particular guadratute rule a5 discussed in Appendix C to
handle (4.13; (see [1] for details).

We stiuly un example of an AR{2) process:

=02y + 0352+ 5. & ~ M0, 1).
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TarLE 1: Probability of crossing kevel & before —1 for pp in {d.14).

=1 k=2 =1 Lk=4

05508 (2426 00343 00016
05311 02426 00343 0.0016
05913 024256 0.0M3 00015
05914 02426 DOMI 00014
Simpladon 0.3%12 0.2433 00352 D.0G1S

L B | A

TABLE 2: Miean first-passage e of level @ ot level b = 1 for y, in (4.15).
g==] g==2 a=-3 a=—-4 g=-5 g=-8 a=-T7T g=-R

34 52297 6579 6844 682R1 6BSGT 69731 11017
34 5234 6570 BTYT4 ABI41 AB2IR GLEISE £.8690
30420 52300 63745 67949 68035 68132 68197 68234
3t 322 65740 67936 68062 6BGBY 6.E125 6.8176
30426 52315 65740 6T9RY 43052 6.AD6E A.8004 6.E120
3042y 32006 63740 67931 680G 68059  GR070 G.BOEG
30427 52517 65M0 67920 68043 68051 68050 6.80T1
11 30427 52317 65740 67925 63041 68045 68053  6.8061
12 30427 5207 65740 67928 AAD4D 6.8043 63052 6.8054

S omes s ol B |2

We fusther assume that yg = (.5 and y_; = 0.5. We smdy the following cases:
(a) Fix ¢ = —1. We calculate the probabilifies of crossing a level b bafore a level o by

solying the following equation:
- L T2 (el — P
P(ig) = f f Py, uz) (— =L : )du d
nat J, [, TSR 20t st
a
+ 3 Py (4.14)
=1

‘We can use the nomerical methods discussed here to obtain the tesylts in Tohle 1.

{b) Mext we derive the mean first-passage time for v for two specific levels. We solve the
following equation, letting a — —cxs

. 1 b pF 2 o 3 2
ETap(R) = 7 f f BT b1, 29) oxp] — 2ot €2% = 9%i1) )duzdux
[ ) a

202
i b (1] — o)
+1+~.a"2_rra'.£; m(—T)du[. (4.15)

The rcsults for b == 1 are given in Table 2.

The mean first-passage time o thiy case is sbout 6.805 while the simwolalion resolt is
around 6.845.
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5. ARMA(1, 1) models

In previous sections, we mainly discussed the derivations for AR(p) processes where we
naturally used their Markov properties in the state-space representations and formed standard
Fredholm integral equations that can be solved. In this section, we will follow the same idea and
use the Markov aature of the state-space represcotations of the ARMA model to form similar
integral aquations. However, the integrai equations formed will not be of standard format
and will need further considerations in the numerical procedures. Moreover, we restrict the
discussions to the Ganssian ARMAC(E, 1) case to simplify the calculations, but the roain idea
can be applied to processes of nther types or with higher dimensions.

We pive the formuiations of the integral equations in Subsaction 5.1 and discuss the solv-
ability in Subsection 3.2. We then use the coilocation method introduced in Subsection 2.3 to
obtain numerical results for specific examples.

5.1. Formaulation of integral equations for level-crossing probabhilities

The process (v, ¢ € £} is said to be an ARMAL(], |} process if {y] is stationary and if, for
alls,
Y=gy 1+8z_1+u,

where {2,} are Lid. random vatiables. Here we assume that {z,} ~ N0, &2). This process has
the foillowing state-space reprasentation:

}’r': X.r-l_zh r Ez, {5.1}

Xy = ¢Xy + oz, te & (5.2)

Here ¥ = ¢ + @ and note that ¥ = 0 implies that ¥, = z;, which is an i.i.d case that we shall
not consider; we assume that ¥ > 0. We use the potation from Section 4.2 where

Brlxy) = P:'b{xl.] =Plasysh . .S 1580,k X1=x1),

w3
P(x1) = Pulx1).

