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Abstract

This paper proposes several variants of disparity-based inference {Ann. Stabsi 22 (1994}
1081- 1114} We mtroduce these modifications and explain the mativation behind them. Several
of these cutimatory and tests have attractive efficiency and rolustness propetties. An exten-
sive numerical and graphical inveatigation is presented to substantiate the theory developed and
demonstrate che small sample properties of these methods. An cmpty <ell penalty iz found to
preatly enhance the performance of some of these methads.

Keywords: Yowered Pearson divergeace; Kobusl likelihood disparity; Winsanzed and trimmed divergences;
Inflectinn point; Empty cell

1. Imiroduction

Consider the standard parametric setup of inference where we have a family of model
distribniions # g = {Fy,#€ @}, ® C R”. In realily, assumed models are almast never
exactly true, and our goal is to estimatc 6 efficiently whea the model 1s correct (i.e.,
when the true distribution &G € % ) and robustly in case the true distribution is in the
neighborhood of the model but not necessarily in it. In hypothesis testing problems we
desire to have & procedure which has high power under the model while being faurly
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stable in terms of level and power when model assumptions are violated. Tradi-
Honal parametric metheds such as those based on maximum likelihood are gener-
ally poor performers from the robustness viewpoint, although they are usualiy optimal
under model conditions. On the other hand, classical robust estimators such as the
M-estimators usnally attain their robustness at the cost of first-order efficiency (e.g.,
Hampel et al., 1986). Certain minimum divergence procedures, however, can attain
these properties sitnultaneously. Atmong others, Beran {1977) and Tamura and Boos
{1986) attempted to achieve the dual goals of efficiency and robusthess by using the
minimum Hellinger distance estimator for continuons models. Simpson (1987) stud-
ied minimum Hellinger distance estimation under discrete models. Simpson {1989)
also discussed the robust hypothesis testing problem for general models using the
Hellinger distance, Lindsay (1994} gave a generai framework to density-based min-
woum divergence estimation through the construclion of disparities and the descrip-
tion of a general class of estimators many of which are both robust and first-order
efficient for discrete models. An extension to the continuous case was considered
by Basu and Lindsay (1994).

While all the minimwm disparity estimators are first-order efficient under standard
regularity conditions, additional special features are required for their robustness (see
Lindsay, 1994). In this paper we consider a new class of density-based diverpences,
many of which exhibit such robustness features very pronouncedty, and hence appear
to be worth pursuing. The struchwe of these divergences are very much like those
of disparities, but some of them do not have the convexity property of the defin-
ing function C(-) (Section 2). We investigate the efficiency and the robustncss of
the corresponding minimum divergetice procedures, appropriately modified wherever
necessary. The performance of the methods are illustrated through a large numeri-
cal study involving simulation results and real-data exampics. To keep a clear fo-
cus in our investigations, we will restrict the present work to discrete modlels. We
hope to consider the application of similar techntiques to continuous moedels in a fu-
ture paper. We trust that the paper illustrates, among other things (2 more detailed
discussion is gtven in fthe Concluding Remarks section) the possibilities of modify-
ing other related divergences so that they can be analyzed within the framework of
disparities,

The remainder of the paper is organized as follows: Section 2 contains a hrief de-
scription of the class of disparities in general followed by a discussion of the proposed
divergences. In Sechon 3 we discuss the asymptotic properties of the estimators, and
their modifications, the breakdown point issue, and robust testing of hypotheses using
the above divergences. Section 4 presents numerical results, where we also illustrate the
sffect of an empty cell penalty on the ptocedures. Section 5 presents some concluding
remarks.

Throughout this paper we will refer to true distribution by &, which may or may
not belong to F 5. We will assurue that both G and F g belong to ¥, the class of all
distributions having probakility density functions {pdi©s) with respect to 2 dominating
measure. We will also denote the density function for zach distributions with the cor-
responding lower case letter, e.g., the pdf's of (7 and Fy will be¢ denoted by g and fo.

respectively.



A, Basu et al. | Compwtational Statistics & Data Analysis 45 (2004) 741763 743
3, Minimo disparity inference and proposed methods
2 1. Disparities and residual adjustment function

Consider & parametric family of distributions # ¢ having densities fa(-) with a
coutable sample space. Without loss of generality, let the sample space be & =
{0,1,2,...}. Let d(x} be the empirical density at x (relative frequency at x) based
on a random sample of size » from the true distribution G(-) which is modeled by the
above parametric family of distributions. Our intevest is in making infetenice about the
nnknowa &. Following Lindsay (1994), we define a disparity—a measure of discrepancy
between probability densities d(-) and fy(-)}—given by a thtice differentizble convex
function C(-) with C{0)=10 as

peld, fo) =) Cl6(x))fo(x), (1)

¥

where the Pearson residual 3(x) is defined to be 3{x) = d(x)/fs(x) — 1. The tange
of the Pearson residual is [ — 1,00), and d(x) = —1 only when d(x) =10 (i.c., when
the cell x 1= empty), and squals O only when J(-) = fy{-). Under differentiability of
the model, the minimization of the disparity measure (1) corresponds to solving an
estimating equation of the form

~Vpc =3 A(B(x)V folx) =0, {2)

reX

where A(6y=(1+48)C(8)— C(3) and V represents the gradient with respect to 8. The
function .4(d) can be centered and scaled, withour changing the estimating properties of
the disperity, so that A(0}=10 and A'(0)=1. We will ca!l the centered and scaled func-
tion 4{-) the residual adjustment function (RAF) of the disparity. Minimum disparity
estimators have received wide attention in statistical inference becanse of their ahility
to reconcile the propertties of robustness and asymptotic efficiency. See Lindsay (1994}
for more details of the method, and Basu et al. {1997) for a comprehensive review
including some of the later work, When C(.) is strictly convex, the disparity measure
it nonnegative and equals & ouly when the densities d(-) and fy(-) are identically
squal. Through appropriate selaction of C(-), a large family of important divergences
and distances can be developed in this manner, including the power divergence family
(Cressic and Read, 1984} which gencrates the Kullback-Leibler divergence and the
Hellinger distance as special cases. The curvature parameter 4”(0), which is the sec-
ond derivative of the RAF evaluated at & =< 0, is'a measure of the tradeaff between
robustness and second-order efficiency (Lindsay, 1994). Large negative values of 4"{0}
correspond to stronger robustness properties (but also greater second-order deficiency),
while 47{(0) =0 corresponds to second-order efficient estimators in the semse of Rao
(1961, 1962).
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2.2. The powered Pearson divergence

