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SUMMARY. Using Mativier-Pellaumsil inequality, & notion of dominating process of a
gemimertingaly s introduced and its usefulness . study of the Emery topology and Pathwise
formulae i3 exhibited. Pathwisa formulas for solntion to stochastic differential equations and
for multiplicative integral are obtained,

1. INTBODUCTION

Métivier-Pellaumail (1979) proved an inequality for square integrable
martingsles, which they called a stopped-Doob’s inequality. In the same
article they established its usefulness for study of stochastic differential
equations (SDE). This inequality makes all semimartingales amcaable to
IAtheory. In Karsndikar {198la), it was shown that using the technigne of
random time change, all continuous semimartingales can be ireated via the
IA-theory and various pathwise formulae were obtuined.

In this article, we infroduce a notion of 2 dominating process of s semi-
martingals, which is a modification of the notion of a control process iniro-
dused by Métivier (1982). The rest of the paper fries to esteblish that the
dominating process is a very useful ool in the study of stochastic integrals
and SDE’s. The claim is that @ dominating process does for a semimarbingale
what the fotal variation process does for a process with bounded variation puths.

After establishing elementary properties, we give a new metric for the
Emery topology (see Emery, 1979a) and then introduce the notion of fas
convergence in the Emery topology, which we denote by=».

We then prove stability of solution to SDE’s in the sense of = which
implies stability results in Emery topology. This notion of % is particularly
useful for pathwise formulae for stochastic integrals, solutions to SDE’s,
multiplicative integrals ete.
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Among the results proved are : that the pathwise formula in Karandiker
(1981a) for eolution ta SDE iz valid for r.c.1]. somimartingales, that the Euler-
Feano scheme given in Bichteler (1981) yialds a pathwise formula for larger
class of coofficients, which may depend on the whels history and analogues of
results in Karandikar en multiplicative integrals for r.cll. semimartingals,
In all these results, the pathwise formulee are in terms of paths of X#'s, whioch
approximate the driving semimartingale X in the < sense.

We would like to remark that proofs involving dominating process and
= are very natural and simple because $hey do not involve decomposing the
semimartingale into & martingale and a process with bounded variation paths
nor doos it involve separating large jumps of the semimartingale and treating
it ssparately.

A" nrocesses wa consider are defined on a fixed complete prohability
space {§), &, P) and are adapted 40 & fillration (&) assumed e satisfy usual
hypothesia.

~Hr, will denote as usual, the class of all locally aquare integrable mar-
tingales and for Me #f,, [, M] will denote the guadratic variation process
of M and < M, M > the dual predictakle projection of M. M will denote
the class of all increasing processes V with ¥y, = 0 and 9 will denote procesees
B which can be written ss B = 4,—4,, 4,, d,e¥+. For Be, | B|ePt wil
denote the totel variation process of B. For U, Pe @, we say U<F
if F=Ue?*. 3K will denobo the class of all somimartingales. Recall
that if X ¢ 8.4, it can be decomposed as X = M1+ 4, Meo#E, A c¢@. The
elaga of all r.c]1 1 adapted procosses will ba denoted by 8 and & will stand for
class of prediciable processes f such that | f{*e 2. Hers, (and in the sequel).

[fl;= sup |fs)].
P

All statementa regarding proocesses are to be interpreted modulo P-null sets.
For feJ, XelA, [fdX will denote the etochastic integral. For all
nnexplained ferminology, defivitions etc, see Dellacherie-Moyer (1980) and
Jacod (1979).

2, THE DOMINATING PROCESS OF A SEMIMARTINGALN
The following is a conssquence of the Métivier-Pellaumail inequalitf:
which suffices for ouzr purpose.
Theorera 2.1: Let M ¢ M5, and o be o siop time. Then
B\ M| 2 < 4B < M, M>, +[M, M}, ). .. &8
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prom (2.1) it follows that for f e J, ¥ ¢ #E, and a stop time o,

E|{fAN|3¥ < B{[f*¢B),} v (23

where B=4 < N, N > +4[N, ¥]. On the other hand, if 4 ¢ ¥ and fe.f,
then for all &,

Eiffad|k < B{SIfid]4]5) oo (23)

Combining {2.2) and (2.3), Métivier-Pellaumail introduced the notion
of a control process of a semimartingals which is defined as follows : T ¢ ¢+
is said 10 be a control process for a semimartingale X if for all f¢ .2,

B| [ fAX |2 < B{U, (] fa0),.}. e (24)

Such a process U alwaya exisis, one choice being
7= 81+ < M, M > [}, M1+ |4]),

whore X = M4 is a decomposition of X with M ¢ A, and 4 ¢ ¥, Using
this notion of vontrol prooess, the theory of stochastic integral can be deve-
loped and existence, unigueness of solution to SDE’s in the Lipachitz case
can be proved in a rontine way via sucoessive approximation and a Gronwall

type lemma.

