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ABSTRACT. Let X be a compart Hansdorff space and A C C(X) a function

algebra. Assume that X is the maximal ideal spacs of 4. Denoting by o(f)

the spectrum of an f € A, which in this case coincldes witk the range of f,

a result of Molndr is generalized by our Main Theorem: H & : A — A s

a surjective map with the property o(fg} = o(®{f)P(y)) for every palr of

functions f, g € A, then there axists a homeomerphlsm A : X — X such that
(F)A()) = r{5)f(2)

for every x € X and every f € A with r = $(1).

1. INTRODUCTION

Molndr {M, Theorem 5] proved the following theorem: If X is a first-countable
compact Hansdorff space and C'{ X)), the algebra of complex-valued continuous func-

tions on X, and
&: C(X)—- C(X)
a surjective mapping such that
for every peir of functions f,g € C(X), o(fg} = (B f)®(g))
where o(f) denotes the spectrum of f, which in this case would be simply f(X),
the range of f, then there exists a homeomorphism i of X onto itself and a function
T, whose range is { —1,1} such that
B(f)(z) = r(z)f(p(x)) for all z € X and all f € C(X).

In this paper we deal with a function algebra .4 in place of C(X)

and regard X as the maximal ideal space of A. X is of course compact
Hausdorff but not necessarily first-countable. For this purpose, we need

to recall some results of Bishop and de Leeuw [BL) concerning function elgebras,
peaking functions, generalized peak points etc., for which a readable exposition
may be found in [Br, Chapter 2 and [P, Chapter 8].

1.1 Peaking function. A function f in A is said to be & peaking function if for
any z in X. either f{z) = 1 or |f(x)| < I and the set {x : z € X, f(z) = 1},
denoted by P(f) and referred to as the peaking set, is non-empty.

2000 Mathernatics Subjact Clazsification. Primary 46J10, 46J20.
Key words and phruses. Auviomorphism, function algebra, spectrium, buundaties.

1136



1126 N. ¥. RAD AND A, K. ROY

1.2. Generalized peak poink. A point 7 in X i5 said to be a generalized peg)
point for the algebra 4 if, given any neighborhood ¥ of ., there exists a veaking
function f in A such that P(f) CV, f{z) = 1.

The set of all generalized peak points is called the Choquet houndary of 4 ang
denoted by 8.4{X). Its closure is the so-called Shilov boundary of A. Since any
f € A assumes its maximum modulus || f]. = Rpyex [f{z}, on the Chogyet
boundary (see [P, Prop. 6.3]), we see that

{1.3) any peaking set meets &4{X).

Also, given any x € X, there exists a probability messure 11, & representing measure
for =, supported on the Shilov boundary & = #4( X} such that for every fc 4,

(1.4) f(z) = ]g f.

The following theorem will be invoked several times in the proof of our Main The.
orem in the next section.

1.5. Theorem {Bishop]. iven eny pecking set B and any f € A, there exista g
peaking function h in A with P(h) = E and |f{z)h(z)] < maxg |f| ferany 2 g E.

A proof may be found in [Br, page 102,. At one point in the next section, we
shall need the fact contained in the following proposition,

1.6. Proposition. Any family of peaking sets F,., with fintde tnfersection property,
haz o common intersection wnth 8,4(X).

Proaf. The procf is a convexity argnment. Let §4 = {L & 4" : || L] = L{1} = 1}
be the state space of 4. We know that (see [P. page 37]) w{04{X)} = ext{54)
where ext{5 4) denotes the sct of extreme points of the compact convex set §4 C
A, non-empty by the Krein-Milman theorem. and  denotes the evaluation map
x -~ {zx) that imbeds X homeomorphically into 54 with weak® topology. Each
Fy := weak™® closed convex hull of (£}, where E, = {r & X : h,(2} =1} and
each h, € A is the associated peaking function, is a weak* closed face of 54— in
[act, Fy = {L € 84 : L{hs} = 1}, Conzequently by the finite intersection property.
F =, Fi is a non-empty weak™® closed face of S4 and therefore has an extreme
point  that necessarily belongs to ext(S.4) and i3 therefore of the form ¢{x) for
some ¥ € 34(X). But p € exti(F,) C p(E,) for every o by the Milman theorem:
hence x £ [, Eo, and we are done. O