Here we introduce a pew family of divergeoces—the powered Pearson divergence
family—between d(-) and fo(-)} which satisfy the general definition of a statistica]
distance in the sense that it is nonnegative and equal to zere if and only if d(-)= Fal)
Tn this paper we will consider the powered Pearson divergence (PPD) and appropriate
modifications of it which have reasonable efficiency and robustness properties. Although
the structures of the resulting estimating equations are similar to those of disparities,
some of the PPDs as well as some of their modifications do not belong to the class
of disparities. In addition, we present an extensive comparative study of the proposed
methods with several robust modifications of the likelthood disparity as in Chakraborty
et al. (2003), and show that the results sre very similar in either case,

The PPD, indexed by a single parameter « & (0, 1] between two arbitrary discrete
densities g{-) and f(-} on & is given by

2
PPD.(3. /) = 515 ) =t e

and g{-) and (-} are replaced by 4(-) and fo(-) under the parametric estimation setup.
The PPD family inchudes Pearson’s x (=1} and Hellinger distance {«=1), and can
be thought of as L, distance on the power transformed densities,

As in the case of dispanties, one can write PPD, in the form (1), and arrive at
an estimating equation of the form (2), where the C() function, its second derivative
C"(-) and A(-} function are given by

C(E)= 73 13+ 1y~ 11 @
CH8) = ':E &+ 1 —x— {1 —20)(5 + 1)), {4)
A{ﬁ}-:i-i—z[{ﬁ-at-l}’—l][@o:wI}{&-!— ¥+ 1] (5)

However C"(-} is always nonnegative only when a 2 1, so the C{-) functions of the
PPD; family are not convex on [ — 1,00) when # < 1. But, since smatler vatues of o
provide greater downweighting for farger outliers, these are the interesting values of x
for robusiness purposes.

One of our main objectives in this paper is to¢ investigate the effect of this noncon-
vexity, and modify this family appropriately to obtain stable inference. Since A/(&) =
(6+1)C"(5) and 3= —1, it can be seen from Eqs. (3), (4) and (5) that for & < I, the
RAF starts to redescend after a certain inflection point &) where 4'(3;) becomes zero.
Some simple algebra shows that this infiection point is given by &; = [(1 — a}/(1 —
Zee))' — 1. Beyond & > 4, the function A(.) steadily decreases, and moresover it be-
comes negative for & = §; with 5; =[1/(1 —Zac)]”"-— 1. This results in a negative impact
of a big outhier, as compared to a large positive impact for methods like maxitmom like-
Hhood, and minimal positive impact for good robust methods. When used just as it is,
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ge estitnation procedures resulting from the minimization of the PPD, with a < -
(particularly for very small values of a) can lead to monsensical results. Later on we
will look at an example under the Poisson model where a very small value of « is
ghown to lead 1o a global but silly minimum at § = 0.

We propose the following methods to remedy this problem. One way is to force
e RAF to be equal to zer¢ from the point where it dips below zero for the first
fme (at &), and the other i v extend the RAF at 6 = §;, and hold the residual
adjustrment function consiant at slope equal to zero beyond the inflection point. In the
first case A(0)=10 for 6 > &2, and in the second case 4(5)=4(8,)= L/[2(1 — 2x)] for
5 > §;. We call the divergence based on the former modification the #imumied powered
Pearson divergence (TPPD) and the divergence based on the latter the Winsorized
powered Pearson divergence (WFPD). The TPPD and WPPD with « < 1 are given by

=L d(x)* ~ fo(x¥ 7’
TPPD.(d, o) = T o C{%—Eﬂ}”‘ [ FolxF ] Jo(x)

+2(1 — 2u)\fr—2 Z d(x),

df fuE (11 —2u)yl=

1 d) = fox)*]”
WPPD,(d, fo)= — [ ‘ ] P
2 dffa{[tlEm—zmw Falx)
(1- Zu:]*f'“— ]
i [ ) ~ g fols)
dffna{{l—aw P— O 2{1
The C(-) functions aré given by
’ L 5 1 1 ) 5 ( 1 )Uﬂ _
ﬁ[{ + 1) — 175, <{ 7= .
Cippo(d) = 4 ] " (6)
21- 2)" 254 1), 6 (1 - h) 1
( 1 _ /=
Sl 1) - 1, s< (1) -
Cwppp(6} = 4 ™

(L-2ee? ] (1-:::)”“_
e (8+1} 2 =23 d = 5 1.

The inflection points &, and the trimming peints §; for ¢ach of several values of o
wre given in Table 1. Also we present the figures of the C(8) and A(5) functions of
the PPD,, TPPD, and WPPD, families corresponding to «=0.1 in Fig. 1. The WPFD
essentially replaces the remaining part of the C(5) curve on the right with a line of
skipe equal to & from the point where its derivative C'(8) reaches its maximum value
&= C'(5,) on the positive side of the axis (which is the inflection point}). For TPFD
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Table 1
Inflection rnd mimming poius for PPD,

¢ =0 0o0s 010 o155 02 0.23 0.30 ¢35 240 GAs5 ~—

3 e—-1 195 225 265 321 406 S46 Bll 1459 4118 oo
3 -1 72% 331 078 1186 1500 2021 30.i8 5450 16581 oo

Tl

¢ 5 10 15
®) :

Fig. 1. C(-) and A(-} fuxctions of PPDy, TPPD, WPPFD and LD with a=0.1.

the C(#) function is linear beyand the frimming point ds, with constant slope equal to
C'{;). Notice that the C(-) functons of WPPD are still convex (althongh not strictly
convex) but the C(-) functions of TPPD are not. However both C(6) functions have
unique minipum {equal to 0} at a =0.

