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SUMMARY. A lower byand to the loosl asymptotic minimax riek is pbtained for o family
of non-regular cases uaing the notion of hmiting experivente. A locally saymptotiosdly minimax
esbimator is snggested peing this bound.  Alsp $he saymptotie properties of mpximmm praba-
bility estimator (for O-F losa funotien) and Bayes sstimators are etadied.

1. ISTRODUCTION
Lt {£,( -, ) (n 22 1) be a fumily of densities depunding on a parameter
# taksing valucs in € whore O is an open subset of the real line 8.  Qur problem
is to estimate 4 efficiently. Let {7} be a sequence of estimators of 8. Hajek
(1972) conmidered the quantity
B, (T.)= lim lm B EE'I L E (T —&)] (1.1)
Fmr0 83w (B =81 <3
a3 & measure of the asymptotic perforimance at @ {gee Ghoah, 1985), where L
is an appropriate loss function and XK, {71 co) ia the normalizing factor (see
Weiss end Wolfowitz, 1974) for the given family of distributiona (for the ammal
ragnlar oases A = 4/n). An estimator minimizing (1.1) can thns be consi-
dered aas an efficient estimator. For regular cases a lower bound to the Jocal
asymptotic (maximum) risk {1.1} was estublished in Hajek (1972). Tt is also
proved that the maximum likelihood estimator and Bayes cstimators aftain
this lower bound under certain regularity assmmptions (see, for example,
Ibragimov sund Hasminskil, 1981). In this papsr, we consider the non- L1
chsiea where the support of the density depends on the paremeter 7. We,
however, consider & variant of {1.1) :

pll. (T )= lim lim sup By L{E(T,—6']
A =30 By o Iﬂ’-ﬂl{-ﬁix;l

#3 the asymptotic performance criterion following Fabian and Hannan (1882)
and Millar (1983). Thus, an estimator T, for which the local saymptotic risk

AMS (1985) subjost olssaification : Primary 62Fi2 | Secondary 82020,

Koy wards and pheoses . Looel asymptotie minimax visk, lower bound, tocally seymapbati-
cally minimax estimetor, converganse of oxparivasnts, convolobicn theorem, nonTogular elogses
of denaiting,
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p(6, {T}) (with lim replaced by lim) is squal to the local asymptotic minimax
(LAM) risk

pl) = lim lim inf sup  Hp LIET,— )]
A—pe a2 Ty |8-0 45t

may be congidered as an efficient estimator. In Section 2 of this paper &
lowor bound to the LAM risk is obtained for a general class of denaities admi-
tting certain local asymptotio expansion of the likelihood ratio. The same
bound was obtaired in Thragimov and Hasminskii (1981, Ch. V) using some
other approach. We here usc the regults of Millar (1933) to get a sequence of
experiments converging o some exponential ghift experiment and then obtein
the lower bound nsing the Hajek-Le Cam asympiotio minimax theorerm (Millar,
1083). An estimator is anggested in Section 2 which is shown to be efficient
in the above sense. A convolution theorem which gives the decomposition
of the limiting distribution of a sequence of estimators is also proved using the
notion of convergence of experiments, In Section 3 we consider specific non-
regular eases. It is shown that the conditions of the theorems of Section 2
hold for these non-regunlar casss and hence the estimator suggested in Section 2
is efficient. In Sockions 4 and 5 the asymptotic behaviour of the maximum
probability estimatory and the Bayes estimabors are stndied for ihe family
of non-regular cases considersd in Section 3 and it is shown that these esti-
wmatora are efficient ander rertain conditions.

2, LAM ESTIMATION UNDER AN ASYMPTOTIC EXPANSION OF
LIERELTHOOD RATIO

2.1 Umuergence of experiments assuming asymplolic expansion.
Lot {(20%, A4%), P}; 6¢®),n 2 1, be o sequence of statistical experiments,
where @ is an Dpen subaet of the meal line R. Let 4P% zde“ denots the

derivative of the absolutely continuous component of P 6, With respect to Fy .

Fix 6, c®. We assume that efther of the follﬂwm.g two conditions
holds a.e. P{:o].

Condition (A1): For any A > 0 sud some sequemce K, T 40,

‘ +1,.ch {Bx_p {2 Ay () +en(d, Ol i H(Zn—8p) > A - (2.0}

if K (5, —85) < A,
wheve A6} convergea in P} -probability to offfy) for some offl) > 0,
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¢y converges in P§ —probability to zero end Z, is a random variable which
does not depend on &, and for which

lim Pg(K,(Zy—b) > 1) = ¢ 0 for all # 3 0.

R O

Oondition (42) : For any A < 0 and some sequence K, 1 oo,

AP [ exp (A AYO 632, Oa)}, iF K (Zo—0) < A

fot2Ep (2.2)
fo I 0, if K, (Z8—8) > 24

where Aj(6,} converges in P} -probability to ¢*(6,) for some ¢*{f,) << 0, €
converges in P} —probability ta zero and Z7 is & random variable which does
not depend on &, and sabisfiea

Hm Py (K (Zo—0) < t) = ¢ forall ¢ < 0,
-

We now define experimenta

]
B = (Pr A Qad B = (P A On L.

Let @ 18, (A > 0) denote a probahility an B with density

Q, for e < A,
and Q:I,“ (A £ 0} denote a probability on R with density

eff) ¢ P forx s A
1,5, () =

e VN prz < A,
=
?;mu( ) { ? forz > A
Then we have the following result

Theorem 1: (§} Under condition (Al) the sequence of experimenis Bo
conperges to £ = {Q, 1 A » 0}.

