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A ROTATIONALLY SYMMETRIC DIRECTIONAL
DISTRIBUTION : OBTAINED THROUGH MAXIMUM
LIKELIHOOD CHARACTERIZATION

SUMITRA PURKAYASTHA
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SUMMARY. A circularly synunetric directional distribution ie obtained by showing that
m the olass of eroularly symmetrie distribations on cirele it ia the only dietribution for which the
circuinr median is & maximum likelihcod estiroate of the locetion paremeter. Bubsequently,
quently, th#s result is extended b0 the spherical case.

1. INTRODUOTION

Teicher (1981) proved that under very mild conditions a translation
paramster family of distributions on the real line must be normal if the
sample mesn i8 2 maximum likelihood estimate of the transiation parameter,
Later, Ghosh and Rao (1971) solved the samc problem with ‘sample mean’
replaced by ‘sample modian' and obtained & characterization of the Iaplace
distribution. A proof of the latter result may be found in Kagan et al, (1973,
413-414),

The above two results in linear data were followed by a result of Bingham
and Mardia (1976) in directional data which states that under mild conditions
& rotationally symmetric family of densities on the sphere must be the van
Mises—Fisher family if the mean direction is e maximum likelihood estimate
of the location parsmeter.

Wth the above mentioned results in mind, our aim in this paper is to
charaoterize that rotationally aymmsetric directional distribution for which
the median direction ia & maximum likelihood estimate of the location pata-
meter. In Bection 2, we settle this problem for distributions on ecirele
{Theorem 2.1). This result is extended to higher dimensional spheres in
Seotion 3 (Theorem 3.1). Finally, some general remarks in this context
appear In Bection 4,

AMS (1980} subject cinssification. 62E10, 62H(S,

Key words and phrages, Ciroular symmetry, maximum likelihood charaotarization, madian
direation, rotational symmotiry.
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2. TRz CIBUULAER OASE

Definition 2.1, Leb X, ..., an¢ 8. Then any point #,¢ 5 in called
& cirgular median of 2y, ..., &, if

él cosHai@,) = pi E: oos—H[E). . (1)

[For --1 £ = 4 1, cos~(x} is the unique angle & [0, #] such that coa # = x}.

Remark 3.3, 'The sum appearing in the right hand side of (2.1) is & conti-
nuous fanction in § so that it makes sense to talk of its minivum and define
x, aoccordingly. Observe, however, that &, may not be unigue.

Remark 2.2. The Definition 2.1 is actoally the ecireular anelogue of the
spherical median giver in Fisher {1985), Tt is also related to the one given in
Mardis (1972, 28-33),

Resmork 2.3, Beoause circular medisn may not be unique, we adopt
the following conventions sbout the choice of median direction for sample
gizes n = 2, 3 and 4 respectively. This choice is motiveted by the natural
requirements of & measnre of central tendency.

Notation. For two points a, be 81 ; [e, b] denotes the are of Sl with
initial point @, end point b and taken in olockwise sense.

A, Sample size » = 2. Assume, without loss of generality, that length
of [#y, )< length of {2, ®]. Then in this case the sum appearing in
the right hand side of (2.1) remains constant for £ ¢ [@;, T,}, and moreover
g e[y, x5, p o 8,—[a@y, @,] implies

E tl ’ [
5 ocosHx; B) < 3 coe g )
fuul fml
Thercfore, we agree to take the mid-point of [a, ,), which is the samse as
the mean divection, ag the median direction.
B. Somple gize » =3. Write cos-Y®] 2.} = o and cos Y x,) = f.

T:hen, 0L aCmand 0 8¢ 7. Asgume, without losa of generality, that
either (a) 6 Catfgm or (b) ag B atf> mand at2f < 2m.
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The two cases are illustrated in the following figures !

X
X, X2

\A A3 i ‘\
X

=3

Fig. 2.1 () Tig. 2.1 {b)

It is now easy to see that in esch of the cases

3 3
L+ -1 ’ f - L) .
{[.l. g L El cos Y, m) = ué::gl Elms l{a'.ﬁ}} = (&}

Hemnoe, in both the cases, we take i, ag the median directiln.