Notice that for 2 [],1] no modification to PPD; is necessary since the defming
function C(:) remains convex. Alternatively, the inflection and trimming points are at
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mfinity for o 3 3. Thus PPD, =WPPD,=TPPD, for « > §. We will see later, however,
jhat &= 3 is the only case of imtercst to us from the robustness viewpoint within the
PPD,. %€ [3.1] class. For the rest of the paper, our interest will be on WPPD, and
TPPD, fanilies only for n:E[[L%].

we note that sltheugh we amived at the PPD, family because weighted sums of
squared differences seemed matural divergences to imvestigate, we bave since noticed
that Read and Cressie, (1988) arived at this very same family as an approximation
to the well-known Cressie Read power divergence (Read and Cressie, 1988, p. 95).
However, unlike the PPD, family, the power divergences all carrespond to convex C(-)
fopctions.

In this paper we will compare the estimators generated by the PPD, and its mod-
ifications with those resulting from the Winsorized likelihood disparity (WI.I}) and
the trimtoed Hkelihood disparity (TLD) families which are modifications of the likeli-
hood disparity similar in spirit to the modifications of the PPD), discussed earlier. The
likelihood disparity (LD} between d(-) and £g(-) iz defined by

d, di{x3ilo
LD{d, fs)= ; {x) gf()

which is miniroized by the meaximum likelihood estimator of & in dizcrete madels. The
comespopding C(-) and 4(-) functions are given by C(&)=(-+ 1}Hog(d + 1) — & and
A§) = & (for comparison we have presented the C(5) and A(5) functions of the LD
in Fig. 1 alsa). .

The WLD; and the TLD, for A any fixed sumber in {0,1] and 4==1— A are of ths
form.

_d)+ fs(x}]

d(x)

WLDi(d, fo)= 3 [d{x]los( o)

difa< ik ) +fﬂ[-"]—d(x)]

Z [d{.r}lngﬂ.—i— fg[x)]

difez 147
WD = T |drton( £EL) 4 o) -a)
ditac il Jolx)

S dixXlogi+ i)

A1

The WLD, is a form of the robustified iikelihood disparity {RLD) considered by
Chakraborty et al. (2003). It is easy to see that the C(.) fimctions for WLD; are
cnvex (although not strictly convex) while the C(-) functions for TLD; are not. Alzo
WLD,.; = TLD;_, =LD.

'For better understanding the robustness of these methods, we also present the com-
bined weight function w.(5.) (Park et al, 2002) for the TPPD,, WPPD,, TLD;, and
WLD; families for diffcrent values of « and 1. The combined weight fimetion we(3.)
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represents the relative impact of the observation in the estimating equation compared
to maxfmuom likelihood. Here we define B combined residual &, a5
&P(-x}r d ﬁ fﬂ':
én(x} = {
’5&'{;]: d > fﬂ

with the Neyman residual 8y{x) = [d(x} ~ f5{x)}/d(x). The combined weight function
wi(d,) is

' "lff"“}, 1< 6 <,
A'(0), &, =0,
Wb )={ (8)
1-34, A L D<dy, <]
& 1~&./° ¢
| 4'(co), 8, =L

On the positive side of the §; axis, this amounts to looking at the weights as & function
of the Pearson residuals but in the Neyman scale. For better outlier robustness, it is
desirable that the weight fimctions converge to € as 8. — 1. If we restrict TPPD,, and
WEPPD, to xe(f, 1], all the four famities of weigit functions satisfy this property,
but the TPPD, and WPPD, appear to do this more smoothly. The PPT),, TPPD, and
WPPD, families coincide for w3 3, and their behavior for Jarge values of § makes
thetn highly nonrobust {except for z = %} which is demonstrated here only for =06
in Fig. 2(b), but is actually true for all > 1.

3. Asympiotic distributions and tests of hypotheses
3.1 Asymptotic distributions

While we emphasize the numerical results in this paper, we present brief remarks
about the asymptotic behavior of the estimaters. Notice that under the model the es-
tiinators comvesponding to the minimizers of PPD);, WPPD, and TPPD, are all Fisher
cansistent, which implies that they are all weakly consistent under the model as wel
{e.g., Cox and Hinkicy, 1974, p. 288). For the asymptotic normality of the functional
under the model, notice that for the FPDy, the peneral proof for asymptotic normal-
ity would work directly provided Lindsay's boundedness assemptions on A({-) were
satisfied (Assumption 24, Lindsay, 1994}, Unfortunately, the boundedness conditions
referrad to above do not hold generally for the members of the PPD, family (except
for #=1). Hence we need to refine Lindsay's proof,

The failtre of the PPD, family to satisfy the conditions imposed by Lindsay is due to
the fact that 4° and 4" become unbounded as & — —1, Le. 4= —1 is the only aberrant
pomt. Howewer, this is alto the feature of the Hellinger distance and the asymptotic nor-
tnality of the minimum Hellinger distance estimator is well established (e.g., Simpson,
1987), showing that the boundedness requirement is mot strictly necessary, although
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wbd

(a)
2.0 2.0
- d=01} | ] e= A=01
-——— 1=112 -— l=1/3
154 == i=172 16 ==« 1=182
— A=2/3 — =23
~a -
210 ‘ , 2 1.0 -
g R 8 :
1 1 I..
05 1 Col 05 |
: I: !
0.0 R — 0.0 4
-1.0 0.5 Q.0 2.5 10 <14 05 0.0 0.5 1.9
© g () L

Fig. 2. Combincd weight functions of (a)y TFPDy, {h) WPPD,, (¢} TLIy, (4) WLD,.

sufficierd, In order to bypass this problem, we nexi establish the following Lemina,
which helps us refine the asymptotic normality proof (with the true distribution being
in the madel), For this purpose, we madify Assunption 24 of Lindsay.