2. PROOF OF THE MAaiN THEOREM

In the sequel f, g,k k. ete. dencte functions from A and ¢ denotes a generic
constant. Also for any f & A, we shall sometimes abbreviate i f|o o ||/ It &
convenient to present the proof of our theorern as a sequence of remarks, We point
oul thal the proofs of these remarks, though modelied in several instances on ],
ate rendered somewhat complicated by the more general situation that is heiog
considered here.

Remark 1. Reduection. Since #{1?) = o(®(1)?), we have ${1)* = 1, and &0
hy defining ¥f = $(I)E{f), we ses that T(l} = {®(1)}® = 1. Furtbermore,
T 1¥(g) = BB [HP{1)2(g} = T(f)@(g) and, consequently,

o(fg) = al¥{f)T(g)}.
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Now if we prove the existence of & homsomorphic self-map A of X such that

(f)(Alz)} = fx)

for every £ € X, we would have proved the thecrem mentioned in the abstract. So
from now on, we assums thar ©(1) = 1 and s0

(2.1) ol fl =o(®{f}) ¥fecA

from which it immediately follows that

(2.2) [ fflea = N8 Moo-

Remark 2. T f g € A, then |f| £ [g] on 84(X) if and only if

{2.3) for everye > 0 and every h, |gh| < ¢ implies |FR] < c.

_Pma_f. That |f] < jg] on 84{X) implies (2.3} is obvicus by (1.4). Assume that (2.3)

is true but |f| £ |g| on A4{X). Hence there must exist an x¢ in d4(X) such that
|ftzo}l > |g(zo)l;

for, otherwise, 1f| < 1] on &4(X).

Let v = Z(1f{zo}| + g(=o)])- So (¢{zs)| < 7 < |f{zo)], bd there exists an apen
neighborhood V' of xg such that |g{z); < v in V' and a function & such that k{2g) =
1= f{lh||, and |g{z)}h(x}| « v in X\ V. Such an & exists, because zg is o generalized
peak point for A. Therefore [gh| < 7 on all of X, but |f(zg)R{zs)| = |f(24)] > ¥,

a contradiction. Fhis proves the assertion (2.3).
From (2.3}, we can deduce the following:

{2.4) if a{ fh) = o{gh) for every h, then an 84(X),|f| = |gl-

Bince o(fih) = o{gh) ¥k € A we see that for any consiant ¢ > 0 and any h € A,
Igh| < ¢ irnplies | fAt < eand so (2.3) gives |f| < lg] on 8.4(X). Since the hypothesis
is symmetric in Jf, g. we obtain also |gf £ 1f| on 84(X). Combining, we have (2.4).

As a consequence we have
Remark 3.
(25) On 840X}, [fl < gl & [2() < |B{(g)I¥fae A

Proof. Assume that |f| < |g] on 84(X) and |$(g)k] < ¢ for some k € Aand e > 0.
2 being surjective, there exists an k € A such that $(k) = k. Hence we have

|2{(@)B(H)} < e

But since
a{gh) = o{F{g)e(h}),
we obtain |gh| < ¢ and 8o by (2.3), [fh| < c. Since

o(fh) = o(@{F)D(h)},
we abtaia [R(£)B(4)] = |B(¥ < ¢. Now since k, ¢ ave arbitrary, from Remerk 2,

it follows that
|B(f)] < |Blg}] omdq(X).

Now the other implication has a similar preof.
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Remark 4. For any fixed x € d4{X),
(2.6) E:= () P(f))={=},

feFe
where F, denotes the family of all peaking functions f = A such that fiz) = 1.

