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ON SOJOURN TIMES OF MARTINGCALES

By B. RAJEEV
Indian Statistical Institde

SUMMARY. For continnous squers integrable martingales we derive a formula for the
oxpeoted time spent in an interval [, b] by the martingals in terms of the expected number of
crossings of that interval. Fromn this wo deduce some new limit theorems for martingnles. Sorme
applications fo stochastic integrals and local times are also given.

0, INTRODUCTION

Given a continuouy mertingale, an intervel (a, 3] on the real line, and &
time point ¢ = 0, we look at the following two random variables viz. the &ime
spent by the proecess in the intervat [z, ] upto time ¢, a¢ measured by the
quadratic variation proccss, and $he number of crossings of [a, b] made by
the process upfo time . I is natural to ask what is the relationship between
these two random variables. The answer to thizs question is our main resulb
{Theorem 1). The rest of the paper is devoted to applications of our main
result.

The paper is divided into %wo sections. Section 1 contsins the main
theoremn. The proof of the theorem depends on a stochastio decomposition
of the set {a < ¢: Xs¢[a, b]}. As a corollary we derive a new type of limib
theorem for martingales. In Section 2, we develop further applications of
our main theorem, which are also of independent interest. The main result
ig Theorem 2 where we calculate explicitly the expected value of the local
time of the process at x, at the first time it hits ‘¢’ viz. H ¢(rs, #}- The main
applications here is the existence of certain stochastic inlegrals.

Let (Q, 7, P) be u probability triple and let (X3}, be & confinuous
square integrable martingale, Let {4;),;., be its quadratic variation prooess.
For all w, lot p4fw) be the mcasure induced on [0, ) by the increasing
function, ¢ > dw). We fix 2 < b.

Let UE:f be the number of uperosgings of [a, b] upto time t ie. the
largost integer & such that there are pairs (%, so)f, with X, <o and X, > b
and 0ty <o <l << ... < <<t Simialy leb D5 be the
number of down-crossings of [a, b] upto time £. Let Cf:f; = U 4LH+DEh
be the total number of crossings of [e, b] upto time &,
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1. TAEp MADY THEOREM
= inf {u > 0 Xy ¢[a b]} A 4
= first hitting time of [a, d]¢ before ¢
and o == Inf {u ! 12  » < ¢ and X; e [o, B] % selu, )}

= the first time efter 7, beyond which the path remains
in [a, b] upto ¢, if such a time exists, obtherwise it ia &.

In other words 7; is the hitting time of [a, b]¢ before #, whereas oy is the last
oxit time for [a, b} after 7, ond before 2. Thus the process is in. [«, b] during
[0, 7:) as well as (o3, £]. 7 is an (By) stop time, but o¢ need not in general
be & stop time. However it i essy to ace that oy is 5% measurable. With
this notation, we have the following theorem,

Theorara 1 :
Bugfs < t. 2 ¢[a, b)) = B(Xy— X2 -Hb—a)2BOE )+ B( XX p)®,

*
(Tha LHS above can also be written as B | 1ga s (X} dﬂs).
L1

Before proving the theorem, we define for each » J» 1 and & 2> 0, the stop
times o}, 77, as follows :

0
: i 1
rﬁamf{a‘g{scgt: X;{a—;orﬁg:':—b—};}ﬂt

_ , 1
aﬂf=mf{f;-=:a£t. | Xa=-b] < 15 or | Xo—a] < +1}"”

{Em.f{n"{{JQt .I;::-b+murl,{a——1£}nt
il <sct: (Dbl L or [Ey—al< LY A
k= {k-—.'l. 3% ' [ |{ -l—lorl ¥ &‘:TH'_I}A

=inf{of <s<¢: L}b+—urxg~=ia——} A¥

kiw)=min{e > 1: =14 Then k,(w) < o almost surely
because (Xy) i3 continuons, of and 7% are all () stop times bound by # and

=ik k.oi=tk>k,

Lot By = iUﬂ {5 18)-
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We start with a series of observations,
Fl. B, ,CH,: Indeed if se F,, then for some &, se¢ {03+, 7§,
1 1 . e
Hence m—m{ X << b4 L But if s ¢ E,,, then it is easy to see thab

1 1 e
either X; o= Hﬂ?ﬁ_—lﬁ or Xy € a— ——t & eontradietion.