(&) Under condition (A2) fhe sequence of experiments E'nmm'ym o
B ={Qy:A < 0

(We write just @, and @) in place of Q‘.ﬂo and @;-sn]r

Proof : 'We will give the proof for esse (i) only. The proof of cage (is) is
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ot =

u[,+:ur1

1t is given that for all A > 0,

dQe exp(¥,) on B,
L 0, otherwise,

where Y:—np- Ae{0y) and Q3(B,)— exp(—Ae(0,)) aa m— ao. 'This gives us
Q3 o ol 5 |

a3

Since E%(“-) =1, by & result on contignity {referred to as Le Cam’s lat

lemma, in Hajek and Sidak (1967)) it follows that Q% is contiguous to {3 for
all A 20,

Further, using the esymptotic expansion (2.1) again we can prove that

for 0 5 Ay <C Ay <7 .o < Ay,
DB e TP WY P B e
d@: 1 dQB » dQﬁ 1] d‘gﬂ ? d@q A s JQ“

Hence by proposition I1.2.3 of Millar (1983} the theorem iz proved.

Zemark 1.1 : Contiguity plays an important role in the proof of the
above therem. Millar’s results cannot be applied i {P:u +m;'1} in not conti-
guous to {Pgo} and 1% iz usually very difficalt fo zolve the problem if contignity
does not hold. In the proof of the above theorem we have scen that condi-
tion (41} implies contignity. Now suppose (2.1) holds for all A 3 0 where
A (B} and ¢, ere as in condition (A1) and Z, is a seqnence of random variables
auch that L{K _(Z,—6,) rPgﬂ} converged weakly to some arbitrary disteibution.
Then to have contiguity we must have

Qo).

lim P} (K (Zy—08) > 1) = "% for all ¢ 3 0.

L ¥ -]
This follows from a reault on contiguity,
Bemark 1.2: If condition {41) is replaced by the following stronger
oondition :
{A1)* For any real @ and v sueh that « <C »

a7 -1 exp [(ﬂ_ﬁ-} 'h'n[&ﬁ}—{-sn}# if Eﬂ{zﬂ-—ﬂﬂ] =
_ St
JP:MI ﬂr ﬂthm,
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where A6, and ¢, are ag in {41) but the convergence is with respeet 10
P: —-— and Z, 15 such that

o
—(e—aoidp)
P:n"'“xil [KfZy—8) > v]—>e o .
then proceeding as above the ssquence of experiments {P‘;”Ax;l, A s R} may

be shown to bo converging to the experiment {@,, A s R}.

From now onwards, wa will consider only the casa where condition {41)
is satisfied, The treatment for the case where oondition {42) holds is similar
with obvious modifications,

2.2 Lower bound for asymplolic risk and an cfficiend eslimalor, In this
gection we obtain a lower bound to the local asymptotic minimax riek using
Theorem 1 and the Hajek-Te Cam ssymptotic minimax theorem (see Millar
(1983), Ch. III).

Definition : A losg function of the form IL(B, 4) = L{f—«) is said to be
subconvex if I satisfies the following conditions :

(£ L{x) 2 0 for all =,
(i) Lix) = I{—z) for all z,
{i%) {x : L{z) < ¢} is closed and convex for all ¢ = 0.
All the loss functions considered in this paper will be assumed to be enbeonvex.,
Lemma 1: Under asswmption (A1), for any subtonvex loss function L,

m bLim in B LK (T —6 ; 8, 4) ... (2.8
Lo G n',,fm-aﬁm;l eL[H (T, llksffﬂ;ﬂmﬂi ) e (2.8)
where the infimum in left hand side iz over all estimators T, of 0, the infimum in
right hond eide is over all randomized (Markov kernel) procedures for the experi-
ment B with decision space az B and parameter space ae [0, w0) and B($, A) s
the risk of the procedure & at A with loss funciion L.

Proof 1 The proof is similar to that of Theorem VII .2.6 of Millar (1983).
We uso Thoorem 1 and the nsymptotic minimax theorem. The infimmm in
the right hand side of (2.3) may be taken over all Markov kernels (iransition
probabilities) because in the decision theoretic structure for the limiting
exporiment all gemeralized procedures (see Millar (1983), Ch.ll) are given by
Markov Kernels.
43-13
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We will now sompute the minimax rigk given in the right hand side of
{2.3}. Wo will use a well-known technique of finding minimax risk

We assmme that

C{i) EGHL{X—-II) == | Liz—a)Q.(=) exists and i3 fintte for some « and
there exigte b = b(f,) such that

E%L{X—b[ﬂu]] = i‘.:.f EGUL{I—Q:} = Rﬂ,,: BAY.
{{ii} For evary e > 0, there exisis ¥ >~ 0 anch that for all u e R,

N
&f L(z—g) dQy(z) > Ry —s.
fiit) p{f) is & eontinnows function of #.

Lemma 2: For any subconvex loss funchion safisfiring condilions O(8) ond
C'lid), we have

sup B, A) = { Liz—blay))cB,)e """ de
ey & L]

where the minimax risk i the left hand sids iz as described in Lemma I,

Progf : Woe shall exhibit & secquence 7ar of prior distributions on [0, oo)
and show thatb

lim inf r{3,7a) > B, e {24)

M—sm &

where the infimum in the left hand side is over all randomized (Markov kernel)
procedures and r (3, 73r) is tho Bayes risk of & with respeet to the prior 7ar-

We choose 73 a8 the uniform distribution over the interval (0, ). Lst
N

€ > 0 and ¥ be such that [ L{z—a) d@,(z) > R,ﬂ—-e for all . Proceeding
1]

ad in Ferguson {1967, Section 4.6, p. 172) weo can prove that for any M > N
and any nonrandomized decision rule 4,

{8, 7o) 3 (By,—¢) Tt

Therefore for eny M = N, v(8, 1a1) 2 {Rgﬁ—w] M;fﬂ for all “randomized’

procedures & which are probabilities over the apace of nonrandomized decigion
rules. This proves {2.4) naing a result on equivalence of two methods of rando-
mization (see, for example, Wald and Wolfowits, 1951). Since X—5b(8,) s
an equalizer rule with constant rigk B, , the lemma is proved.
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Now, from Lemma 1 snd Lemme 2 we get the following resnlt :
Theoremn 2 : Under assumption (A1), for any subconves lose funclion L
satisfying OF) and O(i),
tm Gm o inf s BLIET,—6)

d=® iow To |0-6] < axg

> :f Liz—b{y)) o{fy) & 0 .