C. Nomple sive n =4 Write cos W Eq, ) — o, 1 €%« 3. Then,
05 oy & 7 for every i. Asiume, without loss of generality, that either
(8) 0 oy toptay < mor(h) m < ayfoy oy 2m, oo, and oty
The two cases are illustrated in the following figures :

¥ig. 2.8 (8} Fig. 2.2 (b}

It turne out that in each of the cages
4
n -1 - — : -"'1 o —_—
{,ﬂ. g St .E.l cos™ (g, &) = min EJ 008 [miﬁ}} [20g, &3]

We agree o take the mid-point of [&,, #,] a8 the median direction.
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Theorem 2.1. Let {pa; 8) = flo' 8) |6 ¢ 5} be o class of circularly sym-
melric non-uniform densifies on 3. Suppose f{i} = 0 for every te{—1, 1)
and moreover f(#) &8 righi-confinnous al ¢t = 1. If the median direction be o
mazimam likelihood estimate of O for n = 4 somples, Hhen

plae } 8) = 2[1;';3##}&"“ o0} pe 81 a0, v (2.2}

Proof. The fack that the median direction is a maximum likelihood
egtimate of O implies

'11 £, o) > ﬁ; flz, 8) 86 8, . 23

and for all samples (m,, ..., @,) of size ® = 4 ; o, being the median direction.

Write cos—l(j2 ) =a; for i=1, 2, 8. Define gi¥)=f(Cos £,
0 ¢ nm Then, our choice of the medien direction (described in paré O
of Remsrk 2.3) and (2.3) shove, applied to severat chuices of 8, imply the
following :

for avery 0 < &), &y, @, & 7 with 0 & &y bo+o, < 7,

¢ (at+3) (5) o( F+)
(oo (Bl () (Frams)

>4 g ("‘1"'%‘*‘*’) g (—;a—-“’-l-arj I (m_%]g(%‘-’+a3-z),

Bk 2, . (2.4.2)

7 (atgs)a (Fa) o (o= o (- F-m).

%—Hﬂa ngn#(%-l'%%) e (2.4.8)

A l-16
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for every 0 o), @3 oy & 7 with 7 < ay-toy-fag € 2, ooty & g
and oty < 7,

0 (a+3) ¢ () o (Fron)

>0 (ot Fa) o (4] 1 (Fs) o (rone), 06 <1

(2.5)
Observe that if we choose &, = %, = 0in (2.4.1}, we cbiain
#3)> olge) o (s w0 cec
= g (%ﬁ) = 4y} glaa—y) fr 0y ... (26

Therefore, if gly) = oo for some 0  y < 7, then (2.6) implies that for every
@y 6 {3y, 7) either glay—yl = 0 or g (%") =oo. The former condition esnnot

be satisfied bacanse of the restriction on f put forth in the statement of the

fheorem and the Yatter condition cannot be satisfied on a act of positive lehes-
gue measure, Therefors,

glt) < o forevery 0 £ 8 << e {27)

Wo also have gif) < 0 for every 0 << ¢ < w. Observe further that if we
chaose &, — a3 = ay = in (2.4.8), we obtain

g4(0) > g4(m), for every 0 < = & m,
which implies
#{0) > 0,

oterwise g{x) =0 for ail 0 ¢ & < #, & contradiction to the fack that fis &
dengity on 8. Thorefore, we can define

kif) = log glt), 0 < £ < 7. .. (2.8)

With little modification, the conditions (2.4.1), (2.4.2) and (2.5), alongwith
(2.8}, now imply the following :
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for every O £ &y, oy </, 0 g <7 With 0 § oy+oyt-ay < m,
Mot 3)+28 (3] +5 (4
[ et )37 42 )48 S,

> Jd 0 mﬁ;%‘ . {20.0)

bactga) +h{ Fre) +h(e—2) i FHm—x),

F<r<Ftm . (292)

for every 0 <X oy, oy, o < 7 with 7 < a-taptoy < 2m, aytay <
and gty < M,

oct§) () 3§

)
> h (ot Fta)+h (P4e) +4 (F—a) +h ( Pra—a), 0 <2 g P

... {(3.10)

With the previous ateps in mind, we now proceed to the main ateps of
gur proof,

A% first we prove that

k is concave on [ﬂ, g—]. we (211)

To 30 this, choose and fix £, I, ¢ {m, ’E" ] with ¢ < 4, Now use (2.9.1) with

@ = @y = 9, &y = §+, and & = ”“;‘lto obtain

B ()5 L peHhe),
establishing (2.11).
Next we prove thag

Bty = ~ad+b for 0 § < % ' we (2,12)
for +wo constants 4 and 3,
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Ad a conpequenca of (2.11), we know tihat & is differentiable on {I], -%)
oxoept (posably) on a subset B of (0, g) , which iz at mosl conntable. Write