A=l

Here the level-crossing probability is a function of the initial state variable x; in {5.1) and (5.2)
because that variable captures the nacessary initial information for the evolation of ¥y, ¥, . . ..
By considering the first step, using (5.1), the Markov property of (5.2) and a change of variables,
we get, forxy € IR,

Paxi}=Ple <y <h....,as 1= m>=>b | Xi=x)
1 whlg—ix) ( {xs — ,pxl}l)
&8y -5
v2inay Jpatig—vx 202y?

xPla<w<bh .. ...a€Wm-15hv>b|Xa=x3)dxz

1 FhLig=1In (X3 — x )2
f Pn—1tleﬂxp(";T¢,zl) dx;.

 VInow Jeorig-win
Sumuning for 2ll n > 1, we have
B+l (xp — ¢x1]2)
P{x)) = f P{xz}cxp(——-— da + Py (x4).
U Voo Jvars-m 20242
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TaBLE 3' Probabilities of crossing a Tevel b before .
n E=1 b=12 b=23 b=4

0.6081 0.3468 0.309% 02310
06111 03722 0.2351  0.1721
06130 03361 01206 0.0407
06136 02180 01048 0.0229
06135 03156 00357 0.0187
0.6134 03350 0.0880 0.0177

128 0.6134 03151 00677 0.0174

256 06134 03151 00876 00174
Simulation  0.6120 03148 0.1002 .0177

Eoo s

When ¢ < 0, we just interchange the Limits of the integral and evervthing else remains
wchanged. Next, letting ¥ = xz — (¢ — ¥)x|, we get the following integral equation with
constant limits that we are going to solve in later subsections:

¥h
~inoy Jya

5.2, Existence and uniqueness of a solution

Analogous to the AR(p) case, we prove the uniqueness of the salution for (5.3) in C(DY)
where I} is compact. Define the operator X, by

G — yxp)®

Pz} = Saty?

Ply+i(p~ *1'5')11}':1]1(*- )d}' + Prixp). {3.3)

L ¥
Togg b, TOF0- -a,ermexp(—

K f)ux) =

_ 2
w) dy. (5.4)

gﬂzﬁ.z
Theorem 5.1. The operator X\ defined in (5.4} iy compact in Cle, f] for some 8 > o,
The preot is given in Appendix B.
53. Numerical examples
In this subsaction, we use the collocation method described in Subsection 2.3 ko deal with
two ARMACL, 1) processes which correspond to the cases where # s positive and where # is
negative. The range [or, £] should be chosen according te the criteria established in Appendix D.
In these cases, all conditions in the theorems of Subsection 2.3 are satisfied and so we can

use (2.6) to approximate (2.5). In practice, we solve the following systemn of equations for
i=M01,... ., nandx; =o +ih:

1 e (> ~ ¥x)?
FPaixi) = N7 fﬂ 2 Pulx )iy + (¢~ ﬂf}ri}ﬂxp(—w)d.‘? + Py (x;).

After solving the values at the collocation nodes, we can approximate the whole solufion through
i24).

Sitnalation results are also provided for comparison.

Case L. Here we choose ¢ = 0.5, # = 0.4 and o = 1 as the process parameters and the lower
barrier & = {) and the initial state x| = 1. The results are given in Tabje 3,
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TanLE 4: Probahilities of crossing a level b before 0.
n b=1 b=21 b=3 b=4

05436 02239 0.0465 (.0043
04980 01952 0.0347  0.0027
05333 01757 0.0353 0.0020
05807 0.2417 00331  0.0018
0.6430 02407 00326 00017
0.6431 02406 00324 0.00117

128 0.6431 02406 00324 0.0017

256 0.6431 02406 00325 00017
Simulation 0.6445 (.2430 00325 0.0016

AN RN

Case 2. Here we choose ¢ = 00.5,6 = —0.4 and ¢ = 1 as the process parameters and the
lower barrier ¢ = 0 and the initial state x; = 1. The results are given in Table 4.

The result is quite satisfactory and a faster rate can be obtained if higher-order polynomials
are used in interpolations.