Remark : To prave Theorem 2 we need not assnme that Z, (in
Condition (A1)) is independent of &, Indeed, we may replace the aet

{K(2,—0) >a} by {r, > A}, where 7_ i3 a random variable such that
m P} (r,>8=¢ 0
o

Qur problem is now to gearch for an estimator &, for which

lim  lm inf  sup  EL[K,(T,—6))
4—=w t—vram Ty {0—B,) < At

for all ¢ = 0.

o (25)
= lim lim sup B LK 8, —6)] for all 8, ¢ @ J
A9 w 2da 16-01QpTt

Definition :  An estimator 8, for which (2.5) holds is said to be a locally
sdympiotically minimax (LAM) estimator of £.
It follows from Theorsm 2 that an estimator § for which
lim lim sup B LK (0,—6)]
d-dw n—= IB—-ﬁul“:AE:I

= f Liz—blgy) clog) e " dx

is a Jocally asymptotically minimax estimator.

Lot us now consider the case for which condition (41) is satisfied for all
0y e@. Condition (41) ensures the existence of a seqnence of statisbios Z,
for which X (Z,—#,) converges in distribution {(under P‘.‘a} to » random
variable X with distribution g,

Defimition : A sequence of estimators T', is said to be regular at 8,68 if
for somo probability distribution &,

o {En[mnﬁ&ﬂ'wﬂ-i) | P

= ~
a,,i-u;‘} ¢ a8 7 o0

uniformly in {[A} & ¢} for any ¢ > 0,
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Theorem 8 :  Suppose condition (A1) holds for all &, ¢ © and the sequence
of sbubistics Z_ is regulor al all values 8, in Q.

Het § =2z —Epib(Z,)
Thet the following vesults hold :

(() For any bounded subconver losz funclion safisfying econditions
C), Oliid) (condition CUit} is sutiafled for bounded Toss functon) 8, ia LAM,

(i) Suppose that for some r > 0,

im  bim sup B, K, @0 < w o (2.6)
Ad—pm A= (08| g 4x 2

Jor all B,e@. Then for any subconvexr loss funchion L salisfying condilioms
Clg), O32) and Ofdi), for which

Liuw) & B(1+ul*) for all u e R, for some B > 0 and 0 < 8 << v,
e z B LK (0,—8
im Ui K {¢,—
4= nilrmm lﬂ_ﬁu??ml GL[ { }]

= [ Lle—b{E,NdQ, for all 0,e ©
and hence §_ is LAM.

Proof : Fix 420, Under the conditions of the thecrem, for BILy
G,¢® and for any sequence {f,} satisfying |K_(6,—8,)] < 4

LI (Z,—0)P5 } = @y
Sines b(8) is continnouain 8, 5(Z,) convorges in Pg -prohability to 3(6;). Thus,
LB 0,01 P5) = 0 {X—b(6,),
where X ig 5 random variable with distribution Qn.‘u.
We shall now prove that
ALK (8,001 P}} = LLX~b(G)). e {27

Take any ¢ » 0. By = {r: L(x) < £} i3 closed convex subset of R. Since
the Lebeague measmre of the boundary of any convex set is zero, B is . condi-
naity set with respect to the distribution of X —5(6,) and we have

lim P§ (L[K,P,~8,3] < t) = lim P}IK,{#,—6,)eB)
Rt Fhr} a0 n

= Qyffe () ¢ BY
= @y, [z : Liz—b(B) < 1.
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Hence (2.7) is proved.

Now km  wop  EL{Ku8,—6)]
b |0—By| £ AK;]

= lim &, LIK (8.6,
3o n

for gome sequence {@,} satisfying |K (7 —0,)] < 4. The proof of the 1t
part of the theorem is now obvious. We will now prove the 2nd part of the
theorem, We are given that

Lim B, | K, (§,—8,)|7 < .
LB 2] 4

Since L{u) & B{14 |u|%) for all uwe B, there exigts e 0 such thet for
gome B, By > 0,

[L{iu)'+* < B, -8B, |«|f for all w e R.

Therefore we have
lim Eg IL[En(aﬂ_ﬁn}] |1+5 Q Bl'!'Bﬂ Lim Eﬂ lEﬂ{ﬂﬂ_aﬂj |r < @,
Apm N Rep M

Thie together with (2.7) proves the theorsm.

Remark 3.1 : Tari (3} of Theorem 3 holds for any sequence of regolar
eatimatora En for which K (#,—8,) converges in distribution (under P;‘n] to
X—bi{lg) (X ~ @) Tor all §; ¢ 0O,

Remark 3.2 : It is intoresting to nots that condition (A1) itself implies
that for all A > 0

A Ep(Z,—0y—AETY) |y s gh= Do - (2.8)

This follows from the fact that P:u+ — is contiguous to Phe. Similarly

conditior {Al1)* implies ‘that (2.8} holds for all real A, Moreover, under uni-
form versions of conditions (Al) and (Al}*, where the convergenoe of e, are
uniform in A and (¥, ¢) belonging to compact sets, the convergence (2.8) may
be shown to be uniform for all A in compach sets.

Remark 3.3: The LAM estimator here depends on the loss function
chosen whereas in the regular ease it is possible to find LAM estimetors not
dapending on the loas funchion.