Proof. Assume E contains a point g other than x. From (1.2} it follows that every
point of @4({X) is a generalized peak point for A, which means that. given any
neighborhood V of &, thers exists a peaking function % in .4 such that h(r) =1=
ikl and 7| < 1 outside ¥, which means P{h) < V. 3o if we choose a neighbarhood
V of 2 that does not contain p, since E C V, ¢y € F, 2 contradiction.

‘We now have the important

Remark 5. H z € 84{X),

(2.7) ﬂ P(P(f)) contains one and only one generalized peak point.
FEF:

First, because of {2.1), € f) is a peaking finction if and only if f is a peaking
function. Also, sach P(E(f)}) is compact.

Secondly, if f5, fa...., fn belong to P, then ¢ = f1f5 ... fu belongs to F;. Since
|9} € I£:|, we obtain in view of (2.5),

18(g)] < IP(f:)| for each 1 < i < non d4(X).

Since g is a peaking function, 8o is $(g), and so B{g)(£) = 1 fur some £ in J4{X).
Then #(f &) =1forl<i<nor

() P& #4.
1<i<n
This proves that the family of sets {P{®{f)} : f € F} has the finite intersection
propetty, and since each of them is compact, it must be that

E'= (1) P(®(f))#0.
feF:
Thus, E* being & non-empty intersection of peaking sets must intersect 4(X) by
Proposition 1.6.

Thirdly, if y € E'N84(X), let & be a pesking function such that k(y) = 1.
By surjectivity of ®, k& = @®(h) for some pesking function h = A4 (recall that
o(k) = ofh)). We claim that k{z) = 1. To show this, choose any neighborhood
V of r and & peeking function g such that giz) = 1 and |g| < 1 outside V. So
g € Fr and hence Big)(y} = 1. Consider ®{g}P(h) = X € A. ®(g), B(A) being
both peaking functions that take the value 1 at y, we see that Aly) = 1 end A s 2
peaking function. Again @ being surjective. there exists s pesking function x € A
such that $(p) = A, Since |A] < [®(g)| A [B(})] on 84(X), by {2.5) it follows that
|l2h < |g] Akt on 8.4{X). Hence there exists a £ € d.4(X) such that p{£) = 1, and 80
g(&) = h(£) = 1, which implies that § € V. Since V is an arbitrary neighborhood
of & and h is continuous, we get

R{z) = 1.
Lastly, if there is s generalized peak point z other than y in EY, we can choose

k in snch a way that &{y) = 1.|k{2)] < 1. @ being surjective, we obtain ' such
that §{h’) = k. o by the previous paragraph, we see that A’ belongs to F; and 8o
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&R’} = 1 on E' and consequantly &(z) = 1, which is & contradiction. This proves
Remark 3. O

Let the unique peint y given by Remark 5 be denoted by +(x} since it depends
on  and nothing else. We sum up what we established above as follows:

Remark 6. Bz € 84(X) and f € F,, then (1) € 84(X) and #{f) belongs to
Fris)- Conversely, if k € F_(.y and ®(A) = k, then k € F,

We now have

Remark 7. ® is injective and homogeneous, i.e., ®(cf) = c&(f) for any f € A and
ee C.

Proof. Supposc if possible that ©{f) = ®(g) for some f # g. For any h € A,
®{f18[h) = B{g)P(h) and consequently,

a(©(f)(R)) = a(B(g)B(R)),
from which we see that
o{fh) = o(gh}.

We deduce from (2.4} thet |f| = |g| on S4(X). Simce f s£ g, there exists 6.y €
O4(X} such that Fly) # gly); for otherwise f — g would vanish or 84(X), and se
F=gon X by (1.4). We may assume that f{y) # 0 because if f{y) = 0, then,
gince |f{y)| = |g{y)l, it would follow that g(y) = 0 = f{y). Therefore we can choose
a neighborhood V' of y and a peaking function & such that 1 = hiy), |A(z} <1
outside V. Then £ := P{h) C V. By (1.5), we can modify & so that it would stili
be a peaking [unction that peaks on F and moreover satisties the following:

|F(=)A(2)| < max || = mesx|fh,

(28) 9(2)h(z) < wmax lo| = mgxigh

for all z outside E.