A = (ﬂ'.%)—.&. Choose and fix &), &, e A with §; <2 &. Choose morenver

by &2 with f; <2 4. In (2.0.1), take now ay = 8 —#f, ¢y = 24, and 2, = §—¢
to obtain

Ro(tr) - 2h{ds) + Bity)
> Mr-Hi)+hlly+2)-Lhi—2)Hhlh—2), 0 < 2 < &
Thus the function A* ; [0, fg]~> #2 defined by
B} = Rri )Rl 2) -h(2e—2) -+ b —)

in maximized at & = 0. Moreover, % ia differentiable at each of #;, & and &,
Hence, '

im, PO
£-30% x
=3 k() < Rl
Interchanging the role of # and 4, in the argument sbove, we obitain
Kt < Kif),
and consequently, for every {,, ¥y € A we obiain
Blt) = Kity).

This imptivs, in view of the soncavity of 4 on (0, 7 ) and the definition of 4,

that k is differentiable everywhere on (ﬂ, g—) with & copstant derivative.
Thus

BE) = —ab4b, 0 <t < . (2.19)

)
g
To complete the proof of (2.12), we how prove that #{0) =5, To see thiy,
firat choose thres small positive numbers «, ay, &, and for this choice of

et;'8, use (2.9.1) with x - —%‘- to obtain

Pt ) +2( ) +B{ Gt o) B Blontad+hie) HhO)Hh(g),

which implies, in view of (2.13),
b > A0
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Rimilerly, if we choose ¥wo small positive numbers oy, ay, and oy = 0, and
for this choico of a,'s, use (2.9.2) with x = ';a to obtain

hi{0) > b,
Thns (2.12} follows.

Nexi we prove thad

A is concave on ( -rr) e (2.14)
Choose and fix £, ;¢ (%, 1:') wach that 4 < & Now wuse {2.10) with
o =ty =4, dy = t—%, and ¢ = ii’i;! %0 obfiain

2 (50 Yy 2b (B0 ) 5 MeHhlty— ) RO,
which implles (2.14), since from (2.12) we have

2% (‘“‘2’1 ) = hty—)-+H(0).

The next assertion js analogous to {2.12). We prove that
hit) == —et+d for < < m, . (2.15)

for two constants ¢ and 4. This is an immediete consequence of {2.14) and
of arguments similar to those required to establish (2.12).
Now we prove that

h is convex on (%—*6,%—1—6), e {2.18)

if we choost: 8 to be a sufficienty small positive number, say 4 = % Ho

see this choose and fix 4,4 ¢ (%—#ﬂ,%—{—&‘) with § < 4. Choose now
e

0y, gy Ag € (O, ) sueh thab £ = a;+ '2‘!: ty = “u“l‘%ls Oty =0y <ty Bq+-Og <o,

and ay+-a, < 7; such a choice is popsible sinee § is assumed to ho a amall

positive number. Now with these quautities &y, &y, 2y and 2 = &—’-'-E-ﬁ use

(2.9.1) if &4+t < w, (2.10) if &, +& > 7 to obbain

M ()40 > 50 5 ) 1 ) (9 %)

. (ELY)
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However, we may choose o’s in & way so tuat both 2 u, = u" and

—2--{- a%-_z; are in (0, ?, which implies, in view of (2.12),

zh(“*)_h( % % "1}-5-5( “*_T“‘.) . (2.L72)

The assrtion (2.16) iz now an immediate consequence of (2.17.1) and (2.17.2}

Employing srguments simitar to those roguired to establish (2,12),
we now obtain from (2.9.1), (2.10) and (2.168) that the graph of % on

(-gﬂ—&, %—I—&) is & straight line. In view of (2.12) and (2.15), this implies
a=e, b=d,
where a, b, ¢, i are the congbants obtained in (2.12) and (2-15).
We have thus proved that
' M) = —atfbfor 0 £t < o
- glt)y = exp (—at+b) for 0 < ¢ < m,

for two constants @ and b, Morover, right continuity of f{#) at $ = —1 inplies
lefi-continuity of git} at ¢ = 7. Hence,

q{t) = vxp (—ald-b} for 0 € § £ 7.

