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Abatract. We atudy the question of when the set of norm aftaining Functionais on &
Bapech space is a linear space. We show that this property is preserved by factor reflesdive
proximimal suhspaces in R(1) spaces and generally by laking quotients by proximinal
subspaces. We show, for K(¢;) and co-direct sums of families of reflexive spaces, the
transitivity of proximinality for factor reflexive suhspaces. We also inveatigats the linear
structure of the set of norm ettaining functionals on hyperplanes of ¢g and show thet, for
some particular hyperplanes of o, linearity and orthogonal linearity coincide for the set
of norer atfaining functionals.

1. Introduction. We work only with rea] Banach spaces. For a Banach
space X, we denote by By, Sx and NA({X] the closed unit ball of X, unit
aphere of X and the set of all norm aktaining functionals on X respectively.
For a closed subspace ¥V of X we denote by v the canonical quotient
map of X to X/Y. We are interested in Banach spaces for which NA{X)
iz a linear space. It is known that this is intimately related to the gquestion
of transitivity of proximinality {[d], [T]). We recall that Y is said to be a
proziminal subspace of X if for every ¥ € X there exists y € ¥ such that

'z — y|| = (=, ¥), we then write ¥ & X.
In {3 W. Pollul raised the following question om fransifivity of prozimi-
nafity.

{A) Whick Banach spaces X hoave the following property: For any closed
subspacesY and Z of X withY C Z, of dim(X/Z) = dim(Z/¥Y} =1

ad V&2, 28 X, then v & X7
In [7] V. Indumathi asked a more general question,

(B) Wkich Banach spaces X have the following property. For any closed
stbspaces Y and Z of X withY C Z, if dm{X/Y) =n < o0 and

B
YCZ ZEX, thenY S X2
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Following [7] we call 2 Banach space X with property describeq in (B)
n P(n) space, and we call X a P spece if X 15 & P{n) space for every n > 3
Examples of P spaces are ¢ and K(£z) (the spacc of compact Operators
on £3). Also any finite-codimensional proximinal subspace of a P spage i,
s P space ([8])-

A Banach space X is said to be an R(1) space if every closed subspace ¥
of X of finite codimension with ¥ € NA(X) is proximinal in X, Exampley
of R(1) spaces include «p, all closed subspaces of <o, reflexive spaces 41
K(£2) (see [3] for g and [4] for K{£2)).

To describe the connection between R{l) and P spaces we need to reca]]
the concept of orthogonal linearity from [7].

Let f,g € X*. Then f is ssid to be strongly erthogonal to ¢ if the
gupremum of f on the unit ball of X is attained at some peint of the unt
ball of ker g. A subset F' C X is said to be ovthogonally linear if f.ge F
and f strongly orthogonal to g implies that span{f,g} C F. Recall that
[7, Question 1] it is not known if there is a space X for which NA{X) is
orthogonally linear but not linear. We answer this question in the case of
hyperplanes of ry.

It was proved in [7] that X is an R(1) space and NA(X) is orthogonally
inear if and only if X is a P space. Rocently these properties were studied
in [8) for direct sums of Banach spaces,

So far we bave assumed that the subspaces are of finite codimension.
We now consider subspaces with reflexive quotient, called factor reflexive
spaces. Thus a closed subspace ¥ of » Banach space X is factor reflertve
if X/Y is mﬂye Analogous to the above definitions, we call a Banach
space X an R(1) zpace if for every factor reflexive subspace ¥ the condition
Y C NA(X) implies that ¥ is proximinal in X . Since any reflexive quaotient
of gy is finite-dimensional, ¢y is an H(1} as well as A1) space.

We can now ask the following genvralized version of questions {A) and {B).
(C)  Which Banach spaces X have the jollowing property: For any factor

reflevive closed subspaces Y and Z of X withY C Z, Y "E Z ard
ZEX thenY E X7

A Banach space with the property in (C) will be called a P space. Clearly
any reflexive space and the space eg are examples of P spaces. Also any factor
reflaxive proximinal subspace of & P space is again a P space. e

Gilﬂ of the aims of the present article is to contribute Lo the study of R_{”
and P spaces. We now briefly describe the comtent of the article section-wisé

The second section contains investigations on the vector space structtre

of the norm attaining functionals on a4 Banach space X. In particular we
study this for a factor reflexive proximinal subspace Y of a £ space and for
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the quotient space X/Y of a P space X. We also give some stability results
when X is an (1) space and NA{X) is a vector space.

Motivated by Lemma 4.2 of [4] which identifies NA(KX(€2)} with the set
of finite rank operators, in the third section we show that for any closed
stubspace of NA(X(#3)) {by this we alwaps mean that these subspaces are
Banach spaces) the pre-annihilator is proximinal in K(f3). We also show
that K(£z} and the cg-direct sum of any family of refloxive spaces are P
SPaces.