2.8 A convolwlion theoresn : We ghall now try o characterize the class
of posgible limiting distributions of appropristely normalized eetimators.
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We ghall consider only the class of estimators ', (which includes all regular
estimatora} for which

.e{ E,,(T,,—ﬂu—m;lnp:om;l} =@ forall A0 .. {2.8)

where 7 is some probability distribution not depending on A,

Theorem 4 : Suppose condition (A1) holds. Then for any estimator T,
subtsfying (2.9) the limiting distribution & of K_(T,—6,) wnder P i3 a convolu-
]

tHom of @, and some probability distribution p depending on {1} :
= G, »p.

To prove Theorem 4, we shall use a slightly different version of Miliar's
Convolution Theorem (Theorem ITL.2.1¢ in Millar, 1983} which we state

and prove below (For an, alternative proof of Theorem 4 gee Ibragimov and
Haaminsgkii, 1981, Ch. V.).

Theorem (Millar) : Let Ev = {{S», g, 07, A > 0L n > 1, & ={R, 8,
@1, A > O} be afatistionl exmperiments (43 denolos the Borel ofield on R). desume

B8 converges o B. Suppose B, i3 n sequence of slatistics on (S®, g%} iaking
values in B,  Assume further

(¢} there i3 a family of probabilities {€,, A » 0} on (R, &) such fhai
for each A > 0,

'E{Rﬂ:.! Q:} = Gl'

(i) € is concentrated on R and iz absolutely continucus with respest
to Lebesque measure. Also the number 0 belongs to the support of Q.

(#) Qufd) = @A), G)(4) = GfA—XN) for all A > 0 and all 4 ¢ 4.
Ther there +2 o probability g on R such that
Gy = gy » .

Proof : TProceeding as in the proof given in Millar {1088) we can geb &
Markov kernel K of ( B,4&)/(R,4) such that for every ¢ > 0 and A ¢ &

K(z,d} = K{z+-g, A+g) 2e. 20
and alao ¥, = K@, for all A 3 0,
Therefore, by Fubini’s fheorem there exizts & null set N such that

for ¢ N, 2 > 0, {K(x, 4) = K{a+g, Ad+qi forall 4 ¢ A8 ae. g0
We now choose a sequemoe &, | 0,2, & N¢ for all »,
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For all % z» 1, there iv & null set N, such that for all g y N, g2 ©
Kix, +g, A+g) = Kz, A) for all AeG.
Therefore, for all x ¢ ¥, .1a,, & 2 o,
Az, A+x) = Kz, A4a,) for all Ae 4.
Let Ny = Blltﬂﬂ+m,,].
then N, is a null set and for any », y = 0 such that z # N, ¢ N, we bave
Kz, Atx) = Ky, A4} for all de 5.
To nee this choose z, < =, y and nobe that x, ¥ § N, implies z, ¥y ¢ N -} o, and
hence K(x, A+2) = Kz, A+a,) = Ky, A-+y). BSupposs the common value
iz g{d). ie., for all x ¢ I,
Kz, A-+2) = p(d) for all 4 8.
This implies
Kz, d) = Kz, (A—z)+x) = p(d— ) for all 4 e &, for all z ¢ N,
end therefore,
&, (d) = [ Klx, 4) 40,(x) = [ pld—z) dQ,(x).
Sines g is a probability this proves the theorem.
Proof of Wheorem d4: Consider Bt ={} :A > 0}, E={; : A 3 0},
E, = E_(T,~6,), where @, is a3 defined earlier in this section and

R =P g for A0

Ti is eamy to sew that sll the conditions of the above theorsm are satisfled
and hence

= Qy» p
for some probability # on R.

Corollary :  Lader the conditions of Theorem 4, for ony sequence af esfi-
malors T, sabisfysng (2.9), we hove

lim By, LIKST,—00] > lim B, K, (8,~60)]
where L iz o loes funclion safisfying the conditions given in Theorem 3,
Proof. By oonvolution theorem
SLIE (T 8] {P}} + LELE £}
where X and § are independent random variables and X ~ @,
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Using Fatou’s lemma
K By, UELT\—00)] > B LZX+)
== [ B L{X4y)dFy)
2> B LEX--b{6))]
- Eﬂ E, LK A8, —0]

3. EXAMPLES O NON-BEGULAR CASER

In this section we apply the results of the previons section for the estima-
tion problem in two important clasees of non-regular examples, We obiain
the asymptotic lower bound and also supgest efficient sstimators in each of
thess eases.

3.1 IID, observations: Let X,, X,, ..., X, be iid. observations, each
Xy having density f{r, 8) on R with respect to the Lebesgus measure, where
& & @, an open subeet of K.

We assume that f(z, £) is strictly positive for all  in a closed inberval
(bounded or unbounded) 5{¢) depsnding on & and is zero ocutside 8(F). Let
A, 44(6), (4, < 4,) be the boundariea of 8{#). We consider the following
cases :

Casa I. The support S(F) is noninereasing in 8, ie., S(f) G Si6,)
wherever 8, > §,

Casc II. The support §(6) is nondecressing in 8, i.e., §(6,) ™ 8(8))
whenever 8, > 0.

We now make the following assumptions on the density f(z, §) (Weiss
and Wolfowitz (1974) have similar assumphions when they study properties
of maximure probability estimators).

(1} A,(0) and A4f) are continuously differentiable funetions of & (if not
infinity}.

(2) On the set {(x, 8) : x¢ §(), flx, #) is jointly continuous in (z, §).