There exists £ € E such that | f(£)| = maxg |f! = || fh]leo- Since a{fh) = a(gh),
fl€) = FlEIE) = g{z)h(z) for some 2 € X. If + € E, then jg(2}h(2)| < maxg |g| =
llzhfse = IRl = [F(£)]. & contradiction. So =z € E and f{£) = g{z} where both
£,z lie in V. Since V is an arbitrary neighborhood of y and f, g are continnons, we
get f{y) = gly¥), again a contradiction.

Ths

o(fh) = o{ghivh & F =g
and P is injective.

Naw for the homogeneity. Neotice that

a{®(cf)R(R}) = o{cfh) = calfh}) = co(@(f)D(h)} = aleB(f)2{h)).

Since € is bijactive. we see that ®{cf) = ¢PB{fIVSf € A. [
Remark 8.
(2.9} |f{x)] = [B{fHrizN)] ¢fe A ¥redalX)

Proof. Take f € 4 and assume firsi that f(y) # 0,y € 64(X). In this case, for
any given neighborhood V' of ¥, we can find a function & such that kiy) =1 = k||
and fh attains its maxirmom moduius in V. (Tofind b, let & be a peaking function
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with Pk} C ¥, and let k = k™ for some sufficiently large positive integer %.) There
existe n £ in V' such that
| FEEIR(EN = || Fhljco-

But a(®(f)®{h)) = a(fh) from which it follows that |B(F(r(y)))B(A{r{z))| <
|F{£}B(£)|. Since B(hi(r{y))) = A{y) = 1 (Remark 6),

JR{E)] < 1, we get
B (0))] < |F{€)]-
V being arbitrary and § continuous, we have

12{A ()] < ).

I, on the other hend, f(y} = 0, we could cnsure that h satisfies hiy) = 1 =
|2]|eo 8nd [[fAfle < € for some preassigned € > 0. Hence once again because
a(P{fI2(h)) = o{ fh), we see that ||B{f}E(R)]| < £ by (2.2) and so

JB{FHrhR(R) (T {#))] < <
and since F(A)(r{y}) = 1, we get

IB{I N <«

which proves f(y) = ®(f}{r(y)) = 0.

Now let V be any neighborhood of 7(y). and assume that &{F)[7(y)) # 0. We
ran, a8 before, choose &' with K'(r{y)) = 1 = ||#'| and B{FIk’ attains its maximuen
modunlus at a pomt £ in V. Since & is surjective, let $(h) = A’. By Remark §,
hly) = 1 aud since f{y)h(y) belongs to o(fh) = o(B(F)B(K)), we get

fly) = ®UENRRIEN
for some £ in X. So | f{)| < |¥(F){£)]. By continuity, we sec that

[F)] < BN
H &7 (v)) = 0, we can repeat an arguinent similar to the one in the last para-
graph and obtain f(y) = (.
Putting all these facts together. we sce that the proof of Remark 8 is complete.
O

Remark 9. 7 iz a homeomorphism of J,4({X) outo itself.

Proof, We observe first that r is injective: if v(z) = r{y). then |®{f){(r{z))| =
I $(F)(v{y)}| and this implies that |f(z)| = | f(¥}] for all f € A by Remark 8. Since
A separates poiats of X, it i3 easily seen that there exist functions [ such that
fl{2) =0, f{) = 1 proving that £ = y. Next we show thet 7 is continuous. Choose
any ¥ € X and a neighborhood V' of 7(x) and a peaking function A such that

R{r(z}) =1, [R(y}l £ 1/2 Yye X\ V.
® being surjective, there exists a g such that ¥(g)} = h. Since |g| = |B{g{+)])| by
Remark &, if we let W = {& : |2(&)} > 1/2}, then 7(W) C V because if £ € W, then
|h{r (€D} = [R(g) (rEI} = lgi§} > 1/2.
Since |k(r(z))| = |¥(g)(t(z))| = |g{z)| = 1, W is = neighborhoad of & in J4(X).
Thus we huve proved that v i2 injective and continuous,