In the fourth section we show that any separable R(1) space can be
renormed with a Gateaux smooth norm retaining the proximinality proper-

ties. In particular we show that if X is a scparabie R(1) space then fhere
exists an equivalent Gateaux smooth norm on X such that X with this new
norm is still an R(l) apace,

In the fifth section we study the vector apace structire of norm attaining
tunctionals in hyperplanes of ¢g. We prove that orthogonal linearity and
linearity are equivalent for hyperplanes in ¢, which gives a partia) answer
to Question 1 of [7].

Acknowledgements. We thank Professors G. Godefroy and G. Pisier
for the discussions we had with cthem while working on this paper. We also

thank Professor . Skandalis for bhis help in proving Proposition 3.4. The
secand named anthor’s research was partially supported by ap Indo-French
project, LF.C.P.A R. Grant No. 2601-1. We thank the referee for his exten-

give cominents which improved the readability of the paper.

2. Linearity of NA(Y) for a closed subspace Y of a Banach
space X. We start by recalling Garkavi's characterization for finite-co-
dimensional proximinal subspaces which we 1se frequently.

LEMMA 2.1 (Garkavi [10]). Let X be o normed bnear spoce and Y be o
closed subspace of inite codimension. Then Y is proziminal in X if and only
if every vlosed subspace Z 2 Y of X 48 proveminal in X.

LEMMA 2.2. Lel Y be a proziminal subspace of X. Then Y s factor
reflexive in X if and ondy if Y1 C NA(X).

Proaf. Suppose Y is factor reflexive in X. Equivalently, (X/Y)* ~ Yyt
is reflexive. Thus every f € Y is norm attaining or X/¥. Since Y is
proximinal in X, f € NA{X). Thus Y1 ¢ NA{X). Conversely, suppose
¥ ¢ NA(X). Then every element f in ¥+ attains its norm on X/Y. By a
well known theorem of James we conciude that X /Y is reflexive. n

We now prove the following extension of Garkavi's characterization of
finite-codimensional proximinal subspaces to the factor reflexive case.
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We now twrn our attention to the linear structure of the set of norp
attaining functionals for quotient spaces by proximinal subspaces.

THEOREM 2.10. [et ¥ be o proximina! subspace of X

(i} If NA{X) i orthogonelly linear then so is NA(X/Y).

(i} Jf NA{X) is linear then 80 is NA(X/Y).

Froof. We only need to prove {i). Suppose NA(X) is orthogonally lineqr.
Let f,g € NA(X/Y) with ||f]| = |lgll = 1. Let f',¢' € ¥ € X* be such
that Q*(f) = 7" and Q"(g) = ¢’ where @* : (X/¥)* =¥ — X* is the
inclusion map. Then [|f’)| = lig'll = 1 and f',¢" € NA(X). We also have
£+l = {if + £

Suppose f is strongly orthogonal to g. Let 2 € Syery be such thay
f(z) = 1. By the proximinality of ¥ there exsts y € (v{z) such that
lgll = 1 and f{y) = 1. It is easily seen that y € kerg’, which implies
that f’ is strongly orthogonal to g’. By orthogonal linearity of NA{X), we
have f' + ¢ € NA(X). Hence there is iy € Sx such that (f' + ¢')(zy) =
17+l = | f+gll = (f +9){Qv{z0)). which implics that f+g € NA{X/Y).
Hence NA{X/Y) is orthogonally linear. a

The following lemmma 18 known., For completeness we give an easy proof.

LEMMA 2.11. Let X be g Benach space and Y be ¢ closed subspare. Let
Z be a closed subspace of X/Y. If Q7' (Z) is proziminal in X, then Z is
progiminal in XY,
Proof. Let Qy{xp) € X/V. Since Qy'(Z) is proximinal, there exists
2 € Qy'(Z) such that d{xp, Q3.'(Z)) = |jo — 20]|. Now for any z € Q3 (2)
and for amy n 2 1, we have
fQv{zo — 2}l = d(zp — 2, Y) > ey —z—yn|| — I/
> d(z0, Q7' (Z)) — 1/n = l|zg — 2l — L/n
> [Qy{xo — z0)ll — 1/n
where yn € Y. So ||Qy(zo — 2)[| > Qv {wo — 20)|| for every Qy(z) € Z,
which implies proximinality of Z at Qy(xq). Since Qy (xy) is arbitrary, 2 &
proximinel in X/Y . =
A conssquence of the following theorem and the results proved above i
that if X is 2 P space and ¥ € X i3 refiexive then X/Y is a P space.

THEOREM 2.12. Let X be an R(1) space and let Y be a prozsminal subspace
of X. Then X/Y is an R(1) space. Hence if X is a P space so is X/Y,

Proof. Let Z be a closed subspace of finite codimension n in X/Y with
Z- € NA(X/Y). Let fl, ..., Ju € NA{X/Y) be such that Z = [\, ker fi
Then Q3'(2) = MiL ker @*(£:) and Q*(fi) € Q*(Z+) € X*. Since ¥ s
proximinal, we have Q*(Z+) = (Q,*(2))1 C NA(X). Since X is an B(1)
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space, @y "(Z) is proximinal in X. Thus by Lemma 2.11, Z is proximinal
in X/Y and this shows that X/Y is an R(1) space. By Theorem 2.10(i), it
follows that X/Y is a P space if X is. =

We do not know an answer to the following version of the “J-space”
probiem. If ¥ C X is reflexive and X/¥ is a P (or R(1}) space, is X a P
space (R(1) space)?