Asspmaption 1, A(—1) is finite and A’(4) and A™(6}4 are bounded in a neighberhood
of zero and as § — .

Notice that we have imposed the boundedness condition on a stoaller set rather than
oh d €[ — 1,00), thus excluding the point where Lindzay's condition is violated by the
PPD; family.

Lemnm 1. 5 A(5} satisfies Asnumption 1, then for all nonnegative r
AP =)= (=1 < Bx(r— 10

for some positive constant B.
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Proof. As
___A{rz— D—-{r*~1)
h{r)" {r—l}l

is a continucus function, it suffices to show that A(r) is bounded at r =0, as r — 1,
and as r — oo, This i3 sasily seen to be true by applications of L Hospital’s rule and
Asmsammption 1. O

Notice that the above lemma essentially establishes the result
G ~ 1)~ A — 1) = (F* = AW ~ D € B x (r—5)°

in Lindsay (Lemma 257, restricted to the case whers the tme distribution belongs to
the model. It follows from our Lemma I, above, that

/2
[4(5(x)) — 3(x)] < B x {( ﬁ;&) — 1},

the analog of the bound in Lindsay, Eq. (30). Thus the most important step in the
derivation of the asymptotic normality is obtained without requiring the boundedness
of A" or A" at =—1.

We make the following additional assumption on the model,

Assumption 2. Let fo(x)} be the density of the true distribution, and let walx)=(3/06)
log fa(x) represent the likelihood score function. Then 3 £ (x3ua(x)] < oc.

Then, for the tme disttibution belonging to the model, the results in Theorem 23 and
Lemma 29 of Lindsay continue to hold, wnder the weaker conditions in Assumptions
i and 2 above.

To make the asymptotic argument for the WPPD, and TPPD, families, Iet us write
d(-Y = d,(-) for the data density st sample size », #nd let 6, be the comesponding
estimator. For the WEFPD, case, once again our Assumption 1 continues fo hold. Notice
that for ihe inflection point &, the second derivative 4”(-) i3 not defined; however, the
stooothness conditions are satisfied in an interval of & around 0, and the results follow
by noticing that {x:d,(x)/fs{x) ~ 1 =34} converges to a set of probability zero
under a twe distribution which belongs to the model, Similarly, 4'(:) and 4"(-) do
not exist for the TPPD, at the (rimming point & = &;, but the probability of the set
{x:d (x)/fo(x)— 1 =8} goes to zero under the model.

3.2, Robust tests of hypotheses

Given 2 parametric hypothesis 18 = fy {or more generally Hy: < &, C @), one
can define robust tests of hypothesis for the above using the TPPD, and WFPD,. Given
the empirical density J(-), the WPPD, test siatistic for the above hypothesis Is given
by

ZHIWPPD;;(J, fﬁnj - WPPD-!{d! fﬁl)]s
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where @ and 0 are the minimizers of WPPD,(d, fy) over &; and the unrestricted

ter space &, rospectively. One can generate & comesponding statistic wsing the
TPPD, in place of WPPD,. Similar statistics can be defined for WL}, and TLD..
Combined with the result of Section 3.1, it follows from Theorem 6 of Lindsay (1994)
that the oull distributions of the WPPD, and TPPD, statistics have the same y limit
as the —2 xlog likelihood ratio.

33 Breakdown pgints

The asymptotic breakdown points of the estimators corresponding to the WPPD,, and
TPPD, have been established elsewhere by Basu et al. (2001}, In particular, the results
show that the estimators bave 50% breakdown point under tive model for any outhier
sequence.

4. Numerical studies
4.1, Prelimmaries

We perfortn an extensive numerical study to investigate the properties of the mini-
mum divergence estimators and the cormresponding tests of hypotheses for the proposed
families snd compare them to the mathods based an the WLD,; family (those based on
TLD; wete very sitnilar). We chose the Poisson and geometric models {which are the
two most commen eount data models) to base our investigations upon. Since the resulis
are very similar, we concenirate pnmarily on the Peisson mode] In our presentations
to make our point more succinct,

First, to demonstrate the peculiarifies of the PPD, method, we consider a part of an
expeniment originally reported by Woodmif et al. (1984), and analyzed by Simpson
(1987). The frequencies of frequencies of danghter flies camrying a recessive lethal
mutation on the X-chromosome are considered where the male parents have been ex-
pozed to 2 certain degree of 2 chemical. Roughiy 100 daughter flies were sampled for
¢ach male. This particular experiment resulted in (x;, /:)={0,23), (1,7), (1,2}, (21,1},
where x; is the pumnber of danghters catrying the recessive lethal mutation and f; is
the number of male parents having x; such daughters. We will refer to this as the
Drosophila Data [

The estimators of & under a paramewic Poisson (6) model corresponding to o =
0.1,0.2,0.3,0.4 for the Diosophila Data [ are presented in Tabie 2 for the PPD,, TPPD,,
WPPD, and pWPPD, famiiies. The pWPPD, method is a modificetion of WPED, to
be introduced later in this section. For this model it can be shown that PFD,(d. fo)
comverges ta oy = (1/2€€ Ha{0)* — 1)* as § — 0. In this example it appears {Fig. 3)
that 8 = § js the global minimum of PPD, for o = 0.1. Tt means that the estimator
tends to “implode™ toward O in this case. On the other hand as 8 — 0 TPPD(4, f4)
converges to ¢y = {1/2a2 X0 — 1 ¥ +2(1 — 275, d(x), and WPPD.(d, f¢)
converges ko o3 = (1/26 WA — 1 +[{1 — 222241 - ¢}y =172, d(x). Notice
that ¢, ¢y € 03 for o < ,%, and at least for the Drosophila Data 1 example, o3, 3
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Table. 2

Tha estinmated parameters uncder the Poisson model for the Drosophila Data [

& BPD, TEPD, WPPD, pWITT, PPD o0 s(HD) PPDpenisy
0.1 0 0.153 0.16D 0352

0.2 0.246 0,245 D.246 0.360

0.3 0.362 0,302 0.302 0.368 364 11018
04 0339 0.339 0.339 0.376

The estimated parameters under the LD are §=3.059 and 0,394 with and without the outlier, rspeciively.
The some sre 0 = 31.565 and 0.424 when § is the minimum Pearson x* estimator.