Fo2, {0<s<E: Xse[u,b]}sz]ﬁu. As noted above if &4 B, then

w1

E::TI or X; a— nTI|—-l and hence X; ¢ [a, b]. Ifse B, & =,

then a— —;- < Xg < b—]ﬂ—;  n and hence X, & [g, b].

either Xy > b+

F3. 7% | 7: By F1,7%'s are decreasing. If the path remains in [a, 8]
upte #, then 78 =—=¢=r, for large n. If re <t then X ¢[ab] ¥ e <1
Hence 7% > 7% n. Hence 7 & Lt 7] Also < Lt 73 Xyela bl

o= o i —3
So T = Lt T{I“'
LR B

F4, a'gﬁ“]‘ e+ By Fl, n';?”a are increaging, If r; — ¢ then o = a';u-\r .

Let now 1 < 1. By definition of oy, F;,. £ 03 % n.  Moreover for any
> landu>o® , o ~ € Xy < b, w0 that oy < It o, which

'EII L w A=l k‘.ll
completes the proof.

F5. From the definttion of 7 it follows that
X=X, if X;¢[a,b]
= X; fX;e[ablvyesti
= g ur b otherwise.
In particular it follows that | Xy, —X| & b—n.

Fg. X, is & measurable : This follows from the fact that ¢ Is &%
nieasarahls and I{#, w} iB :‘|l:}il].t-].;'§r ﬂ[ﬂ.;] }{Jg mw&ble. :E‘l.lrhhﬂl',

E,‘=aorb i X;ela bl ne <8,
:If ifI;#fa;, b] 0T T;:z.f-.
In partieular | X—X,, | < b—a.
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Proof of Theorem 1: By Fl, F2, pafs <t : Xyela, b} = Lt pE)
L

and alse since pa (&,) < 4: % w, the Dominated Convergence Theorem
implies that
Epafs < t: Xeeia b} = _I.;‘I: Eua (E,) U §
B L]

and since s () = 2 (A p—A ,), we have
g0 'k ol

Bpa(B) =B | 3 (Xa—X 1] . (2)

Now we analyse the sum inside the expectation in (2). TFirstly, since o and
7§ sre evenfually equal to ¢, the sum ig in fact & finite sum almost surely.

1 1 1
ﬁ'+ ﬂrb'i'mﬂﬂﬂﬂx “_'ﬂ—"??ﬂl'b-{*-‘;&—'

Hence during the interval [of, *.rk] either there i3 an wuperossing of

one of the iubervals[arr-— n_:_ 1 [b+n+1’ —I——l—-] or a down-croms-

Secondly, in case 7§ < §, Xﬂ“=a-
3

. . 1 1 1
ing of one of the intervals La——_ﬂj, ﬂ-—-m:], {a—;, b+;§-_171]' Hence
the sum inside the expectation can be broken up inbo six parts as follows :

An initial term and a final term, & term correspending to up-::msaings of

1 1
[ﬂ-ﬂ_—t-ul’ b+ — ] aterm corresponding to down-crossings of[a—-* ﬁ+m

& term ocorresponding to downcrossings of [ a—-%, a“ﬁ%-_l] and a term

corresponding o wperossings of [_b-]— E-IT:I’ b4 :;} This gives us

i (xt;—xes)’:(x,,ﬂxﬂ)ﬂ-(b at— + 1)3 VY
(oot ) [*__,Hﬂ“]
]
+ T I+ (X e — X, )
kﬂ k‘ﬂ-
where B< () Pt an 1)



0¥ #30JOURN TIMES 0F MARTINGATERS &
By Doob’s lemma on crossings E(I7) — 0 and B(I3)— 0 a8 n — 0. Regarding

the last term note that 73 =t and if ¢§ < ¢ then X, e[a-— b—l——] simos,
(E{, —-Iﬂu 22 (X—X,)% by Buunded (onyergence Theorerm we have,
L

o

BX, —X, P BX—X )",
tkﬂ "i;ﬂ ?

gimilarly E(I,,—Ztglﬁ-—} E[ID—X,‘}".
Also we note that
X,
U[n ,H“]T Ui
t
Hence B Uﬁ‘ 1 +':E'] - E ULy
ipnilarly B Dx'i 1 1> B DR
[ i

Henoe Lt E( > (X g —X o) ,

== Ewp Uk

=B(Xy—X 4+ B—a) BUL H-+DR D+ BEX—X 0 ... (3)

The proof is now completed waing (1), (2) and (3).