#. Conclusion and discossion

In this paper, we have proposed an integral-equation approach to evaluating the probability
of AR(p) and ARMAI(L, 1) processes crossing a level before another level and the mean
first-passage time to cross a level for AR(p) processes. We have also extended a martingale
approach, developed by Novikov [7] for autoregressive processes, to ARMA(p, g) processes
for a representation of the mean firsl-passage time. While time-series processes are commonly
used in modelling data such as exchange rate, GDP and unemployment rate, this type of level-
crossing probability is useful in making decisions where we have to weight the gain against the
loss with some threshold levels in mind.

Our method relies heavily on the Markov nature of the state-space representations of time-
series models. As discussed in [3]. any ARMA or ARIMA model can be represented as a
finite-dimensional model. Thus, the integral-equation approach can be extended to handle
more compiex time series. Of course, some conditions on the parameters will be needed as in
the ARMA(1, 1) case 10 make the integral equation solvable.

We further aim to develop a methodology for long-memory, ARFIMA(p, d, g), processes.
Since long-memory processes have infinite-dimensional state-space representations (see [4]
for details), we believe that, using a truncated state-space representation (as used in [4]), an
approximate level-crossing probability can be found and proved to converge as the dimension

tends to infinity. We intend to pursue this in future.
Appendix A. Characteristics of ¥ (-)
We first prove that yr({-) defined in Section 3 is convex. Forallx, y = 0and 0 < A < 1,
AP () 4 (1 = 39 (y) = LIn(Ee™1) + (1 — 1) In(Ee?)
= In(BEe* ) (E 1)1 2

> In(Eef1+1=2081y by Holder's inequality)
= Yr(Ax + (1 = A)y).
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Soyr(+) is convex. Next we show that ¥ () 15 bounded by a linear function foru < 1. Congider

v _ In{E &)
H e ]
= In[(B e*)!/¥]
<n(EeM} foru <1
= {1},

S0 yfr(x) is bounded by a linear function for ¥ < 1. The boundedness of ¢, {r) cotnes directly
from the definition and the above properties of ¥r{u).

Appendix B. Proofs

B.1. Proof of the martingale property of G,
We show that Gy s a martingale:

E(Gr1 | F1)

® - -+
- E[j; u*l[erp(ﬂléil Ze + l"'§I'+l‘:' - EI[I{HEI Zol “P{_'?J.(H]] dur ' 3_1]

~+ 1}@(%)

[#.7]
= L U [exp(uAfiZ, + Y()) — exp(uch Zo)] expl—-g ()} e — ¢t + 1) lng(i)

1 a]
= j; vl expturdi Z:) — expluddi Za)l expi—gy (a)) du — (f + 1) 105(%)

- f“ w~ expludi Zo - ¢alu)) — expadi Zo — @ (Au)] .
The last integral equals Yog A by the Frullani identity,

[m &
fu u [ flaw) ~ F(bu)]du = F(O)logibja), b>a=>0,

which holds whenever the function f is continuoas at 0 and [ 1~ f () du converges (see
[5] for detwils). Thus the result follows.

B.2. Proof of Theorem 3.1

Note that (3.6) implies (3.5). Hence, by Doob’s optional stopping theotem on mactingales,
(3.7} holds if 7 (a, b) is replaced by any bounded stopping time, say by T{a,b) A f. As
Zg = (Xo.0p)7,

E{T (a,8) A t}log(l/A)
=B j'; U exp(uty Zg (g pyne) — expludy Zo)l expl—pn(w)) du

4 &)
=E j{; i [explucroX 7 ez pyne + 410V ane) — exp(udioXo)] expl—s, (¥)) du.