For a Banach space X, let Px = {¥ iE X dim{X/Y) < o0}, We have
the following stability properties.

LEMMA 2.13. Let X be an R(l) space. Then the following stalements
are equivalent.

(i) NA(X)} is lirear.
(ii) Px is stable under intersection.
(ili) For any fwo proziminal hyperplanea Y1 and Yo of X, Y1iNYa i a
proziminal subspece of X.

Proof. (i)=(ii). Assume that NA(X) is a vector space. Let ¥1 and ¥5
be two finite-codimensional proximinal subspaces of X with codimensions
ni and ng respectively. Lat Y7 = [, ker f; and ¥ = 2, ker g;, where
flyeeosFars@lse. 100 € NA(X). By Garkavi's lemma we have Y1,V C
NA(X). Since NA{X) is a vector space and ¥ and Y3 are finite-dimension-
-al spaces, we have span{Y;l, ¥;'} = span{fi,..., fn,.41,+ . - 1 Gnp } € NALX).
Since (Y] ™ Ya)1 = span{¥::, Y} and X is an R(1) space this implies thet
¥ 1 ¥5 is proximinal in X

(i) =(iii) is trivial.

(iii}=>({i). Suppose NA(X) is not linear. Then there exist f and g in
NA(X) such that f + g ¢ NA{X), Thus ker f N ker g is not proximinel X
(by Garkavi’s lemma). w

PROPOSITION 2.14. Let X be an R(1) space such thet NA{X) 45 a linear
space. Let Y be a closed subspace of X. Then Py € Px NY. More precisely

if Z '-'E Y and dim(Y/Z} = n, then there exists a proximénel subspace Zy in
X of codimenaion n such that 2 = ZgNY.

Proof. Let Z be a proximinel subspace of ¥ of codimension n. Then
by Garkavi’s lemma, Z1 C NA(Y) € Y". Let {} h1<i<n be 2 Dasia of Z-.
Let z7 in X™ be such that z}|y = y and [lz}|| = ]| This implies that
x! € NA(X) for every i+ = 1,...,n If V = spanfz] : 1 < i < n}, then

P
V C NA(X) since NA(X) is a vectar space. Now V| = Zp C X since X is
an R(1) space. Finally, ZgnY = 2. a

REMARK 2.15. If X is an f2{1) space such that NA(X} is a vector space
and if Py = PxNY,thenY is also an R{1) space such that NA(Y') is a vector
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space. But the converse iz not true. For exampie, let X =g and Y < ker f
where f = {1,1/3,1/4,1/8,...) € ;. It will he shown in Proposition 5.4
that NA(Y) is a vector space. It was shown in [3] that every closed subspace
of ¢g is an R(1) space, which Implies that Py is stable under intersectiong
Let ey = {1,0,0,...) € £1. It is easy io see that kere; is proximinal in y
but kere; NY is not in Py, which implies that Py & Px NV,

3. Eﬁ) spaces. Recall that the rank of an operator A: X — X ig the
dimension of its image. The following proposition gives a characterization
of subspaces of tensor product spaces when the ranks of the elements in the
subspace are uniformly bounded.

PROPOSITION 3.1. Let E and F be vector spaces and E' be the algebrair
dual of E. Let E' @ F = R{E,F) be the space of finite rank lincar maps
from E to F. Let V be a vector subspace of R(F, F} such that

sup{rank(T): T € V} = N < 0.

Then there exist f1,...,fn i F and e}, ... e}y in B such that every T in
V can be written as

v N
T=Y e@x+> b&f;

i=1 Fm=1
forsome gy,...,gv € F and bf,... by € F.
Proof. Let Ij; in V' be such that rank(Tp) = supfrank(?) : T ¢ V} =

N < oo. There exists a basis B, of E and a basis 8; of F such that the
matrix of T; relative to H; and B; is

"1 0 .- 0] |
01 --- 0
.. . 0
AL NI B PR

- l] {]-

Let W={T €V 12y =01foralp < N and g < N} where {£p;)p¢ I
the matrix of T' with respect to the bases B; and Bs. Since dim(V/¥]) <
and V consists of finite rank operators, the lemma follows easily from the
following claim.

Cramm, If TeVi and i, j g {1,...,N}, thenzy = 0.