.20+

0.15+

Divergence

0,10+

0.05-

[} 1 T T

T T T
0.0 0.05 010 045 0.20 .25 0.30

Flg. 3. Valaes of the divergences over & for te Drosoplula Data 1 cxample.

are not the global minima of the corresponding divergences at ¢ = 0.1. See Fig. 3
for a graph of the three divergences as a function of (! when « = 0.1. This example
demonstrates the possible pitfalls of the PPD, for smsll «, and the need to modify
it. A similar imploding hehavior towards zere has alse been noticed by Jones et al.
(2001) in another density-based minimum divergence estimator for a different model.

A second concern was the smal! sample efficiency of the proposed estimators. Notice
that the value of C{—1) for the PPD, and the derived families is 1/(22°), so that
farnilies with very small values of o put a buge weight on an empty cell (d=-1, iz,
d(x) = 0}, and this can lead to the small sample performance of the methods o be
quite inefficient at the model, aithough their outlier robustness properties make them
otherwise attractive. A similar phenomenon for the Hellinger distance and some of its
relations was observed, arnong others, by Lindsay {1994), Harris and Basu (1994) and
Basu et al. (1996). We show here that an empty cell penalty as developed in Hartis
avd Basu (1994) can lead to dtamatic improvements in the method. The penalized
versions of TPPD, and WPPD, are obtained by modifying the weight of an empty cell
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1.2 1.2-
1.0+ 1.0

0.8 1

0.6 -

0.4+

0.2 -

. 2 : 0.0 -
(2) D 2 4 & B 10 ()

..
-

8 10

Fig. 4. Hislogram of the mull distribution of TPPDps and pTPPD,,, test statistics. Sample size & = 20 with
100 veplications: {a) ondinary test datittic; (b) penalized test statistic,

to be equal to that of LD as

a2
pTPED (d, f5) = % E [d[x)“ — folx) } £o(x)

I+
B<d/fy< (112} Jolx)

+21-2a)%2 ¥ d(x)+ 3 felx),

/e (11 -2 d=0

- i )3 dxyF - foxr]?
p PDu{d'lfﬂ]_ 20:1 |, " l fﬂ(x}u ] fﬂ(—r)
0« df g < ({1 —a)i1—2u))¥

(1 - 2&;]“&—2 _l__ ]
+ E l (1 — ee)ife—T d{x}— 21 — 2a) folx)
a7 o3 (01 =) =220

+3 folx).
d=0

While the improved performance of the penalized estimators and tesis will be self-
evident in the sipnulations, here we present a small graphical investigation of the na-
ture of improvement using the test statistics and their asymptotic limits. We take the
Poisson (§) model, generate data from Poisson (5), and consider testing Hyp:€¢ =3
versus K, : 0 = 5. For illustration we choose o=0.3, In Figs. 4(2) and {b} we present
the histograms of the test statistics for the TPPDgs and pTPPDY,; methods. The sample
bize was # = 20 with 100 replications. We also superimpose the y*(1) density on i,
which is jts asymptotic limit. Cleasly, the 3* curve provides a far superior approxi-
mation for the histogram of the penalized test statistic—particularly the tail part, The
vertical line represents the 5% critical point of y2(1).
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Flg. 5. £*(13 Q- plot of WPFDy, and pWPPD,y lest statistics. Sample size 0= 100 with 100 replications:
{a} ordinary test slatistic; (h) peselized test stafistc,

For the same hypotheses and same trme distribution, e Figs. 5(2) and (b} we present
the probability plots (Wilk and Guanadesikan, 1968) of the guantiles of the ordinary
and penalized version of the WPPDya test statistics against the quantiles of the ¥*(1)
distribution. A sample size » = 100 with 100 replications was used, The significant
improvement due to penalty is apparent.

4.2, Examples

We applied the methods propased in this paper to some rcal data sets. The first
example invoives the incidence of peritonitis on # = 390 kidney patients (Table 3). A
glance af the data suggests that a geometric model with § around 1 may fit the data
well. The data set, provided by Prof. P.W.M. John, was previously analvzed by Basu
and Basu {1998). The observed frequency (O) of the number of cases of pettonitis
(%) is modeled by the geometric distribution with success probability 8. For an estimate
8, the expected frequencies arc then cbtained as &y =n§(1 — @), The largest number of
cases of peritonitis is £=12, 50 we merged all the expected frequencies for £ = 12. To
assess the goodness-of-fit of the model, we use the log likelihood ratio statistic which
is given for this data as

12
G* =23 Orlog(Oh/Ex).
R

In this example the fit provided by the MLE is excellent; thase for the cstimators
hased on the penalized divergence are almost as good, and certainly much better than
those for the estimators based on the ordinary diverpence. The two marginally large
observations at 10 and 12 have litle impaet since the sample size s so large. This
example shows that when the data roughly follows the model the penalized methods
are ciose to likelilivod basad cnes in performancs.
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Table 3
The observed frequencies (0 ) of the wumber of cases (k) of peritonitia for sach of 390 kddney patiems and
ge: expected frequencies wnder different methads with the goodness-of-fil likelibcod ratio- statistes (G2)

e —

. &£ 0 1 2 3% 4 5 & 7 % 9 10 1t 12+ &
O, 19 % 4 13 17 4 4 1 06 0 1 & 1 —

ML 1935 915 431 347 125 &3 32 14 0% 04 02 01 01 104

TPPD,

ol 7376 528 362 141 55 22 03 03 01 00 00 0O b 524
02 2168 903 428 190 K4 37 17 07 03 00 01l 00 0D 219
0.3 2078 971 453 212 89 46 22 10 05 02 61 00 OO0 148
0.4 2029 973 467 224 108 52 25 12 O0F 03 oO1 01 o1 123
a5 1991 975 417 234 114 56 27 13 407 032 02 01 0.1 1.1
pT?Pﬂ:

f.1 2006 974 473 30 1.2 54 36 13 DG 03 01 01 0 1.6
0z Wae 974 475 231 113 585 27 13 0é 03 02 o1 04 11.4
3 1963 915 476 233 114 56 27 13 07 63 462 01 01 11.2
(12} 1983 7.5 479 236 116 57 28 14 07 O3 02 01 01 11.40
(1] 1967 975 483 239 115 3% 18 14 0.7 04 02 01 00 1.7
WrrD,