(B.1)
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We intend to take the limit as f — oo and interchange the limit and integral using the dominated
canvergence theorem. Split the domain of the mtegrai on the right-hand side of (B.1) into the
sels {I < Tla, B} {T (@, b) < ¢, dipBriem < k@? + 1)~y and {T(a, B < ¢, dioVren >
k(u? + 1)1}, where & = 0. Then the right-hand side of (B.1) does not exceed the following
snim:

m L
f w = expGallZaoBall + 1K ) expl—ga ) die
L]
o 1 - ku W +
+ -{] u | expl ullcioballl + 2l — explucioXo) | exp{—galn))du

+E fu T @b e > bt + 1!
x [exp(ut|[Frball| + udioTra.m) — expluds Zo)I" expl—gi (o)) de.  (B.2)
Invertibility of the ARMA process implies that
3 I

dg + cp

where € = 3724 1¥;] < o0 and where the ; are such that £ = ;.:u ¥ ¥i—j.

By (3.6) and the boundedness of ¢ (-) (defined in (3.4)) on [0, 1], the first and second
integrals in the sum (B.2) are bounded and independent of . Denote the upper bound by ;.
Naow, for a stopping time 1 for X and for a nonnegative function f, observe that

diob: < Chy ==L = K say,

Al

E{fl&lﬂﬁr] 11'4:::} =g Z f':gl{lﬁ:} 1'r=i
=1
At

<BY f(d¥).

=1

The last inequality is valic@ as 1;—; < 1 and f is nonnegative. Now, using the above argoment
{which is similar to Wald's identity) the third integral in (B.2} can be bounded as follows:

Tia kst
E E f Ydyots = k(@ + 1)~ l}u"lg_'gﬂliﬁnball-f-uﬁmw _ uqun]+ =P} o
=l

< E{T (a, b) Af)f g El[c-f.mﬁq > ket + 1))
[0

x [e¥lIEsoballHudialy _ gutioKoptg=oati) 4

1. N o
+E) f W~ Elfdiobi > k(a® + 1)~ e Probolrudiot _ gatnlopte—n) g,
: L]

(8.3}

Lenting £ — oo, the above integrals decrease monotosically to zero by the dominated conver-
gence theorem, (3.1) and (3.6). So, by choosing & large enough, the valnes of the wntegrals in
(B.3) can be made arbitrarily smalil, say smaller than £ log(L/A) with ¢ < £ < 1 for the fimt.
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integral while the sum of integrals in the second term can be bounded by a constant 5. So,
from (B.1), (B.2) and the above,

B(7 (a, b) A HHlog(1/3) < C‘l +C

This implies that ET {g. F) « oo simply by Fatou’s lenuma. Using a similar argument for
T (a, b) as is done above for F (a, b} A 1. we obtain that

oo - =
E j; u explud Zq (g b)) — expluci Zg)] exp(—@, (1) de < 00. (B.4)

In addition to the ittegrand of (B .4}, which acts a5 an upper bound, we also nead a lower bound
to apply the dominated convergence thecrem in {B.1). To find this, note that

oo - —
fu u~Mexputs Zo) — exp(ués 2 (o, 530neY] €XP(—3 G6)) dhi
m -+
< f; u™ exp{ (&1 Zg) — o5 ()] du
1 - - -
+ fu L expl(d1Zp) — @3 ()]0 — expl—sill&1(Zy @ paar — Zo)I]) o
o0

Ef u~) expl(uiy Zo) — )] du
1

+ sup expl(uf1Zg) — ¢, () N ZT @3 — ZODII

0=p=1
Sm Eli{ = ltalzﬁ + EE:], J"I_iEiv

Tia.knt

11 Zr @ myne — E1Zoll < e Zoll + D &L
i=0

Also, since E T (g, b) < o0 and by Wald's identity,
E 161 Zyta.61n — S1Z0fll < 0.
With the upper and lower bounds, we have (3.7} by the dominated convergence theorem.

B.3. Proof of Theorem 3.2

For ae ARMA( p, ¢) process satisfying the state-space representation (2.2), if we assume that
¢p > Dand 1. ..., Pp—1 = 0, then the coefficicnt matrix F is nonnegative and nonsingular,
As 2 resalt of the Perron-—Frobenius theotem, F7 possesses a largest real positive eigenvalue
A and that corresponds to a real positive eigenvector ¢, We further notice that 0 < A < 1by
stationarity. Again, from (3.2} it is clear that, if ¢ and ¢ are nonnegative and A > 0, then 4 is
also nonnegative. In fact, if A > 0. then 4 is positive as cp > 0. So we can rewrite (2.2) as:

- - = — =+
A Zim =1 FaZ; + 181

Asin (3.3), ) )
12yt = A1 2y + &4 {B.5)

Thus, V; := &, 2, satisfies an AR(1) equation with0 < 4 < I,
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Now we mimic the the proof of Theorem 3.1, but with a variation, to give the upper and
lower bounds For the right-hand side of (B.6) below.