We will now derive some limit theorems as corollaries of our main reauli.
Bat first we note the following lemma.

Lemma 1: For o confinuous martingale {X,) the following slatements
are eguivatent :

(@) A T ovas t— o0 almost surely,

@ It X;= toand Lt X;= —co olmost surely.

[ e A I X ]

() Lt X;<< L X; alinost Wdy

toe g

Proof : (n) = (b) because .X,# 19 & Brownian motion where 7; Is the inverse
map of A; given by 7y = inf {8: 4, > #}.

(b) = (o) is trivial.

(c) = (a) becaure X; = B, for some Brownian motion (B;) on an exten-
gion gpace (vee Tkeds and Watanabo, 1981, page 01, Theorem 1.3).
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Corollary 1.1: Let (X;) de o continuous sguare infegrable martingale
with << X =g = 4 1 o almost surely as t—> 0. Then, for any a < b,

Bpafs s t: Xss[o, b} .
aitw ¥ Gﬁ: g] (b .

Proof : By the hypothesis on {4;) and Lemmsa Lb) it follows that
O 5 T « a8 {— o0, almost surely. The result now follows from Theorem 1,
together with ¥3 and Fé.

The next coroliary is in the same spirit as Corollary 1.1. However
instead of letting {-» oo, we choose a sequence of stop times 7,, 1 .

Let (X;) and {4;) be as in Corollary 1.1. For a 2 1, we define
Tplw) =inf {f > 0: 00t = n}

sinee CF:4; is a left confinuous &7 adapted process, 1, is an & stop time ¥ %.
Further note that 7, < co almost surely hecause 4; T co slmost surely.

Corollary 1.2 : 4 n > 1,
Epals € 1, Xy e [0, 0]} = B{X,— X, Y2 4alt—a)®
where 7 i the first exit time of X from the interval [a, b].  In particular,

It Epals <7, : Xpefar, b}
" =P i n —

(h-—a)B.
Proof : Theorem 1 applied {0 the process ¥; = X, pe, Bives

Bpufs < tAT,: Xoela, b} = B(Fo— Yo Hb—a BOR M + B(Yi— ¥, )2
e ()
Regarding the firet texm in the RHS of Eqn. (4) observe that ginee 7; = 7 AL,
where 7 is the first exit time of X from {g, 5], we have by DOT,

'I‘f B(Yo— Ye)? = E(Yy— T = E(X,— X

Regoarding the 2nd term in the RHS of (4) observe that

Lt B0\ = BCRHy = n—1.
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Regarding the last term on the RHS of (4) we observe that for £ > 7, ¥ = X,
= b or g acenrding as there iz an uperossing nr downcrossing at time 7,

Since o7 — min {u < £: ¥y efe, b] % 8¢ [, £)} it is clear thet for £> 7,
¥y, = aif ¥op = b
= ﬁ if Y-gﬂ = {l.
Hence It (¥— Yﬂs)’ = (b—a)=.

Frepams

Hence by the Dominated Convergence Theorem,

Lt E(Y,—Y¥,)t = (b—a).

{—3m

These observations complete the proof.

Remarks : (1) Implicit in Theorem 1 iz a decomposition of the set
{s < t: X,¢[a, b]} into three paris viz. [0, 7). [, o¢) and (oy,#]. Between
the times 0 to 7, and ¢z to £ the path lies entirely in [a, b]. 1t i8 botween 7;
and oy that the crossings are made. 71 a stop time and henee B{X,;,— X, =
E Ay, oy as noted earlier, need not be a stop time. However this leaves
open the question : B(X, —Xi = E(4,,~A4;) 1

(2) In the cese of Brownian motion, ILévy's theorem states that

Lt ¢ DIE = o (¢, 0) almost surely where off, 0) is the local time at gero.
o0
Theorern 1 doos in some senae provide a motivation for Lévy's theorem. In

fact it is easy to show that Theorem 1 implies the following :

Lt ¢E off-‘ = Boft, )

£=5D T — —;- T+ —%]
for every 2, outside a Lebesgue null set.