0.1 2377 Si& 362 143 55 2) 08 03 04 €1 00 00 00 S22
0.2 2166 963 428 190 8% 38 1Y 07 03 01 01 40 00 218
03 2007 970 454 212 99 46 22 1O 45 02 01 0% 006 148
04 g 973 467 224 1W0R 52 25 L2 4946 03 01 91 61 123
0.5 1991 935 477 234 114 56 27 13 07 03 02 41 4! 11.1
pWPFD,

0l 2004 974 474 230 §1.2 54 26 13 046 03 01 ¢1 DI 11.5
a2 1999 974 475 2312 123 85 27 11 44 03 62 01 11.3
0.3 1992 975 477 233 14 56 27 13 0¥ 03 02 01 Gl 11.2
04 1983 915 479 236 116 57 28 14 07 03 02 41 Gt 11.0
a5 1967 97% 483 239 119 59 29 14 07 44 02 001 Q) to.?

The second example also invalves data from Woodroff et al. (1984). The responses
now are the frequencies of frequencies of daughter flies having a recessive lethal mu-
tatien on the X-chromosome where the male parent was either exposed to a dose of
chemical ar to control conditions. This data set, also analyzed by Simpsoa {1989,
Table 5) will be referred to as the Drosophila Data IT. The responses are modeled as
Poissons with raean 6; {control), and &; (exposed) respectively. For testing Hp: §, =2 &,
against A 18, < 8, a two sample signed divergence is appropriate. Suppose that ran-
dom: samples of size m; are available from the population with density 7y (-} and let
di{*) be the empirical density of /th sample, 7 = 1,2. For a divergence o-) between
™wo densities, define the overall divergence for the two sample case as

1
nAm

D =D(th.b;)=

(H]P{dhfﬂ‘; } + #zﬁfdl-fﬂ;))-
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Table 4
The nigned divergence satigtics and their p-valurs for the Drosophils Detz I
Divergence 3 All observations Ouiliers delated
signed div. pvalue signed div. pvatye
1D 2.595 0.002 1.09% 0,136
HD 0698 0.243 (.74} 0.229
piD 0.707 0.240 0.758 0.227
TEFD, 1 028 0.439 0187 0.426
0.2 0105 458 0.225 0.411
0.3 0.244 0404 0.326 0.372
04 D448 0.327 0.507 0.306
o ITED, 0.1 0.027 0.489 0.187 0426
02 0.104 (459 3225 0411
03 .44 0,404 0.326 0.372
0.4 D451 1326 509 0.385
WEPD. 0.1 1.152 436 0.247 0.402
nz2 0.171 GA3Z 0264 {1.3%4
03 0.243 G403 D327 {L.372
04 0.448 0325 8.507 {306
PWFPD, 0.1 0.162 {436 0248 0402
0.2 0171 $.432 0.264 0.396
0.3 {245 {5407 0.327 D.3n2
04 1.45] {.326 0.50% 0.305

Given the ordinary divergence test statistic t, = 2a(Dy — 53), where By and D are the
minitaizers of IX-, -} under the nufl and without any restrictions respectively, the signed
divetgence statistic is given by £/ sign(f, — 6,) whete 8, and 8, are the untestricted
mitinum divergence estimators of the parameters; for both the ordinary divergence and
the penalized divergence, the signed divergence test is asymmptotically equivalent to the
signed likelihood ratio test. For the full data and the reduced data (after removing
the two large observations from the treated group) the sigued divergences and the
associated p-values using the standard normal approximation are givea in Table 4. The
results for the Hellinger distance (HD) and the penalized Hellmger distance (pHD} ars
also provided.

The presence or absence of the two large counts in the treated group has little effect
on the robust methods. The nuoll hypothesis, that the mean number for the control
group is no smaller than the treated group is supparted in either case. The conclusions,
however, ate opposite when one uses the signed likelihood ratio test. The cutliers
cause the cesult to be significamt in this case. Also, the p-values for the ordinary and
penalized staitstics ave very close, indicafing that the robusiness property has not been
compromised by the use of the penaity in this case,
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Table 5
Estimated biases and mean square errors of the estimators vnder consideraticn
M TPPDy pTPED, WFPD, pWEPD,

Hiae MSE Bizs MSE Rias MSE Biaa MSE

Sample gize n=20
0.1 —041683 L1502 (103 {.3851 —N.6144 1.1832 —={0.0958 0.3733
2 -0.5182 G2108 —(r09% 0332 035154 08026 -0.0935 0340
0.3 =G 4038 0.6596 ~0.0854 03181 —0Aa003 {1.6492 —{LOR52 n.2136
0.4 -0.2774 04402 00692 (2882 2 02764 04384 00682 02872
b3 =0.1587 03126 —0040d 0263} -DI587 03126 00404 02633
MLE 0.0079 0.2453
Sample size p= 50
0.l —0597 oFEse Q0701 04Tl 05955 07805 —D0.0677  0.145D
0.2 04078 04098 =008 01343 04063 04074  —00631 01334
0.3 =02751 02414  —D0567 01232 2 -D2Z742 02463 -0.0557 01226
hd  =BI7T2 G160l 00450 01137 —DJ76%  0.1599 —0.0447 01135
0.5 41009 01206 -DQ2EY 0059 —DA000 Ot —0.0237 0.1059
MLE Ga020 f.1045
Sample size m= 100
Q.1 —0.5510 ¢.5780 —0.0572 (LOGET —.5491 0.5745 ={.0560 0668
02 ={.2165 2206 -{.0512 0627 ~3157 0.2198 —{LO5 0624
03 ~0.1947 Q1138 00437  O0586 —C1943 01135 00433 D.OSES
04 —0.1197 0.67142 =00344 {40551 —11%6 0.0741 -r0343 00551
05 =0.0673 00579 00225  G0523 006873 00579 00225 0.0523
MLE D03 0.0503

5000 random samples were drawn from Poisson (5) with sample size = = 20, 50, 100.