(3) The derivatives L20 PI8AXEG) o v i o i 1n 8y

a0 308
AN <z < AP}

(4) For all f,¢ @, there oxists a neighbourhood N(4,) of ¢, and a
constand D{6,) > 0 such that for § ¢ N(5)

P log f(z,
Tl 3’} < D)
for all x for which the derivative exista,
{5) Forall8¢8, E 5 Iﬂgaféx’ﬁ} = o () is finite and not equal to zero.
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In all the above non-regular cagea we can obtain an agymptotic expansion

JP:‘m—l
of likelikbood raﬁuﬁ— ab any B, e @ and for ell A in an appropriate
a

snbast A of B. Here Py is the n-fold product of the measure P, with density

fiz, &), TFor Case I, A =[0,w) and for Case I, A = {—co, 0]. In either of

the ceses, for all d,6 8 and AcA, P’; P is absolutely continuous with
1} 1

respoct to Py .
Expanding at 8, by Taylor’s thecrem we get

gtan—t L, 1 8 d log (X4, 6)

28 PBlog fiXi ) |

ﬂﬂ 2'?3'2 d=1 aﬁa

o{x)
Boy = { Xoe (4000, 4460 () (A (00+] ) Ao(00+ ) ) fori = 1,2, . 0}

= (oo (a0 2), e[ 3)) i = 1.8

{i.e., on the ast where the Faylor's expansion is possible)

where #,(X) lies between 6, and 8, iﬂ,
ars
and L:ﬂnl=l[l a.e. [P} ]on By,
d.P_gu *
Also, A8 = Hi 3 Mggﬁﬁ! —» of) 8.0, [Py
el 8,
by strong law of large numbers,
By assumpiion 4,
1 8 #logfiX, &)
;!EI 26° ﬂ:‘—r 0 ae. [Pg]

The et B, , can be expressed a3 fn(Z, (X)—6,) > A} or {n(Z5(X}—0,) < A} but
the form of Z,, or Z; deponds on 4,{f) and 44{%).

We will now consider cssea with different possible 4,, 4,.
4 3-14
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Case I{e). 8(0) is an unbounded interval
io., 8(f)== {46}, o0} or 8(f) = (—c0, 4, ()]
whers A, ia a monotoenic nondecreaging funetion of # and 4, is & monoéonie
nonincreasing function of . For simplcity, let us firsi consider the simple
case where 8(f) = [&, o),

In this case, B, , = {x, s( 8,4 % m) for § =1, 3, n}

={n(W,—6) >4}, A2 0.
where W, = min(X,, X,,...,Xs). Thus the =symptotic expansion (2.1)

holds. Also for any sequence {#.} satisfying |n (f,—6)|< ¢ and for

buty 8
Py n(W,—8,) > 8 = |:1— ) fiz, &m}

Onet=
and % EI flx, 8,)dz— f18,, 8,1
=

Thus assurapbion (Al) holds with Z = W, which i3 regular and
s(0) = f(#, ) and hence conditions of all the theorems in Section 2 are sabis-
fied. For arbitrary A,, A; we can define 473, 43! as in case I(b) or 1I(B) and
procesd in s similar manner.

Case 1(b). 8(8) = [4,(8), A(F)) with 4 () » 0 and AgP) 0.
Hera

B, = {Al(ﬁu+%) < X< A,(ﬂa+%) foré=1,2, ..., n}

- (o> () < afard)) a5 o
where W, = mmn(X, X, ..., X)), ¥, = max(X, X,, ..., X ).

Tf A,;, 4, are strickly monotonic funotions, they possess wunique inverse
Ar', A7 and B, , can be expressed as {n(Z,—8,) > A} with

Zn = min {45 (W), A7YV )}
Here o(6) = 4;(B)f(4,(8), 6)—4(O)f(4,(6), 6) > 0.
For arbitrary 4,, 4, we define 4;Yw) = aup {6 : 4,(6) < w}
and AgHg) = aup {§ : 4,(6) > v}
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hen  Baa= {di(6+ D) S T < 400t fori= 1,2, .., u)
(> a2 T e )

TRV AP RN AP .
{45 }

= (alZ,—0,) > A} where Z, = min {431 (W¥,), AZ1V,)}
Thus the asymptotic ezpansion (2.1) holds a.e. [P’gn],
For arbitrary 4,, 4, c(f) may not be nongero for all £, We consider

only the cage where (f) > 0 for all §. If, for example, st least for one
i, A;t6) > 0 for ali &, thia condition in satisfied.

Now for any sequence {8,} satiaflying [n{f,—&)| < C for any €' > 0, and
any § » 0,
P} [MZ,—68,) 3 1]

EN Ags, ) =
L= [ 1— J' f{I, ﬂﬂ}dﬂ:_ .r f{x’ 6?1-}6:1:]

Ay(s,,) A, ( n.,+ni )

—o(a, )2
—e (20) 88 8—Y 00,

4
.d.:(ﬂn + = £+09)
because  m m| [ fw0Met . fle.6)e
S A4(8) A,(!?.. + i)

= Aﬂﬁo)f-‘il{ﬁn}: eu]—fr As;.[ﬂﬂ] f (A.AG), By)
= f G{ﬁﬂ,},

Thus assumption (Al) and the assumption of regularity of Z, hold and hence
the conclusion of all the theorems in Bection 2 hold.

Case T{a): S(O) is sn unbounded interval, ie., S(8) = [4,(#), ©) or
8(8) = (—co, 4,6)] and A{8) < 0, As() » © for all g ®,

Proceeding as in case I{a) we can prove that condition {42) is astisfied
for some Z, which ig regular
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Case TI(b} 1 S(6) = [4,(0), A46)} with 45(8) < 0 and A30) > 0 for
sl 0c®. Hero B, , = { Wn> 4,(612), V. < 4{6+2)}, 1 <0,
where W, ¥, aro as defined earlier and
o) = AYLAALE), B — AN 41D, ) & 0 for all e B.