Proof of the Claim. Pick 0 #£ A € C and let § = Ty + AT". We consider
the deferminant of the (N + 1) x {N + 1) submatrix of § whose rows are
{1,.++, N}u{¢} and columns are {1,---, N} uU{j} with respect to the bases
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B, and B;. This submatrix has the following form:

[ 1 0 .- 0 Ab |
4] | 0 Abq
0 0 --- 1 by
| M1 Aaz oo dan Az (N+3)x(N+1)

for some scalars ay,...,ax and &,...,by. Since rank(S} < N, this deter-
minant 15 . But by & direct computation, this implies that

.h:r:i_.,- = .th{ﬂ-]_h + ﬂ-NbN}
and since A is arbitrary, it follows that z;; = 0. =

The following proposition along with Propasition 3.1 gives the structure
of closed subspaces of E @ E*.

PROPOSITION 3.2. Let E be a Banach space and M be a cloged subspace
of £ & E*. Then there cxists ng € N such that rack(T) < ng for every
el

Progf. Let Vo, = {T € E® E* : rank{T) < n} for every n € N. We
have M = |}, .y{M NV,). Since M is a Bavach space, by the Baire category
theorem there exists kg such that int{(AMNVy,) # 8. Let m € M and ¢ > {t be
such that Bps{m, e} < Vi,. Now Bys(m,e)—Bay{m, g) C Vag,. S0 Ba(0,2) C
By(m,e)— Bp(m, €] C Vag,, which implies that M C Vag,. Hence the ranks
of the operators of M are uniformly boundeq. =

REMARK 1.3. We recall from [4) that NA(X{f3)) = £2 @ £3. Let ¥ be
a closed subspace of X{#3) such that ¥~ € NA(K(#a)). Now Propositions
3.1 and 3.2 imply that there exist fy,..., fx and e7,...,€e}, in #; such that
every T in Y1 can be written as

N N
T=Y e®@au+> b8
i=1 j=1
for some ¢, ..., gn and B],..., b5 € £2.

We now study proximinality questions for factor reflexive subspaces of
K{¢2). Let V be a finite-dimensional subspace of #3 and let

(1) Zy = {58 € K(f2) : 5(&z) € V1 and §*{#3) C V1]
In other words, in an orthonormeal basis B = 5 U By where B is a basis
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of V and B is & basis of V1, the matrix of 5 has the form
E{}]dxd Q

0 [esy] |
if and only if § € Zy where d is the dimension of V.

PROPOSITION 3.4. For a finite-dimensional subspace V' of £a let Zy, 1e
defined as in (1). Then Zyv 48 a proziminal subspace of K{fa).

Proof. Tt suffices to show that every operator whose matrix relaiive to
B hazs the form

E}]dud : Lﬁ::rﬂ

B ¢ o

has a nearest point in Zy (since we can translate by a vector in Zy). Such
an operator has finite rank. Let

W = span{V U §(V) U §*(V)}
and let W' be a finite-dimensional subspace of V- such that
WcovaWw.

Let B’ = B; U BS U By be an orthonormal basis of €3 such that B (as
before) is an orthoncrmal basis of V, 85 is an orthonormal basis of W' and
B, is an orthonormal basis of (V & W), The matrix of § relative to B is
of the following form:

-[ﬁ,{-})]dxd ;S

---------------

1651 Olaxa * O
1] )] (

L ' J
where &' is the dimension of W’. Let P : & — V @ W' be the orthogonal
projection. I L € Zy, then P(§ — L)P = § — PLP and we have PLP € Z'
with

Z'= {L' € K(£y): L'{£x) C W' and L™(£y) C W'}
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Cleatly Z° is a finite-dimensional vector subspace of Zy- consiating of oper-
ators whose matrix in B’ has the form

g : 0 : 0

[

Moreover sinca || P|| = 1, we have
1§ — PLP| = ||P(§ —L)P|| <& — L.
Therefore
mf{||§ — Ll : L € Zv) =inf{j|§ - L'||: L' € 2"},
and this infimum is attained since dim(Z') < oo, which completes the proof
of the propogition. =
‘We are now ready to state the main theorem of this section.

THEOREM 3.5. Let Y be e closed subspace of K{f3) such that Y1 C
NA(K{€)). Then Y is ¢ proziminal subspace of K{(£2). In particular X(£3)
is an R(1) space.

Proof. By Proposition 3.1, there is a finite-dimensiopal subspace V' of
£ such that Zy C Y. By Proposition 3.4, the space 2y is a proximinal
sitbspace. Also K(€;)/Zy is reflexive. Hence by Proposition 2.3, Y is 8 prox-
iminal subspace of K{fz}. m

BEMARK 3.6. If M C NA(K{£:)) C Ki{f2}* is a norm-closed subspace,
then M is necessarily reflexive. Indeed, since the dnal unit ball of K(#;) is
weakly sequentially complete, M* is a quotient of X [see (1, Lemma 2.11).
Now being an M-embedded dual space, M* and thus M is reflexive (see [5,
Chapter 111]}.