Qbserve now that in view of the fact that g (0) 2» g{x) for every z s [{, 7]
and stipulated non-uniformity of f, we obtain.

a0
From what we have dotie so far it 18 now clear that

P 8) =t P o0

The fact thet & = i 2 ey is an easy exercise in integration and so we
omit it. This completies the proof of the theorem.

Remark 2.4. The theorem is false if we require the median direstion to
he a maximam likclihood estimate of 8 for  — 0 samples. To see thie, con
sider the following clags &, of droularly symmetric non-uniform den-

gities on &1
= {p(z ; 9) = fl=’ 0) |8 e 8T,
f(t) = K exp {h(Cos21t)}, ~1 <t Y

whers
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with
b : [0, #]— ¥ being defined as
M) = —autb, 0K v < 3,
v
=it 5 LU KT

whete ¢ > g > 0, % [c—a} = d—b and

Obviounaly f is not of the form as described in (2.2) and moreover it in eagy to
oheck that with this choice of f, the median direction ig indeed a maximum
likelihood estimate of @.

Remark 2.5. The theorem is falss if we reguire the median direction
to be & maximmum likelihood estimate of 8 fur 2 = 3 wamples. To see this,
congider she following class &, of densitics on 81

&,y = {p(@ ; 9) = =’ 0)}0 e &Y

f6) = K oxp {h(Coa 2 £)}, —1 €2 1
ki [0, #)— & being defined as

hlu} = auttbuie,

where

with

where a = 0, 2am+5 < { and

% = 2 } exp (sut--bu--c) du.
o

Routine slgebraie compuiation now leads to the fact that &, serves
a8 & counter-example to the assertion of Theorem 2.1.

Remark 2.6. In Romark 2.3, we have scen, how to get rid of the non.
uniqueness of median direction by chooging the median divection in 8 mesning-
ful way. It should be pointed out that for the asseriion of Theorem 2.1 fo
hold this choice ia orueial, In fact, if we require any median direction, {i.0. any
point on §' saiiisfying Definition 2.1) to be a maximum likelihood estimate
of 6, then even with m» =2 samples Theorem 2.1 holds trus so that
Theorem 2.1 with n = 4 samples follows immediately and the eounter-
examplo deseribed in Remark 2.4 coases o be one.
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In this sontext ih is also worthwhile o mention that the theorem of Ghash
and Rao (vide Kagan ef af. (1978), 413-414)) dependa crucisily on their cholos
of median and if this special care iz mot taken then their counter-example
(vide Ghosh and Raeo (1971)) eeases to be one. This fact also serves ag a
motivation for our choice of median direction deseribed in Remark 2.3.

3. THE STHERIOAL OASE

Wo shall discuss only the oase with 82 For SF with p > 2, the
discussion is essentially sare.

Definition 3.1. Let @,...., &, ¢ 8% 'Then any point 2,6 5% is called a
gpherical median of ay, ..., ®, if

3 cosl (w;@,) = min T cos-! (@] §) . (81
=1 Ees® i)

Bemark 3.1. The Definition 3.1 is due to Fisher (1935}

The extension of Theorsma 2.1 to 3% poses some special problem since
the loestion of one possible median dirsetion for avery sawmple of size 2 =4
becomes difficult. Howewver, i6 furns oub that in order to prove & theorem
anatogous t0 Theorem 2.1 for 82 it is cnough to consider all possible sampla
of size » = 4 Iying on some great circle. The following remark regarding
the convention about cheice of median direction for samples from 8% is worth
mentioning,

Remark 8.2. A. Sample size n = 2. Suppose @, #,¢ 8% Denote by
C, the great cirole pasving through a, and @, Boreover, (o, 2] denotes the
are sonnecting o, &, snd faken along ¢, Suppose the longth of (@, #5] &
length of ¢ —[a,, #,]. Then in this case the sum appearing in the right-hand
gide of {8.1} remains consiaut for E efwx, @,), and moreover § [, 2yl
£ & 2—[aty, ¢,] implies

3 \ [ ~ .
Z oo a®) < 2 oowarip).

Therefore, we agres to take the mid-poins of [2,, &), which is the same as the
meen direction, as the median dirsetion.

B. Bample size » —= 4. Supposs a&,,..., X, £ 5% sre such thet &, ..., T
lie on & greab circle, aay . Denote the cireular median of =, ..., &, by &
Then, by an argument similar to thas in Paré A above it makes sense to chooso
@y a4 the spherical median of xy, ..., @,



A BOTATIONALLY SYMBETRIC DIBECTIONAL DISTERIBEUTION 351

In view of our statement and proof of Theorem 2.1 snd Remark
3.2 shove, the following theorem is now immediate.