We consider only the casse where e{f) <2 0 for all fe@. We define
A7%(w) = inf {0 : 4,46) < v}
AgHp) = inf {f : 4,(0) > o},

Then proceeding ae in Case I(b) we can prove that condition 4(2) is setisfied

with Z, = max {47W,), A7HV )} and this Z, ie regular.

8.2 Regression fype model. 'We now oonsider an exemple where the obser-
vations X, X,, ..., X, are independent but nct identically distribuied. We
congider the modei

Xy =gy Ote. £=1,2,..
where ¢;'s are iid, random veriables having a common density fiz) such that

fig)>0forz > 0and fio) =0 for <2 0, and ¢i),t = 1, 2, ... are valoes of
a non-stochastio variable, We consider only the case where git)’s are positive.

. A
Let K,= % g}, We make ths following assumptiona :
fm]

R1 fiz} is continuous on [0, oo} and twice
differentiable on {0, co).
B2 (&) []Qegf)@}|fiadde < oo
By [ ifog /Y (@) ifl@)de < o0
R3 For sll A3 9,
g5 5 00 sup {1008 1) ko) —{log /) (o] 0 < %< A max (957}

la tan
converges to 0 in probability.
R4 Ag n— o0

(a}) max () 39{&}—;0

snd (B} E¥ El A6 - 0,
£

Agsumption R4 is satisfied if, for example, we take g(f) == ¢ or any polynomial
in £ Assumption R3 is satisfied for almost all the usual cages.
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Fix f#,¢ 8, the parametor apace. Let P} be the joint probability distri-
pution of X,, ..., X, under 8. Expanding at 8, by Taylor’s theorem we get
for all A » @,

ar o

log 858" = 7 3 (000 Low /(X090

opr & o0 (g f)(Xe —)

= A A, +|e, 887
on B,,; = {&; > git) Qe +AEY t =1 2, ..., »}

={ &z o -0 > )

where &, lies hebween 8, end 6,4+AKS!, and
apP®

) el
_i“rf‘—-—_- 0 a.e. [I:"s‘}:[{mJ‘.?‘I,,,_‘1

We will now verify the following -

P‘I-

(4) A, f©)

PI-

(B} ¢, 0

(0) P}, (B, > e for all A 3 0.

where A ¢, and B, ; are as above,

(A} follows from condition R2(a), the law of large numbers for weighted
average {see, for example, Jamison, Orey and Pruité (1965)), condition Ri(b)
and the fact that — [ (log fY(=)f{x)de = f(0).

Condition B2(b) implies that
| ]
P

EI,TE 7%6) og )" (Xi—g(®) 8,) - 0.

(B) now follows from ocondition RS.
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To prove () we use the following result :
Lomms : Oonsider o double sequence of real numbers {ain}. If

(i) sup |aix! >0, (n}‘ﬂ | @a | & bounded and (343) E gy — .
Iy

=1

Then ﬁ {(l—mp)— 70
fml

= B [1—r (70 i igtributio
Now, P:H[B,,_,L}__hl-ll[l F(E 7 ] where F is the dis n

function for f. Using continuity of f 8% 0 and condition R4(a}) we cax prove that

E F (gﬂ) w) —u f(0)—> 0.

Thus (C) is verifiad to l::-B true.
Also the random varieble £, = min X,/g{f) is obviously regular since
1ginh

in $his case the diatribution of Z,—§& does not depend on 4.

4. ASYMPTOTIC PROPERTIES OF MAXIMUM PROBABILITY ESTIMATORS

Woeise and Wolfowitz (1974) studied the efficieney of mazimum probability
eptimators (m.p.e) for many non-regular cases. They alge congidered a
a goneral case snd indeed proved that the m.p. estimator is LAM under ocer-
tain reasonable asgumptions. In thia section we will first prove the same result
for the ahove family of non-regular cases (given in Section 3) by showing that
$ha lower bound to the loeal asymptotic minimax risk is atteined by the m.p.
egtimators. We will consider only 0—1 loss functions :

0 if o] < r
L{m}={ .- (4.1
1 othersise

where ¢ id some poditive number.

For all the nonreguler cases given in Section 3 the set on which the joint
density of the observations X, ..., X, under @ is positive can be expressed s
either (o} {Xn:Z_ 22 0} or (b) {Xa: Z; < 6}. I'roceeding as in Weiss and
Wolfowitz (1974) we ocan find stabistics §, which sre asymptotically
“squivalent’’ (sce diseussion following (8.4) in Weiss and Wollowitz (1974))
to the m.p. estimetors.

For Case (g}, = 2 —r K73,

s

and for Case (), 8, = Zy+4r K;!
where K, i3 the normalizing factor.
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We will consider only casa (a). For case (a), fL{m—b}c{&u}e'd'“' £

is minimized at b = . Thus, using resudts of Bection 3, for all 8, ¢ @ and all
A=90,

lim sup E LK (Z, —rKZ'—0)]
bl [ 20 M BT e

= f L{:u—r]c(ﬂ,}]a_'““}# dx

=T ol da
r

and hence the estimator 5,, ie LAM. The treatment of Case (b) iz aimilar,

We shall now prove that the m.p.e. d,(r}, if it exigts, is equivalent to the
estimator #,( = Z,_—rK,") suggested in Section 2 in the sense that their diffe-
rence eonverges 4o zeoro in probability (see Theorem 5, helow).