Note that (3.8) implies (3.5}, Hence, by Doob’s optional stopping theotem on a martingale,
(3.9 holds if 7 (b} is replaced by any bounded stopping time, say by 7(b) ~ #. 50,

o —+ —
E(ribtar)logil/i)y=E f el [exp(uc1 Zy gy ap) — exp(udy ZoY] exp{—i (k) du. (B.6)
0

We intend to take the limit as ¢ — oo and interchange the limit and integral by the dominated
convergence theorem. Split the domain of the integral on the right-hand side of (B.6) into the
sets

{t « T},
(78 = 1. dioBrey < K@+ 1)}
and
[TB) = t, diplre > k@ + 1)1},
where X = 0. Then the right-hand side of (B.6) does not exceed the following sum:

o — -
f u [exp(ud b + uK — exp(ud| ZyY] exp{—e, (u)) du
0

= 1 Y - ku 4 = +
+ f W [cxp(ur:mb + oy 1) — Exp{unzu}] exp{— (1)) due
A Z
o -+
+E f LT () < £, drobran > k@ + 1y~
o

% [expludioh + udioTs ) — explué Zn)] T exp(—gpy, (1)) du. B.7

Here, X is derived as in the proof of Theorem 3.1. By (3.8) and the boundedness of ¢, (-) on
{0, 1], the first and secomd integrals of {B.7) are bounded and independent of . Denote the
upper bound by ;. Now, using Wald's identity, the third integral of {(B.7} can be bounded as
follows:;
Fibpnt oy 4 o =
E E f l{élﬂﬁi - k(.ﬂl + 1]-1 }u—l[eHE]Hud'mﬁi '-EHE] Z'u]-l-e-'?’.iful du
0

20 . - =
< E(T () A1) f & VEYdiody, > k(? 4 1) et un _ guaZarre i) gy
a

-1 e o . = s
+B) f wl EHdiols > ktu? + 171 j[elFoblitudion _ geérZoyte—m) gy, (B.8)
0

i=1

Letting & — oo, the above integrals decrease monotomically to zerc by the dominated comver-
gence theorem, (B.5) and (3.8). So. by choosing k large anough, the values of the integrals
on the right-hand side of (B.8) can be made arbitrarily small, say smaller than £ Iog(1/x) with
0 < g <« [ for the first integral while the sum of integrals in the second term can be bonnded
by a constant 3. So,

1+ Gy

E(T () A 1) log(1/A) < ———

= 0Q
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'This implies that B 7" {h) < oo simply by Fatou’s lemms, Similarly,

e - o
E j; u™ ! [exp(ut1 Zye) — expludy Zo)) exp(~¢x () du < oo. (B.9)

In addition to the integrand of (B.%), which acts as an upper bound, we afso need a lower bound
to apply the dominated convergence theorem in {B.6). To find this, note that

o - 4 o=
fﬂ oot Zo) — expleét 2 tsyne)] eXD(— g (1))

m -p
< fl u* expl(ud 20} — ga )1

+ sup expl(uéi Ze) — e @OMEZrmar — Zo)ll.

D=a=i
Since & Z, = A'& Zp + 31 A VA,

Fibdnr
Wer Zg-gane — €120 < ME Zoll + D 1%
=0

Sitee ET () < oo and by Wald’s identity,
E Né1Zrmar — 120l < 0.

‘With these upper and lower bounds, we obtain (3.9) by the dominated convergence theorem.