Thenrem 8.1. Lzt {p(w; 8) = fix' 8}|Be 89 be a clase of rofotionaly
symmeiric non-wniforin densities on 85 Suppose f{l) > ¢ for every te(—1, 1}
and moveover f(t) &5 right continuyous at { = —1, If the median diveckion be &
maximam Lkelikood estimade of 8 for n = 4 samples, then

a1

— —e poa=t [0)
}——E—W“_l_rﬂ) e el 0> 0 o (3.2)

plx;9

Remark 3.3, For 89 with p > 2, the denpity obdained in {5.2) is as
follows :

F( % ) Ip_(a)

wr 8 = iR LW RSP a0, ... (33)
whore
(62 +-23){a? 4%). . (ad+nf)e .. .
' A)
@A) (et a) . 8
= o TiTe™ if » is odd.

Remark 3.4. Theorem 3.1 s false if we require the median direction
50 be a magimurm likelihood estimate of & for » = 2 samples. To see this,
congider the following class 5 of rotationally symmetric non-uniform dengi-
ties on 82 :
&F = {p(@ ; 8) = fa’ 8)|8 ¢ 3%

fit} = K oxp {h(Coat )}, -1 L2}

with the same % 23 in Remark 2.4 and

1 zﬂw{ﬂlp““‘"—%) ol e )}_

where

K a1 - &4+1

In order apw to verify that & indeed serves ay a counter-example to
the assertion of Theorem 3.1, take 2, 2, ¢ 8% Suppose the lengbh of [, a,]
& length of CF—[x,, #,]. Then, it is eagy to see that for every 9¢ & —C
{for the definition of ¢! see part A of Remark 3.2), 30 ¢[x,, @] such that
fl; 0°) f(, 8°) > fla; ©) fix} ©). . (38)
with {3.5) in mind, the rest of the verification conststs in routine slgebraio
compuéabion and so wa omit it.
A l1-11
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Remark 3.5. We have not discussed about the location of apheries]
median for # = 3 samples in Remack 3.2, Therefore, the quesation of validity
of Theorem 3.1 for » = 3 sampies remains open.

Remork 3.6. We have assumed hoth in Theorem 2.1 and Theorem 3.1
that f{t) > 0 for every te(—1, 1). However, none of the results mentioned
in, Beotion 1 puts any such restriction on the density to be cheracterized.
Tt is, therefore, of some interest t0 ses if thiz assumption ¢en be relaxed,

4, SOME QENREAL BEEMABES
Remark 4.1. The three results mengioned in the introduction has the
Tollowing common feature : the specific form of the maximum likelihcod
estitnate of the location parameter can be thought of as that x, which
minimizes
S dlas, 2) . (&)

f=1

over x € £, wheve & 13 the sample space under considerafion and the sum
in (4,1} is & measure of distance between {x;, ..., x,} and x for some d : @rx g7
~» 22 . the set of non-negative numboers. For example, in Teicher {1961) 42
= &' and d(z, y) = (—y)% in Ghosh and Rao (1971) @7 = 2! and dix, o)
= |z—y| and in Bingham and Mardia (1975) 4¢ = 5% and diz, y) = Ja—yli
— gquare of the {;-norm of @—y The density characterized then turns out
to be of the form
Ae-odiz 6} fe ep

where ¢ > 0 and A > 0 is a constant depending on & [The von Mises—Fisher
density Ae’(*8 iz easily sesn to have the alternative representation
Ae-olz-8P gince [} = @] = 1]. Thus the way mean, median or mean
direction ia defined is captured in the form of the density charactetized.

In the problem considered in this paper, we have @ .= 8P, d(z, ¥
= coy~L (@' y) = the geodesic distance between & and y. In view of the
ob#ervation mentioned in the last paragraph it is, therefore, cxpected that
the density characterized should have the form aa in (2.2) and (3.2).

Hemark 4.2. In both Theorem 2.1 and Theorem 3.1, we have assumé
that the median direction iz » maximum likelibood estimate of § for » = 4
gamples. The same result, therefora, holds if »n i3 assumed fo vary over &
set of natural numbers containing some multiple of 4. However, the gues-
tion of validity of the assertion remains open if » is assumed to very over &
get {finite or infinite) containing no multiple of 4. Similsr remarka hold for
the reault of Teicher and that of Ghosh and Rao.
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