We consider the sei up of Section 2. Let f (z, ) be the density of Fj
with respect to some dominating o-finite measure on ™. We congider only
CUase (a) and assume that the following eondition holds a.s, [P‘;n]

(A1)* Forasay AcR,
{ axp h&,(ﬂu]—}—e,._[ﬂ, 30)? if Entzn_ﬂﬂj > A:
La(Ad) =

0, if K (Z,—8) <A,
here LA Poeamst o R
W JA) = €
a7,

Z, i3 a random variable patisfyimg
Z, 2 By a5 [Py

and lim Py {K(Z,~0) > 6] = &% for all ¢ > 0,

i—s

L

A(8,) — af,) for some o{fy) = 0
Fg

1]

and &, — 0.
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Thua under assumption (Al)*, for all A > 0,
Lo () = exp {(AAL0) 4 ol B} 25 [FR]
Fg
* acfe,)
and hence for all A < 0, L fA) —e *°
We here assmne that
(B1) By (LA~ &l gor a1l A < 0.

Ii in to be noted that the above conditions hold for all the non- Ca88
congidered in Section 3.

Now, the maximum probability estimator #,(r) with respect to the loss
funetion (4.1) is defined aa that value of 4 for whieh the integral

[ X, &)dd

over the set [d—rE7L, d+rK_1]ig a maximum. Here X, denotes the obser-

vation at the #** stage. We assume that f.(x, #) is jointly measurable in
{x, ) and a meagurable m.p.e. B,{r) exists.

Theorem §: Suppose that the sequence {Ko(@,—8,)} i relafively compact
for  {P§3). Then under aasumptions (A1) and (B1),
0
L]
E {6 -6) K (&, —+K1—6) > 0asi—co.
To prove this theorem we need the following lemma.
Lemma : Set for Ae R
Eﬂ{ﬂ.}as if Kn{zn_au) > A
Ly (W) =
a0, 1&? Kﬂ(zn“ﬂﬂ] < A
Then for any Ae R,
E,u | L (A)—Li(A)| o O ae »—» co.
Proof of the lemma : The result follows from the fact that

"
D,

|LA)—~LiR)] = 0
and L (A) and L] {A) ere uniformly integrable,

This ie proved in Tbragimov end Hasminskii (1081) for oll A 3 0. Using
econdition (B1) it can be proved for all A <2 0 in a gimilar maner.
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Proof of Theorem 5: Wo use the idea of the proof of Theorem 4
in Jogenathan {1082). We shall prove that for all § > 0,

}if_l}l Pﬁﬂ [l Enmn“eu]—xn(zn_"gil—ﬁn]I:" §l=10.

Given ¢ > 0, wa choose K > 0 aufficiently Isrge such that for all n

P3N E@,~6) > K—r]<

and P [ KBy~ rE gt —65) | > K—1] < o

Thus it is enoigh to prove that for all sufficiently large n,

Py (4,) < 5 . (42)
where A, = {IEn{En—ﬂu}“Hn{zu—rKTI—En}1 > 8,
IKn{En_Bn}l ";: K‘"'fr I‘Kn{zﬂ_rx:l_ﬂﬂ” Q K-—-—'f}-
Since By | LI < 14407

the above lemma implies thet
E
-‘I:x By | L) —LA) | dA— .

Thorsfore, B, | '};| L{X)—LyA) |4 ] = 0. . (43)
Now, if we aet
By = [Eulfs—0y)—-r, Eﬂ(aﬂ"'aﬂ]'ﬁ‘r]
and By = [K &, —rE*~85)—r, K (Z —r K1 —8)7]

we have By (C[—K, KJ, B, C[-K, K] whenever 4, ocours and hence (4.8)
implies that
§ J | LAY — LAY dA dP5 =0 fori=12 .. (44)
An B

Now suppose that (4.2) is not true. Then
&
Py(d) » = e (05)

for infinitely many values of n.

From the definition of LI{A) it can be shown that when the event A
0cours we have

gt [ LYAMA < [ LA
Hy By

where ¢ is a positive real number not depending on n.
4 818



384 TAFAR BAMANTA
Then (4.5) implies thet for some a, > 0
g+ | [ LA < [ | Li(AMA
Ay By Ap By
for infinitely many values of #. This together with (4.4) impliea that
5L < [ J Lfada e (4.8)
Ap By Ap By

for infinitely many values of «.
On the other hand, from the definition of m.p.e
-1 =1
j' f»(xm ﬂn+ﬂﬁn } dA } jfﬂ{xn! '?[I—I"?"Kn ]dﬂ

By E(X!H‘ &I}} g ___-fﬂl‘:xﬂ’ ﬁﬂ)
ie, [ [ Lfdx e [ [ LfApd
4y By Ay Eg

for all #, contradieting (£6). Thus {4.2) is true and henee the theorem is
proved.

Remark : The reanlt (Theorem 5) can also be proved for any loss func-
tion, of the form

Liz) = L{|2|) = M, if |¢| > r,
o M 2] g

for any M, r > 0. The mazimum probabilify estimete for such a loss fune-
tion, is defined to be that value of d for which the integral

is & maximum. The proof follows the seme lines as the proof of Theorem 5.

5. ASYMPTOTIO PROFPERTIES OF BAYES FSTIMATORS

The agymptotio properties of Bayes estimators were studied in Ihragimov
snd Hasminskii (1981) for a large family of non-regular cases when the ohaer-
vations are independently and identically distributed. In this section we
congider the regression model of SBaction 3 and ueing » general result on the
syyraptotic hehaviour of the Bayes estimators (Theorem 1.10.2 in Ibragimov
and Hesminskii (1981, Ch. I})) we prove the efficiency of the Bayes cstimators,
For this we make the following assumptions in addition %o the assumptions
R1—E4 made in Bection 3.
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RS There exist constanta «, My, M, > 0 such that for all z > 0

f@) & M+ Mo
R4 There oxizts a constant (" = 0 such that for all » » 1

[ﬁ 26} lm/ mex () > O
1Ggigmn

{=1

(Condition R is satisfied, for example, when g(f) is some polynomial in #)
When the parameter sot @ is unbounded we make the following
agsumpbion :
R7 ffuse—MfrE) < [Cy ]
for all » and for some a = 0, C; > 0.