B.A4. Proof of Theorem 5.1

In (5.4), we see that there is a shifl in the argument of £ in the integrand that may stop us from
defining £ just inside a compact interval. However, if the dornain of f is chosen suitably, this
pohlem can be avoided. For any nenzero values of ., we can show that a sufficient condition
for comsidering f just on [, £l is that —1 < & < 1 and that [, B] be sufficiently large (see
Appendix D).

Now, with —1 < ¢ < | and [e, 8] large encugh as mentioned above, we can show that 2
wnique solution of (5.3) exists in Cle, 8]. First we observe that X in (5.4) is a linear operator
om the Banach space C[a, #] equipped with the supremum norm. Next we see that this operator
has nomm less than 1 once [, b] is a proper subset of K. 8o, by the contraction mapping theoren:
{Theorem 2.3), we know that a vnique solution exists for (5.3). Moreover, X is a compact
operater on Cla, 8. To justify this fact, we know from the Arzela-Ascoli theorem thut any
subsct § C C(D} has compact closure if (i) 4 is a oniformly hounded set of fonctions and (ii)
4 is an eguicontinuons family. Now consider the set

S={H1f| feCiD),lfle =1}

S0, by Definition 2,1, we just have to show that § satisfies (i} and (ii). Firstly, 4 is unformiy
boutided as the norm of &) < L. Secondly, let x, s € [e, £] and, for convenience, let x > §
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and g — Y > 0. Asx — 5,
| F1 f(x) =~ K fs)

Wb S
\,ﬂla = [ s @ exp(—w-) dy

1 v - 2
i [ 10l )

yhtip - iz - ¢x}2)
-1
j;.::+i¢-—1ﬁ'1r flzyenp ( 2oyl

Frh =gt le (z — ¢,3)2) ’
- expl — ———— | dz
Laﬂé-yﬁ‘]x fiz) ( 202yl

Wb (s {z_(ble) ( (z_¢s}2)] |
f-;mwp—ﬁs f{z][exp( 2042 L = a

wb+ip—yriz (z— d,x}Z) i
Ity ¥
LH@—W e ex?( 20292}

I
V2may

=

1
JIimay

1
V2roy

1 wa+ig—yx {z — $x)?
Iz ‘Lﬂ+{¢—1ﬁr}s @ exp(— 26242 ) dzl

1 [ aat it 21 (z — dx)? (z — ¢)?
“"(”W) N ““P(‘W)

V2ray Sparig—vs
{z — ¢x)?
EXpL — W

| f’ﬁfﬂm-#r}x
(z — ¢x)?
""‘P(‘ 20247 )

=

+

+

=

dz

+ dz

o 2y Jybtip—iis

i f\hrH g

" N2roy

dz since § fllec < 1.
YatHp—vs

Since the kernels are continuous and x, s were ¢hosen frotn a compact set, this wpper bound
converges to 0 as x tends te 5. As the convergence rate is independent of f and by uniform
coetinuity, we esiablished the equicontinnity of §. Thus, by the Azeld-Ascoli thecrem, the

operator J(; is compact. A similar argument holds when ¢ — ¥ < 0.

Appendix C. Numerical Integration over triangles

The background material in this appendix is mainly taken from [1]). The fust step of
the numerical scheme is to divide the domain of iategration mto small triangles and apply
a quadrature rule t perforn nomerical integration. Since our domain here is simply the square
[a. b1 [a. ], wenaturally divide it into 2#° triangles as in Figure 1 (with# = 2 as anexampls).

Suppose that A is one such triaagle, with vertices vy, w1, v3. Introduce the unit simplex

o= [{sn|stx=bs+r <1}
Define a one-to-one and onte mapping T : & — A by

Tis, t) = (1 —5—=Hv + tvg 4+ 5nn.
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{a, b) _i{b, b)

{a, a) (b, a)

FIGURE 1: The square fa, b] x [a. b] divided into 8 = 2 x 2?2 triangles.