41 Simulation results

In the first smdy, the detm are generated from the Poisson disttibution with mean
5, and modcled as the Poisson (#) distribution. Next, data are geaerated from the
{.9Poisson (5)+0.1 Poisson {15) mixtre, and the assumed mode] i5 Peisson (0). Here,
as well as in the rest of the paper, three sample sizes n = 20,50, 100 arc considered.
In Tables 5 and 6, we have presented the bias and the mean square emors of the
estimators of 8 (against the target value of 5) obtained by minirizing the WPPD, and
TPPD, and their penalized versions for severn] values of & for pure and contaminated
Poisson data respectively. [t is clcar that the small sample efficiency at the model is
an increasing function of «. The performance of the penzlized versions are remarkably
better, At sample size n = 100, the efficiency of the pWPPD,; estimator is over ¥3%
compared to the MLE. The performance of the TPPD, and WPPD, estimatons are very
close. For contaminated data, more rabust methods (those with smaller values of )
start doing better.

For comparison, conesponding values for WLD; are presented in Tables 7 and 8
for several values of 4. The efficiencies are now increasing in A under the model, while
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Table &

@ TPFD: pTFED, WPPD; FWFPD

Bies MSE Rias MSE Biag MSE Biag MSE

Sampir stze n=120

0.1 -0.5112 1.1932 00106 03027 —0 505 1.1930 0.5260 0. A4%0%
0.2 —0.421% 0.0493 0.0115 0.4556 —0A17% 09423 L4264 0.4495
0.3 =03107 0M26 00253 0421 —0,305] 07060 06387 04217
0.4 -01782 05150 Q0603 04032 0724 05127 04705 Q4048
.3 0.028% 0.4263 9.2002 04577 0.0281 0.4263 02002 04577
MLE 1008 17522

Sample size n =50

o1 ~0.3854 0.715% 04212 0.1341 03826 W ARE 0.0321 0.185%
1 Fr - 3406 £.3921 04333 0.1708 -0.2360 0.3901 00443 0.1717
a3 =G:1315 02472 040531 01608 ~0,1254 02461 00635 01625
04 00317 01827 00907  0.1501 —0.0358  (.1828  0.098% 01621
0.5 0 1337 .1868 02212 02055 0.1337 {.1368 02212 02089
ALE 1.04990 1.3133

SMPII? e n =100

0.1 —0.1455 0.4935 0.04560 LR LD —0.1451 0.491% 00558 00900
0.2 = 0499 0.1953 0.060% 0.0870 -0.G436 0.1954 0.0703 0884
o3 00144 0.1133 0.0833 00857 0.6214 0.1190¢ 00528 Q0887
0.4 40781 00993  G1228 00933 06848 01007 01305 (0955
8.5 0.218% 0.12865 62517 0. 1458 0.2189 0,1365 0.2517 1458
MLE 1.01061 1.159!

5000 random samples wors drgwn from 0.5 Poisson (5)-4-01] Pojsson (15) with gample size »— 220, 50, 100.

Tabls 7
Estimated bluses and meaat squate erors of the WLD; estimstors
i A=2 =50 R = 10

Bias MSE Bias MSE Bias MSE
0.5 =i),1005 GA152 —00515 0.1156 ={0.0304 0.0540
0.632 —0.05837 0,2250 —0.0329 01093 =0.0}85 G.0524
0592 ={,0505 02777 —0.02e4 0.1073 —0.0158 {0517
(.763 ={.0352 E702 —0.01%4 0.10582 —H 018 0512
Q.52 —{.0253 02660 =0.0157 0.1042 =i} 0095 L0510
0.545 —0.9x10 {2517 00118 0. 1531 =0.0070 0505
0875 04159 2587 ~i} 89 0.1025 —0.0054 a0a07
093 - AHMS 0,253 —={.0032 01016 ={.0025 0.0503
1 a2.007% 0.2493 Q.20 01005 0.0003 0.0503

5000 random sernples were drawn from Poissan (3) with sample size = = 20, 50, 100,

smaller values of 7 are better for robustness. It appears that one can get similar degrecs
of small sample efficiency and robusmess for WPPD, and WLD; by suitable choice
of index parameters o and 1. Exact calibration of the a and 4 values are difficult, but
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Tihle 8
Estimated binses and men squere errors of the WLD,; catimaters
N a=N e # = 100

Bins MSE Bing MSE Bins MEE
o ~0.0013 0.4050 €.0693 01422 0.4132 0.0887
0632 0.0535 03932 0.1078 0.1589 0.1507 00595
0,692 0.0777 03955 G127 0.1652 0.ITI 0.1076
0.763 0.1108 04057 01572 01717 2012 ann
0.502 01336 04214 ¢.1773 0.1878 0.2217 0.1314
0.545 f.162l D.A421 0.2047 0.2035 D24 0.1456
0.875 0.156% D.4625 02289 0.2193 n2738 0.1622
.936 0.2619 0.5323 0.3060 02795 03519 0.2213
I 1,0038 17522 1.0099 1313 1.0061 1159}

5000 madom sample were drawn from 0.9 Poisgon (5)-+ 0,1 Peisson (15) with sample sive #=320, 50, 100,

Tablz 9

Comresponding tming parwmeters 3 amd 4 obtained by oquating che Winsorizing poins

a -0 0.1 0.2 ! k! { 04 0.5
& 0.632 D.692 0.763 0.802 0.345 0.975 4936 1
Si(xy=d,{4) L7t8 2247 3214 4063 458 7 14.588 o0

squating the Winsarizing point gives A =1 — (1 = 2&/1 = a)"%, The resulting 3 vahues
for several values of « are given Tahlz 9. This however is just 2 crude correspondence.
Visual inspection shows somewhat smaller values of A than given by the above relation
will give better calibration.