We now consider the family {8} of Bayes estimators with, reapect to the
lvss function L(K;1(0—a)) snd some prior density g. We assume that L iw

a suboouvex loss function posssssing a polynomial majorant and safisfying
the following condition.

(€) g(b)= [ Lix—b)f(0)F4dz is finite for some b and atteina its mini-
mum 8t the unigue point &,.

Let () be the set of continnous positive functions on B possessing a poly-
nomisl majoriant.

Theorere 6 : Let 8, be 0 Bayes estimalor with respect bo a prior densily
g € @ and the loss function I{EZ(6—a)), where L s a confinuous suboonvex fune-
ton possessing a polynomial majerent and sadisfying condition (0). Then wnder
conditions R1—R1T, the Bages estimator 8, i¢ asymplotically efficient for estimating
@ in the gense that uniformly in @ belonging fo any compact subsa of 8,

lim B LK (f,—6)] = | Liz—by)f(0)e~/Oniz
= e

where the right hand side 42 the lower bound to the asymplotic risk of an estimator
obtadned in Theorem 2.

Proof . We verify all the conditions of Theorem 1.10.2 of Thragimov and
Heauminskii (1981). Fiz some §¢®. For we R wo set

Tl (X s—-g(0— gl K 3)
ﬂn,g[ﬂ'] = &= '

l]_-'11 fZe—g)8)
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First of all note that the marginal distributions of the procesa Ay 4 (u) do
not depend on #. Then for any u, < uy

Byl AN, (ugd— A XS lug)P?
< 21— B §75e—gl Kt wa)foi— gl Kt

<2 ;::1 [ {1 —g (K ; ey P —g () 4y )]
[sinos for 0 < a0 1 1papypa € E (1p1)]

= B § 1o g) )~ ()R 3 ) P e (81)
Now, S e —gER? wy)— 2 (2— g v, )P
< [)fla— R u)—f 12 (z— )5 w,) | d
[ sinca for any &, § > 0, (va— /B < [a—g)]

B wy T ES v
= [ fla—g®Ewum)ds1- ] fla—as)de | de
g(BELT % p(EEY ug | () K33 »,

= Iy4-I,, say.
gt} K5t vy -
e {r[=JK£1 e e} de
< JOE =) | |£(0) e
= g{)E uy—u;) M, say

where & =;f |f’fm}|6x{mhyaasumption.ﬁﬂ{a].

By sssnmption RS, for sll w, < %, such that luy | € B, 4| < R we have

Iy < gl K Yarg—ry) [My+ M (2R)e].
Therafore, from (4.1

B A3 ) — Al & (tg—au}{M - M, + M 2%R0)
<< Votg=s6y | =2 By | AV 0a)— AL, ) | # < B{14Re)
for some K > 0 and for all § ¢ 6.

ie.,
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Thus condition {1.1) of Theorem L10.2 of Ibragrimory and Hasmingkii (1981)
is satisfied.

Now,
EAiw) - B (1= § 1 s @R 0= e) | )

P 1
I, OXp {—--2~

Et‘ﬂa

§ 13— g E s ) —fV3(w) | 2 g;r.}

{since T—p < 7).
We choose A = 0 sufficiently smeall such that whenever U g x < 4 we

have flz) > % Fi0),

For w2 10, P12 (e —g () K7 ) — Y8} | ® dx

p(t)E T w
e J flx) do

and for « < 0, FLAY  —gE T w) P} dz

> P g 1] ) —f() | dee.

—{)E; Ywl

= jn Jiod g K | w|) di.

—git B 6]

Thus for max gE)E7! ] < 4 we have

1gfrah
12 1
EyAifh(w) < exp {— /) u] }. v (52)
Also iy asumpiion R7, for &ll we R,

Bl < [Clul e { Mg k] ™ L 9

Fix any r >~ 0. We want to prove that

lim {ulr EgAh(n) = 0. e {34)

e
T =
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From (5.3), for max g(f)E;? |u| > 4,
1eixgs
|"F|rEuAn1’3l {w)
< {ul [GII“IE:I max g(t) ]_“ [[HQ(#}F’"I X g(t) ]w

—HRE

(& max g0 [(Ogtoys) max g} "
[ Ead max o] | ECl

—_— —1
= 0" [Gu|wl E: lfpfﬂgm]  max

,
# 1/n —na
< O;'(G'ldl-ﬂﬂf[ K, max gft ] [{ Loty )™/ mas gt |

(we chooss » a0 large that —nx-}r < 0)

n¥ .
= Ar—{ﬁb{t_}_‘_@r ar [BIIIGB E,.€ n l:r::a:ﬂ gt
[U‘A max g(t) ]
1GiGH

and thiy converges to 0 {88 n—» o0} by agsumption B6. This result and (5-2)
pive {4.4).

Now proceoding a9 in Section 3 we can expresa A, (u) for all w8 R s3

eXp{fl0h-6,}if 7, > u,
0, if T & W,

b= {

where &, EE 0 and 7, iz = random variable converging in distribution to0 & ran-
dom varigble 7 with density f(0)e~ f(o)v on (0, 00), This is proved for all 4 3» 0
in Section 3. The proof for 4 < 0 i similar to that for the case ¥ 3= 0. Then
it con be eaily shown that the warginal distributions of the process A, 4 (u),
¢ R converge to the marginal distributions of the process

gflole if 7> 4,
A (w) =
0, if 7 < .

Also the random fonctipn

vie=[Lis— uy Al(uidu

sbbains its minimum value at the wnigue point & = 7 — &, Thus all the condi-
tions of Theorem 1.10.2 of Tbragimoev and Hasminskii (1981, Ch. X) are sabis-
fied and Theorem 6 is proved.
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