Now since @ is a bijection, we sec that $ ! has the same properties as . Thus
there would exist an injective continuous map ¥ : 4(X) -+ 84[X) auch that

lg(z) = |27 {gH(=)}|Vz € Ju{X), Fo e A
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New let g = ®{h). Then [B{h)(z)] = |glw(x))]. Now let = = 7(y). Then |g{y}] =
[2(R)(7{y))| = lg(¥(r(¥)))] by Remark 8. Since functions of type |g] separate
points of Sa(X), we get ¥{r{y)) = ¥ and by 2 similar argument, we also oblain

r(@{y)) = y. Thus we proved that 7 is a self-homeomorphism of .4{X). O
Hemark 10.
{2.10 F(=} = B(f}{7(x)) for all z in 84(X) and for all £ in A.

Choose any point & in @4{X)}. Let ¥V be any open neighborhood of x. Since z is
in 84(X), there exists a peaking function A such that hfz) = I and the peaking
set () = F is contained in V. Now by Bishop’s theorem 1.5, we can modify A so
that it has the same properties as before but, in addition,

{2.11) |f{2)h{z)| < max |f) for oll z cutside F.

Thus there exists a £ in 5 such thet |f{£)| = maxg |f| = |fhlle. Since affh) =
a(R(fI®{h]), we have || fRll = ||B(fI2(k)|} and so there exists & point z such that
FEVR(E) = (F)(2)B(h}{z). We may assume that z & 4(X) since the set where
®{ f1 (k) amsuraes the velue f{£)A{£) is a peaking set and every peaking set meets
B4l X},

Since T is surjective, z = r{n) for some 7 in 64(X). Now by (2.9) we notice that

DL IR = i Fia(l.

Now 1 must be in £ because otherwise {f(mA{n)] < |f(€} by (2.11). Thus we
have found £, 77 in & such thut f(£) = ®{f){r{n)), since (R} r(n)} = h{n) =1 by
Remark §. Since £, % lie in V7 and V is an arbitrary open neighborheed of x, we get
by continuity of 7, 7, and ®(f) that f(x) = ®(f)(r{x)}). This completes the proof
of (2.10),
Remark 11. ¥ is an algebra isomorphism of 4 onto itself

FPraaf. We already saw that it is a bijection and homogeneous. Let f, 7 € A. By
(2.10) for any x in J4(X),
Flz) = ({7 (2)), g(z) = L{g){r(2})
and
Tlz)glz} = B{f)r()}, F(2) + glz) = (f + oM {z)).
Thus
S fg}{r(x}) = BNI(r{L)) (@7 (2)). *(f + g)r(z)) = B(F)((2)) + B(g}(r(x)).
Since 7 is surjective, we get
®(f)(z)D{g}z) = B(fa)(z), B(f + )z} = R()(z) + &(g)(z)
ou all of 94(X) and then by the maximum principle on all of X. This completes
the proof of Remark 11. The algebraic isomorphism @ : 4 -+ A4 gives rise to a

weak® homeomaorphism @° : A* — 47, which in tumn indiuces a homeomorphism A
of X {the maximal ideal space of ,4) onto itself and hence we can state

Aemark 12, There exists & sell-howecworphism A of X omto itself such that
[ FIA(E)) = flx) on all of X.

But jn view of {2.10), we see that A{r) = v(z) for all # in &4{X). Thia completes
the proof of the Main ‘Theorem announced in the abstract. 0
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Canclusion. We conclude this paper by observing:

If X is a compact Hausdorff space (not necessarily first countable), then our
Main Theorem clearly holds for Cgr(x) — the Choquet boundary being X and the
peaking functions being those given by Urysohn's lemma — and it follows that
Theorem 6 in [M] is valid in this general setting with the same proof as given there,
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