We now prove that any R(1) space with orthogonal linearity of norm
attaining functionals is a ¥ space. For a proximinal subspace ¥ of X let
PRHO) ={z € X 1 d{x,Y) = [Ix]|}-

T —

A ——

PROPOSITION 3.7. Let X be an H(1) space suck that NA(X) is orthog-
onally tinear. Then X i a P gpace.
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Proof. Let Z &Y & X be such that X/Z is reflexive. We have to shoy

that Z C X. Since X is an R(1) space, it suffices to show that 21 C NA(x),

The space YL is proximinal in Z+ and thus Z+ = (Pr1{0)nZY) + ¥
We have ¥ & X and this implies that ¥+ € NA(X). Also Z & ¥ ang
so we have Py} (0)N 21 € NA(X) and each functional in PC1(0) 0 Z4 4
strongly orthogonal to YL, Since NA(X) is orthogonally lineasr this implies
that 2+ C NA(I) =

REMARK 3.B. Since EA{KI(EE}) is a vector space, it follows by Propesi-
tioh 3.7 that X(fz) is a P space.

We next show that eg-direct sums of reflexive spaces are R(1) spaces.

LEMMA 3.9, Let {X; : i € N} be e famsly of reflexive spaces and consider
its co-direct sum X = (P X;)e,- Let M be a closed subspace of NA{X). Then
there exists a finite st A such that supp(f) C A for every f € M,

Proof. Let Vo = {f = {fi) € NA(X} : fi = 0 ¥i > ng}. Then M =
|, en(Vn N M). Using the Baire category theorem arguments as in Proposi-
tion 3.2, we can get £ > 0 and ng such that Bys(0,) € V. which implies
that M C V,, and this completes the proof. =

It is easy to see that NA(X) = {f = {fi) € X* : [ has only finitely many
non-gero coordinates} and thus is a vector space,

PROPOSITION 3.10. Let {X; :1 € N} be e femily of reflerive spaces and
X = (B Xile Let Y be a factor reflexive subspace of X, Then the foliowing
are equivelent.

(1) ¥ is proximingl in X,
(i) Y1 € NA{X).

(iii) there exisis o finite set A such that supp(f)} C A for every f € ¥

Proof. (i}=+(ii) by Lemma 2.2; (ii)=-{iii} follows by 3.9; (iii}=>(ii) s easy
to see,

{ii)={i}. By Lemms 3.9 we can get ng suck that for all f = (fi} € Y+,
fi=0ii>ng Let T={i:1<1<ng},

Y= {o= (@) € @uXor: Y fla) =09F = () e ¥4}
icl
and ¥z = (B, Xihns Then clearly ¥ = VY] @ ¥z and ¥; is a closed

subspace in a reflexive space (€D, Xi)r. So 1) E (P, X:)r. We have now
Y=Y . Yz E X, which completes the proof. =

THEOREM 3.11. Lei {X; : i € N} be a family of reflemive spaces and
X = (P Xi)e,- Then X is a P spuce.
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Proof. Proposition 3.10 implies that X is an R{1) space and so by Propo-
sition 3.7, X is a P space (since NA{X) is a vector space). =

———

REMARK 3.12. Let X be an R(1) space such that NA[X) i5 a vector
space. Let Y1 be a factor reflexive proximinal subspace of X and Y3 be a
finite-codimensional proximinal subspace of X. Observe that Y1t is a reflex-
ive subspace of NA(X) and V3! is a finite-dimensional subspace of NA{X].
So Yt + Y5~ = (Yin¥a)! € NA(X). Since X is an R(1) space, we conclude
that ¥; M ¥3 is a factor reflexive proximinal subspace of X.

REMARX 3.13. It is interesting to see whether the analogue of Lemma
2.13 holds tree for factor reflexdve spaces.

It follows from the discussion on K{f2) that if ¥7,...,Y,; are factor re-
flexive proximinal subspaces of X(#€;), then Y] N---NY¥;, is also proximinal.
Moreover, the following shows that for op-direct sums of reflexive spaces, the
analogue of Lemma 2.13 holds true for factor reflexive spaces.

Let X be the co-direct sum of a family {X; : i € N} of reflexive spaces.
Let NV be a closed subspace of NA{X). Then there is a finite set A of M such
that ¥ € M = (Pu X/ )ica. But M is a reflexive space. Hence so is IV,
Now by Propositions 3.10 and 2.3, N, is proximinal in X.

Let ¥7 and Y5 be two factor reflexive proximinal suhspaces of X. As
before there exdst finite subsets A; and Az of N such that ¥ € My =
(Bo X )ica, and Y- C My = (P X7 )ican. Now by duality (MinMz)1 C
Y1NY; C (P, Xidiem(4,u4;)- But {My N M), is proximinal in X. Thus
by Propoeition 2.3 again, ¥1 N Y7 is proximinal in X

We conclude this section with the following questions.

(i) Is X a P space only if it iz an R(1) space and NA{X) is orthogonally
linear?

(ii} Is there any example of an R(1} space X and ¥ C X such that the
quotient is infinite-dimensional and reflexive, every finite-codimen-
sional subspace containing ¥ is proximinal in X, but ¥ itself is not
proximinal m X7

(iiiy We do not know whether X(£;) for 1 < p < o0 and p # 2 is at least
a I space.