2., APPLICATIONS

In this section we give two applications of our formule (Theorem 1).
These are derived as corollarios to Thoorem 2, which is the main result in
this section.

Let (X;) be o confinuous square integrable martingale and let < X >
= A: 1 co almost surely aa t— c0. TFor any real number ¢, ot

To=Iinf {4 > 0, X; = ¢}
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Let p(t, 2) be the local time 8% @ of the martingale (X;). The existence of
such times are well known (see for exampls Meyer (1976) and Jacod (1979)).
Since 4; T oo almost sarely by Lemma 1 it follows that 7, < oo almost surely,
Then we have,

Theorem 2 : Lef X, = y chnost eurely. Then

) Fy<e
Bylry, a) = 2 {c—a) A (e—y) a<c
= & > ©.
(iiy When y > ¢,
Eolrs, a) = 2la—c) A (y—0) &2 C
== 0 a <= €.

To prove tho theorem we need the following lemma.

Lemma 2: Jet (X be o continmous square integrable martingole with
< X >y = A4 T o almost surely. For any interval {a, b] and cé{a, b] we have,
Bpals & 7o 1 Xpela, o)) << co #n case ¢ > b and X, < ¢ almost surely ond
Buals < 7y : Xz e(—co, b)} <00 in case c << a and X, > o almost surely.

Proof : We will do the case ¢ b. The case ¢ < ¢ in gimilar. Let
xo < ¢ almost surely. We firat compute B DX %o explicitly. First, we define
the following sequence of stop timea

ﬂ'n=iﬂf{#}ﬂ :X;}b}
fo=inf{f >0, : Xi <0}
op = inf{# > 7oy Xy > b}
?}=iﬂf{t}ﬂ"k H .Xt{{l}.
Sinee A; 1 o almost surely, it follows from our sarlier observationa that
at b, gy << 0, Ti < oo almost surely and thab op < 75 < oy slmost gurely,
¥ I

Let ﬂf, '!.-'J‘] ﬁk=-0 (’h :k]{g]'

Let ¥,==X,,, and ¥ ;= ¥;— ¥,. Then f{, w) iz a bounded &;-predictable
process and we have almost surely,

¥ o
n.f o, wydY, = Eﬂ Yine,— Yino,

= —(X—B)r—(b—a) Dldy-+{(Ye—b) fli A 7o)
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Taking expoctations we get,
(b—ix) ED[,, by = B{X—bif(t A 7o)—E (X ~0)*.

Further a8 {— o0,
(¥i—b) fit A 7o)—> {e—B)

and
a—b) & (Y,=B) fit A 70} < c—b ¥ L.
Hence
B(Y—0) fit A Te)— c—b.
But &s t— o, EDLH 1 EDLs = EDY
Hence o—a) B Dl = (e b)—B(X,—b)* e (B)

We recall that
re=1¥ = inf (¢ ¢:X, 40 b])

an | — oo, T@0 1 7l62] where,
rad) = inf s > 0 : X 4 [, 4]}
With this notation we have,
U‘;b]—DE{b]+IX < a

el b
Hence taking expectations and using (5) we getb
(b—0)* E Ce 3y = (b—8) (c—B)— B(Xo—1)+(b—a) P(X 1o, € 0} -
Applying Theorem 1 to the martingales Xiar, and letiing £— 0 wo get
Busfs < 10 : Xa ¢ [a, BT} = (b—a¥s B Cip. 53+ L B~ X

By DCT (Ssction 1, ¥5)
Lt B(X,—X,)° = B(X , p— X,

[ =3 40

Heroe by (b) we get,

Epafs € 1o : Xpe[e, b)) = E(X,[w-bl_

o+ {b—a) (e—b)—B(X—b)t
+[b""a'}g F {X‘[ma] < ﬁ) i (ﬂ'

It is easy to see that the RHS in {7) as & function of b is bounded & & & b £ &
Hence letting b— ¢ in LHS of {7) we get by Monotone Convergence Theorem

Bpals & 70 1 Xs.€[g, 6)} < o0,
Eugale & 1o Xp6a, w0)} < o0,
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This provea the lemma.