We pow tum our attention 10 problems of hypothesis testing. Here agein we looked
at the TPPD,, WPPD,, WLD; and TLD; families in detail. Howevet, as the results are
very similar, we only present the results for the WPPD, case. Once again we looked
at the Poisson (#) medel, gencrated data from the Poisson (5) distribution md tested
Hy.8 =5 against Hy:0 # 5. Since the distributions of the ordinary tcst statistics are
very far off from the limiting z° distributions, we computed the empirical critical valnes
for cach of the tes! statistice at cur true null disiribution based on 5000 replications
of the test statistic for all the three sample sizes congidered. We have not presemted
these empirical critical valves here, but by the time a equaled 100, the ¢ntical values
of pWPPD,, were practically equal to these of the LRT.

Next, we generated data from Poisson distributions with @ in the range (3.7), and
determined the power of each of the tests for the same set of hypotheses based on
both the ¥ critical values and empirically determined critical values, The results for
the nominal kevel y=0.05 are presented in Fig. 6 and are based om sample size 50 with
1000 replications. The thick solid line represents the likelihood mtio test for cach case.
Notice that when the 7 critical values are used, some of the powers of the ondinary
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Fig. 6. Estimated powsrs for the tests under consideration testing Hyp: 8 = § versus 5y -8 £ 5 with Jevel
y = 0.05. 1000 random samples were drawn from Poisson {#) with sample size k= 50: (a) WPPD, based
on x° critical value; (b) WPPD, based om empirica} erifical vaus; () pWFPD, based on § critical value;
{4} pWPPDy, babed on empirics critical value.

test sintistics, particularly those for the lower values of » are very high, but that means
very little because these tests are not even close to being level 0.05 test. When the
true levels of the ordinary test statistics are held at 0.05 by using the empinicaily
determitted critical values, the actual power of the more robust divergences are easily
found to be quite poot (Fig. 6b). However, most of theses problems sre resolved
by using the penalized divergences. Notice that the appiication of the penalty makes
the performance of the methods based on empirically defermined critical valves and
¥ critical values dramatically closer. This is particularly encouraging since in actual
practice when one wanis to use these tests determining empirical critical values for
gach individual case is obviously not practical. Our results show that for the penalized
twests the use of the ¥? crifical values leads to results almost identical to the true powers
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Fig. . Estimated powers for the tests under consideration testing Ay 8 = 5 versus Hy : 8 &£ § with Jeved
y=0035. 1000 rapdom samples were deawn from 0.9 Poissan (8 -+ 0.1 Pojsson (13} with sample size 7= 56
(a) WPPD, based on y* critical vahue; (b} WPPD, based on empiriea] critical value; () pWPPD,_ based
o z* critical value; (d) pWPPD, based on empirical critical valug.

of the tests. While resnlts for other levels of gignificance and other sample sizes are
not reported, they were very similar.

We next looked at the powers of the methods for the same set of hypotheses under
confarmination. Data are now penerated from 0.9 Poisson {#)+ 0.1 Poisson (15) mixture.
The results for the nominal level y = 1.05 are presented in Fig. 7 and are based on
sample size 50 with 1009 replications. For comparison purposes, the power curve of
the likelihcod ratic test for the no comtamination case is presented with the other
graphs as the thick solid line. While the power curve of the likelihood ratio test under
contamination shows a dramatic shifl with substantial loss of power at severa! cases, the
other curves are largely unchanged in comparison, demonsirating the refative stability
of these test statistics under contamination.
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5 Concluding remarks

We have shown that modification of the PPD, leads to nice results, but we also
bekieve that the story this investigation is telling abowt mirimum disparity inference is
wore important than the story of PPD, itself. We can summarize the lessons of this
investigation as follows. There are infinitely many ways to construct distance measures
for discrete models in sach a way that the resulting estimators are first-order efficient,
However, if otie wishes to obtain rzasonahble statistical bebavior in a wider sense, then:

(1) One should avoid residual sdjustmeni functions A(-), or equivalently distance
kernels C(-), that grow too fast as § — oo, In fact Lindsay (1994} showed
that outlier stability follows from conditions such as A(8) = O(d'*) (or more
generally A(0) = O(8Y—1%) for k> 0 as & — cc, together with A{-1) being
finite). Notice that these conditions are not satisfied by the PPD, family for
o> 5.

{2} At the other extreme, one should avoid am A{-) which 15 decreasing for some
range of J, We have seen that when unmodified, the estimators from decreasing
A(-) functions can lead 1o strapge results. On the other hand, when modified tg
preserve their incteqsing nature, natural and meaningfu! results follow,

(3) One should alzo be careful about A{-) at the lower end of §°s range, as the be-
havior of A(-) when é — —1 ig also very important. In discrete modal Hx)= -1
corresponds to the cell x having no data, so 4{x)=0, If the RAF gives too large
a weight to these cells, then the estimator become hypersensitive in small sam-
ples, and so has a large varance, Empiy cells ate extreme cases of inliers which
represent values with less observed data than expected under the model. Natice
that the MLE, while nat cutlier robust, is inlier robust. Our empty cell penaity
essentially mimics the treatment of the empty cells by the MLE. We have shown

bow this simple empty-cell modification of 4{-) ¢an greatly improve statistical
behavier,

Another iesson of the paper is that one can develop appropriate modifications of nat-
ural divergences for the purpese of improving the robustness and efficiency propeies
of the corresponding estimators and tests. in this particular paper we have experimented
with the powered Pearson divergence and shown that the proposed modifications cen
lead to atiréctive inference procedures. In general, however, such improvements can be
effected with many olher well-known disparities and divergences. We have compared
the modifications of the powered Pearson diverpenves to those of the likelihood dis-
parity. The modifications of either divergence considered berc appear ta provide stable,

satisfactory, and similar inference.
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