4. Renorming of R(1) spaces. It is known that given a separable
apace there is an equivalent stnooth norm with the same set of norm attain-
ing functionals, i.e., proximinal hyperplanes are the same (see [2]). A natural
question then is to know whether proximinal factor reflexive subspaces re-
main the same. In this section, we answer this question affirmatively. We
start with a crucial and simple lemma which applies in particnlar to all
separable spaces.
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LEMMA 4.1. Let {X,|-|]) be & normed linear space. Let L, be any weakly
compact comver symmetric subset of X, Let |- || be the norm whose unit bqy
satisfies Bx{(§- 1) = Bx ([ - ) + L. Let Y be a closed subspace of (X, || .|}
If Y is proziminal in (X, || - ||) thern ¥ is proziminel in (X, || - ).

Proof. Let x € X be such that dp (=, Y) = 1. Then for every n e §
we have ¥ N (Bixyplz 1+ 1/m) + (1 +1/n)L) # . Let yn = ty+14, ¢
N [B(xm.m(.‘ll, 1+1/n)+ {1 4 lff'ﬂ}L:}, where y, € ¥ and {, € L. Let {Iﬂi}
be a weakly converging subsequence of {{,} and let » +! = w-lim{z + ),
We have d|5.|]{:r + I,Y} = 1. Since Y is proximinal in {X: || ! “): we have
d“.I{I.-[-I,Y} = ||:\:+E-—yii =1lforsomey €Y. fv=x+!-1y, one hay
g+i-v=yc¥ ondthus dy {2, Y)=1= |z —y|f and Y is proximinaj in
[X! I . l)' "

We now prove the main theorem of this saction which shows that 4
separable F(1) space can he smoothly renormed preserving its proximinality
properties. In particuiar these arguments also hold for R(1} spaces.

e

THEOREM 4.2. Let (X, | 1) be o separable R(1) spuce. Then there exists
an egquivalent Gateaux smooth norm || - | on X such thol X with this new

norM §5 agoin ﬁﬁ]

Proof. By Theorem 9(iv) from [2] there exists an equivalent Gatcaux
smooth norm || - fl on X such that NA{{X, ||- I3} = NA((X, |- ]|}}. Indeed, let
{zn} be a dense subset of By, define T : #5 — X by T{a) = ) | 27 o1y,
and let X = T(8y,). The set K is convex, symmetric and norm compact.
Let || - § be the norm whose unit ball satisfies Bx ([ - ||) = Bx(|i-|) = K.
Let X = (X,||- ||} amd X, = (X,||- |}. By Lemma 4.1, f € NA(X} if and
only if f € NA(X;). Moreover, for f € X*,

(2) 1" =sup{|f(x:)) : 2, € By, }
=sup{|flx+ k)):x € Bx, k € K}
= sup{|f(z]|:x € Bx} + {[f(¥)] : k C K}
= |F§* + sup{[f{T{))| : @ € By} = |FN* -+ 1T ().
Since 7™ is one-to-one and || - || is strictly convex, it follows that - " is

strictly convex and thus || - || is Gateaux smooth.
Let Y be a factor reﬂfﬂve subspace of X. Suppose that ¥+ € NA(X) =

NA{X,). Since X is an R(1) space, ¥ is proximinal in X. Let ¥; = (Y, }- I}
Then by Lemma 4.1, ¥ is proximinal in (X, || - ||}, which completes the
proof. =

REMARK 4.3, By the above results, ¢y and more generally ey-direct sumé
of sequences of reflexive spaces admit Gateaux smooth norms such that with
these new norms these spaces are still R{1) spaces.
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5. Linearity of NA(Y') for a byperplane Y in cg. We first recall that
NA(eg) is n vector space and for any proximinal hyperplane Y in cg, NA(Y)
i8 a vector space {by Propuosition 2.5). However when ¥ is not proximinal,
NA(Y) can fail to be linear, In this direction we present an example which

shows that if f = (f;) € #; is not norm attaining then NA(ker f) need not
even be orthogonally linear.

ExXaMPLE 5.1. Let f = (1/2,1/2,1/4,1/8,...) € £;. Let X = ker f.
[t can be eesily seen that NA(X) is not a vector space {[3]). We show
that it is not even crthogonally linear. Indeed, let ¢ = (1,0,0,...) and
f=1{0,0100,...}. Now =z = (0,-1/2,1,0,0,...) € Sgery is such that
H(z) = [H|| = {iFgergrnxil = 1. So H is strongly orthogenal to g in X*.
But g--H = (1,0,1,0,0,...)and |lg+ H||x» =2= 1432, 2% Let 2{™ =
(1,-1, 570,27 ~14,...,—1psa,0,...), where 1; = L for 4 < i < n + 4.
Then (™ is in Bx and (g + H)(z!™) — 2 but there is no z € By such
that {g + H){x) = 2; this implies that n + H & NA{X). Hence NA(X) s
not orthogonally linear. Thus by Theorem 3 of {3] and Corollary 5 of [7],
X is an R(1)-space but not a P space.