Through the change of variables (x, ¥) = T'(s, 1}, we have
Lg(x_y}dxﬂy =2mﬂa{ﬁ)f g(T (s, ))ds,
i

where the function g : [, B]* — R is continuous and integrable, We can thus use schemes
developed on the vnit sitaplex to do the mumerical integrations on the trisangle A, The quadrature
vule used here is a seven-point formmla provided in [1]:

[ esnde ~ Fedh, D+ 120.0+ 50,1 + ¢t 0
+ 5[0, )+ (3. D) + g}, 0. (€.

This rule has degree of precision equal to 3, Le. there is no error if ¢ is a polynomial of degree
no greater than 3, and it can be derived using the method of undetermined coefficicnts. When
it is used in the composite foxnaula, the nodes from adjacent triangles overlap. Thus, the total
number of intepration nodes will be 6r? + 4n + 1 insteast of 1452,

Suppose that X ¢x, y, £, n} is continuous over [a, ] x [, #] and that we use the composite
numerical integration rale {C.1}, which can be written as

T
f gis, N de ~ Y wiglui), (C.2)

f=l

where ju; € {(3. 1), (0.0). (0. 1. (1,0, @ §). (3, §). (3, 00} amd w; € {ff. 5. {5} is the
cotresponding coefficient. We can now approximate the integral in (4.13) by

b b 2n? 7
[ [ KGostmrematan=2Y meatsn Y- wikia, v. T (Tets)
4 va wel

i=1

xx Emjﬂ’{x,}-‘. Er ) F&j. 1),

j=I

where T; = T 1 & — A, m = 6n° + dn + 1 and wy is the weight of the jth node. Thus, the
integral equation ¢4.13) can be approximated by

LN =3 e Ko Enndfaongy =Py, () €la, 8] % [a.8]. (€3}

=
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We can then evaluate the values of f; on the node points by solving the following system of
linear equations:

Fulbiom) =Y @R &) fallyom) = W), i=1,...m
jml

Finally, we can use the Nysirdm interpolation formula to obtain the remaining values of f, on
[a, 8] x [a. b):

Jalx, ¥) = Eﬂ-*jfiix. Y. &3, ) fa 8y 71y + Wix, ).
=1

We state the following theorem (from [1]) to justify the convergence of f, to f and to calculate
the rate of convergence.

Theorem C.1. Let R be a polygonal region in R® and let | T} be a sequence of triangulations
of R. Let

fy ;= m diameter{sg] — O
ni= X (A)

and assume that 8y — O asn — 0. Assupte that the integral equation {1 — J)f = W
is uniquely sofvable for ¥ € C(R), with X a compact operator on C(R). Assume that the
integration formula {C.2) has degree of precision d = 0.,

(a) For all sufficiently large n, sayn = N. the upproximating equanion(C.3) isuniguely solvable,
and the inverses (1 — Ko )1 are uniformly bounded on C(R). For the errorin f,

F=F=0-=Xy"(Kf— K
ird fo —> fasn-— oo
MY IFK(x, v, ) € CIHHYR) for all (x, ¥) € R, and f € CYI(R), then
If — fabe s e85 nz N
The proof is omitted here; the interested reader can consult the reference [1]. Note that the
quadrature formula (C.1) we used is of precision 4 = 3, 50 the rate of convergence is O(r—%).
Appendix D, Sufficient condition for (5.3} to have & unique solufion

Por fixed a. & we want to make sure that (5.3} can be solved uniquely in C(D?), where I} i3
a compact interval.

Case 1. ¥ > 0,8 <« 0. We want
Ya—Pfo > and yPb-—88 <5,

in other words,
Ya=il+8)a and ¢b=<{1+8)4,
which is the case if and only if
Wra Wb
—_— —-1.
asrg W Azyey Hes

Thus, if 0 > & > —] and @ is chosen sufficiently small and £ sefficiently large, we can
goarantee that the argument inside f will fall in [o, 81,
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Case 2. 1 > (0,8 > 0. We want

Ya—68=a and ¥b—O0a=p,
which is the case if and only if

Yo>o+88 and b <840
So,if § < 1, we choose o = —$ and the above inequalities becoine

Yaz={@-1F ad ¥b=(1-8).

Thus, § can be chosen large to satisfy the inequalities.
In the cases where W < 0, the proof is similar.
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