We now turmn to the proof of Theorem 2, which is now an easy consequence
of Tanska's formula for the local time.

Proof of Theorem 2: By Tanaka's formula (see Meyer (1876}, Jacod (1979))
the local time at a time # is given by

¢
bolt, a) = (Tg—a)r—(Xp—a)t— '}f Lia,05(Xs) 4K e (8)

Similarly we have
1 H
T?r EPI:E, ﬂl:l = (X;'—'al}_”"{.xn"'"ﬂ-)"‘l‘ nj IF.,,;;,{XE] dXs. aus [g')
With X, =y < ¢, (8) implies
1 AT
'—é- tp{t ,l"\ TF, ﬂ-:l = {_I{sﬂre—ﬂ:l—i'"{y‘-"ﬂ)'i'—- n.j I[E,m}{IE]dXI e I:].I:I'}

We note that for ¢ > ¢, the RHS in (10) is zero almost aurely, For a < ¢,
Lemma 2 allows us to take the limit in (10} as f— oo and we geot

% gy, @) = (c—a)t —(y—a)t— ffw, o Xs) dX;.

Taking expectations, the theorem is proved in the case y < ¢. The cass
¥ > ¢ 18 proved similarly using (9).

As promised in the beginning of this section, we now give two applications
(Corollaries 2.1 and 2.2) of our formula on crossings, With the same set up
a8 in Theorern 2, let ¥ (z, ¥, ¢) = Folr,, ).

Lot Lx={f:ETﬁ{I,ﬁAgc:m}
1]

Ly={1: | feipizy, de < oo},
>

Corollary 2.1: Ly = L.

Proof :  The proof is immediate from the fact (see Meyer (1876), Facod
(1878)) that 4 ¢,

i &
[fX)dde = | f(x)p(t, 2Mix slmost surely.
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Corollary 2.2 : Let (X} be ¢ condinuous square integrable martingule oo tn
Theorem 2. Lel f be a (3-function. Then the following are equivalent :

(a) f{X:) #s @ square integrable martingale.
(b} flz} == ax+b for some a and b.
Proof : {b) = (a) s trivial. By Ife's formula (a) =

T
{ fT&,) dd; = 0% ¢ almost surely,
fi

Taking expectations and nsing Theorem 2,

T Py ol =0%c>y

iH
ie. J F @) {o—x) A le—ytde = 0% ¢ > g.
For ¢, > ¢, > y this gives ua,
G I T
[ flade = - — ] f'(z) oy —a)de
el 1—0p 2

Letting e,— ¢4, we got

Oy

| Fllade =0% ¢, > y.

-
ie. fley=0%¢>y
The case ¢ < y is similar, This proves (a) = {b).
Remark 1: The above corollary can also be obtained using time chenge

arguments.

Remark 2 : By using the usual stop time arguments Corollary. 2.2 can be
strengthened as follows : If (X,) is a continuous local merdingale with
< X »s1 o0, and f is & C2-function for which f(X,) iz also a local martingale
then f must necessarily be lincar. For a related result ses MeGill, Bajesv
and Rao (1988).

Remark 3: Theorem 2 deals with martingales ¥; = X,,. which hes

the property that ¥: is eventually ¢. In such a situation we wers able to
let §— co in Tanaka’s formmula and take expectasions in the limit. This raises
the question of whether the same is possible for martingales with a mora
general limit ex, X is only bounded, In other words, we have {o show thab

stoohastie integral appearing in Tanaka’s formuls viz. ? Iig o) Xa)d X
D
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is well defihed, which is the same as asking that Bay{s : X, e {g, o)} < 0. In
our case we showed this by using the equivalence between Euxafe : X; ¢ (g, o)}
and E C5% (Theorem 1). Here the fact that X, = const. simplified matters
a great deal. But we helieve that an extengion to more general X.'s should
he possibie with s little more effort.
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