In view of the above example, cne can ask the following questions.

QUESTION 5.2. dre there any non-proziminel hyperplones of cp such that
the set of all norm attaining functionals s a vector spucef

QUESTION 5.3. Do lineerity and orthogonal linearity coincide in hyper-
planes of cp? This i3 g particular case of QQuestion 1 from [71,

We answer affirmatively the above guestions.

Ty state the npext result we need the following notation.

Let f = (fi) € S¢,. Suppose f & NA(c). Let |fy| = sup{|fi] : i € N}
and |fi,| = sup{|fii : 4 € N\ {#1,...,45-1}} for j 2 2. Then {|/;,]} iz 2
decreasing sequence. Let ¥ = ker f.

PROPOSITION 5.4. Suppose |fi\| 2 302, i, |fil. ThenY is isometric to
ey and thus NA(Y) is a vector space. Moreover NA(Y) = {gy : g € NA(cq)
with the i\th coordinele zero}.

Proof. bet g = () € Y and let T : Y — (N \ {i;}) be defined by

T(y} = (Wdiangis)- We have |T(y)llee = llleo and T is onto co(N \ {ir}).
Thus we have

NA(Y) = T*{(NA{co{R\ {1 )))
= {gy : 9 € NA(co{N)) with the #,th coordinate zerc}. =

First we prove the converse for a particular hyperplane. Let f = (f;) €
Se, \ NA(cn) be such that each f; has a constant sign for i € N. As above,
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let |fi,| = max{|fi| : i € N} and |fi,] = sup{Jfl : 4 € N\ {ig,8a,.. 45 .}y
for § > 2. Let Y = ker f.

PROPOSITION 5.5. If NA(Y'} is a vector space then |f;,| 2 32, o il

Proof. Suppose NA(Y) i a vector space. We argue by contradiction
Assume that there exists a finite subset Jy of N\ {i1} such that £l <
S ics, |fil. Then there exist o = (")) in [-1,1] and o = (o™} in
[—1’ ]_] [{Au{i iz H such that

~fa=Y o and ~fu= 3 o
ich FE(AU{L i)

Let g1 = ¢, and go = ¢;,. It is easy to see that g1|y, galy € NA(Y"). Indeaq,
let 3@ = (3) and y@ = () in Sy, where

ol ifieq, o ol® i ie (AU E)\ Lig),
y}rl] =41 if i =41, =31 if 1 = 1z,
0 otherwise, 0 otherwise.

Then ¢ |y (v} = 1 = aulylly> and gly(@?®) = 1 = [lga|v|lv-. We now
have

LEMMA 5.6. The following are equivalent.

(@) auly +galv € NA(Y). .

(i) There erists o finite subset Jo of N\ {i1, €2} such that | f; | +|fi,] <

E{EJ: If‘il‘

Proof of Lerama 5.6. (i)=-(ii). Suppose g1|y + gzly € NA(Y) but there
is no finite subset Jo of N\ {#1,42} such that |fiy | + | fiel £ EiEh | fil- Let
y = (%) € Sy be such that (g1 + g2){y} =l + viz| = (@ + g2y lly~
It is easy to see that y;, and y, have the same sign. We have f(y} = 0, %0

—(wi fiy T ¥irfiz) = Zi],iﬁl 2 ¢:.fi, which implies that
vufo toafal=| 30 wAl < 3 mAi< 30 1A
#il :1"2 ""pé't‘l liﬂ i#I :-‘I-E
Let a;,, 04, € [—1,1] be such that sign{oy,) = sign(ny,) = sign{pn) =
ﬂiﬂ{y‘iﬁ)r Tyh‘ < Iﬂil L Iyﬂ, < "ﬂ'l'rzl and

o0

~(o fiy Foifind = Y. Al
i=1ti#i1|i!i
Let a:-::‘} and ﬂag' Y in [—1, 1] be such that
n

—(HE?].fi1+ﬂE:]fiz}= 3 A

"_'_"]'lt#il 'ri?



TRANSITIVITY OF PROXIMINALITY 17

EEET] —+ (¢, anl ﬂ!!‘:] ~ (rg,. Now let ) = (y}“}}, where

_Slgﬂ(fi] ifi e {1&- * ln'} .\ {ilrii}a
g™ = { oM if i =iy,

ol if § = 4.
Then {g1 + g2(y™) = o™ + o{™ and (g1 + g2Xy™) — @4, + oy, This
contradicts the fact that [[(g1 + g2}ly|| = (¥ + |- So there exists e finite
subset J; of N\ {i),42} such that |f;, |+ |fi;] < Zie,r: | fil-

(ii}=(i). Aswume there exists a finite subset Jo of N\ {ii, {2} such that
[firl + finl € iy, |l Then there existe o € [—1,1]M2 such thet [f;,| +
| fia] = = ¥ i, @i fi- Consider y = (1), where
&g if i € Jo,
sign(f;,) ifi=+4,
sign{f;) if¢=9ds,

0 otherwise.
Then |{¢ + g2){y)| = 2 and s0 g1y + g2y € NA(Y}.

End of proof of Proposition 5.5. U ¢ + go & NA(Y) we are done.
Otherwise consider g3 = €;,. Then as in Lemma 5.6 we can show that
g1 + g2 + g3 € NA(Y) if and only if there exists a finite subset J3 of
N\ {i1, 12,43} such that |fi| + |fiy] + |fiol € 2iey £l Since f € S,
there exists o such that 3772, [fi;| 2 2/3. So this process has to stop, and

we get n < ng such that 3% | g; and gn4p are in NA(Y) but Z’;:} g; is

not, contrary to the assumption that NA(Y') is a vector space.

REMARK 5.7. Lemma 5.6 is not true if f;'s do rot have constant sign.
Indecd, let f = (1,-1,1/2,1/4,1/8,...). Then both ¢; = {1,0,0,...}) and
es = (0,1,0,0,...) are in NA(ker f) and also e; +ez € NA(ker f} but Lemma,
5.6(ii) is not satisfied. But here ) + ez + €3 ¢ NA{ker f).

As usual let f = (f;) € Se, \ NA{co). Let |fi.| = max{|f] : i € N} and
fi;| = max{|f;| : i € N\ {d1,....¢j_1}} for 5 > 2. Let ¥ = ker f. Then we
have

W =

THEOREM 5.8. NA(Y) is a wector space if and enly i (fi| 2
=1, 44, |fil- Moreover if NA(Y) s a vector space, then NA(Y) = {hy :
h € NA{cg) with the i)th coordinate zero}.
Proof. Let f = (f:) € Sp,, |fl = (1f:{} and let
. 1 iffizd,
sign{fi) = { ~1 i ;<.
Now we define a map T : ¢y -+ co by T{x) = (sign(f;)z;). Then T is an in-
vertible isometry and T'(kez f) = ker|f|. Hence NA(ker | f|) =T*(NA(ker f)).
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——

If NA(ker f) is a vector space, then so is NA(ker|f|). By Propositiop

5.5, |fu) 2 352y, iy 1fil- The converse follows again by Proposition 5.4
The second part is a consequence of Proposition 5.4, =

THEOREM 5.9. Let f = (f;) € S¢,. Then NA(ker £} is orthogonally jin.
ear if and only if it is linear.

Proof. Suppose NA(ker f) is orthogonally linear. Let T" he an isometry
from ¢y to cg defined by T'{x) = (sign(fi}x:) as in the previous proof, They,
NA(ker f) is orthogonally linear if and only if NA (ker | f1) is. Now it isen
to prove that, if NA(ker | f ]) is orthogonally linear, then |f;,| > 307, | < il
where |f,| = sup{|fi| : § € N\ {i1,...,51}} for § = 1 and 4 = {0},
Suppose not. Let 95 = &, for j = 1. Then g5 € NA(ker |f]) for 7 > 1. It is
easy to see that g; is strongly orthogonal to g1. Thus ¢ + g3 € NA{ker |f)
by crthogonal linearity. Now as in the proof of Lemnma 5.8, there exists a
finite subset J2 C M\ {4, 43} such thax |f;,| +ifi| < 3 iy, | fil: There exists
oy = [-—1, 1] for: = Jo U {ig, 1;4} such that

~(fal=lf) = D_ oulfii and e €{-1,1}.

i€ Jal 1 {fa 1a]}

Now let y = {14), where

a; iféie o {‘ig, 'i4},

1 iféi=idy,

-1 ifz1= 13,

0  otherwise.
Then ¢ € Syurig,4q) a0d |ga(w)| = 1, which implies that g is strongly
orthogonal to g1 + ga. Thus g1 + g3 + ga € NA(X) by orthogonal linearity.
Proceeding as in Proposition 5.5, we show that there exigts n € N such that
gn+1 18 strongly orthogonal to g, +g3-+g4++ < ++gn butt g3 +g3+ga+ - - +gni1

i8 not in NA(X ), which contradicts the orthogonal linearity of NA{X). The
converse is trivial. m

m:

COROLLARY 5.10. Let Y be a non-proziminal hyperpiane in cy. Let f =
(fi) € &1 be such that ¥ = ker f. Then the following are equivalent.

{i} Y i a P space.
(1) Ml = 32 L il whero 7o) = max{)f| : § € N} and |f. =
sup{|fi| - i € N\ {d1,...,4521}) forj > 2.
(i) NA(Y)={h)y :h e NA(co) with the iyth coordinate zero}.

Proof. (1i)<{iii) follows from Theorem 5.8; (i}=(iii) follows by Corollary
5 of [7], Theorem 5.9 and Theorem 5.8; (iii}=>(i) foliows by Theorem 3 of
[3) and Corollary 5 of [7]. »
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