Wo will show that a more efficient combination of (2.2}, (2.3) yields n
lot more. Let 6 : #X @~ U+ be defined by

BAf, V) = qﬁ{(;r 1) E 7127} e (25)

The followiag propecties of # can be verified easily. Here f, gs J, U, Ve 2
and x, £ are real numbers

6df, V) < B[F11Ve o (2.6)
< g] = 6lf, V) < Blg, F) . {27
ULV =& U)< &(f. V) e (2.8)

Now & combination of (2.2), (2.3) implies that the process
V=2(< M, M> +[M, M)t} | 4|

dominafes the semimartingale X = M+ AM eusti,, 4 69) in the following
BETLSD

E|[fdX| 22 < B{G2(f. V)} - (2.9}
This imequality leads us to the following definition,
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Definition : A process V ¢ @+ is said to be a dominating process for g
semimartingale, X, written as ¥ 3=)— X or X —<{—¢ ¥, if there oxists a decom-
position X = M- 4 with M e M2, A ¢ such that

(<M, M> +{M, M+ |4|} < V. e {210
The inequality (2.9) can be rewritten as follows : if X {-{ ¥ then for
all fe s for all atop times o,
1§ 22X |5 Ml < 16,0 Pl s (211)
o i porticulas HX [l < 3V sl ree {2.12)
whete || |l; denotes the F2-norm on {Q, &, P).

Before proceeding Iet wa note that if X is an r.ell, process and ¥ ¢ 9+ ia
such that (2.11) helds for all bounded, simple prediclable processes f; for all
§60p times & then the Dellacherie-Meyer-Mokobodzki theorem (see Métivier-
Pelaumail {1980) and also Bichteler (1981)) implies that X is a semimariingale,

The following result gives two important properties of —{—{.

Theorem 2.2: Let X, Ye 8. and fe S, Suppose X—4-{U, Y -4V,
Then AW == (Xt TY)suchthat WL UV . [2.13)
and 3D yb § fAX such thet D £ 8(f, T, e (2.14)

Proof: Tet X = M+tAd, ¥=N4R bhe decompositions of X, ¥ with
M, Nesf,; A, Be® with

2( <M, M> +[M, MP+14|<€ U e (2.15)
2 <N, N> [N, NDi+ |B|<€ V. . {2.18)

Take M' — M N, A'=A+B, W=2(<l, M> +[M', M1 [4].
Then X+ Y= M+ 4’ and thus (X + F) <~ W. Now W< (J-+ ) follows from
(<M, M'> +H[ M, B < (<M, M> [, MY (< N, N> [N, Nt

This proves {2.13). For (2.14), take N* — §fdM, B' = § fdA
and D= 2(< N', N" > 4[N, N | B ).
Then | f2X <4~ D. Further
1B < §|f|2|4] < [|fidl
sad  H< N, N> L[V, N =4 ] |f]2d( <M, M> +[M, M])
< [ 1f]*dUe.
These inequalities together give D < 6(f, U).
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A metric for the Emery topology on 8.#. The Emery topology (see Emery,
10798} on the space of semimartingales it given by the metrie
dd X, T) = sup {ro(j fA(Y—X)} : fe I, |f]* < 1}
hd

where tp(8) = Z 2N B(1A | Z]5}-
el

Recall thet 7.,(Z¥) > 0 is cquivalent to saying thet | Z¥|;— 0 in probability
for every £.
For semimartingaloy X, ¥, let
P&, Yy =1inf {rp(F) : ¥y (F—XY}. v (217)
The observadion (2.12) implies that X = ¥ if p(X, ¥} = 0 and (2.13) along
with the observation that W < UV implies ¢ (W)  r (TU)+ro{V) pives
the triangle imequality for p. Thus p is & metric on 3.4, It follows from

(2.18) that under p, S/ is a lincar topological space. We will prove that p
and &, are equivalent metrica. A firsh step is ;

Lomma 2.3 : p(X2, X)— 0 dmplies dgul{X®, X}— 0,

Proof : Bince p(Z, ¥) = p(Z—¥, 0) and duw(Z, P)=du(Z—Y, 0), we
et pssume that X = 0. TUsing usual snbsequence arguments, suffices to prove
that

3 (T, 0) < 00 m=p dpa( 7%, 0) .
-l

et P 3=} ¥, rg(P%) < p{F%, 0)+9 bo such that £ ry(P4) < co. T oam
be seen that this gives

Fg= E 'F?{Cl'.‘l
Ewml

Get oy T oo such that de_za; m. Then for any fe with |fI* <1,
woe have

rogl [FAT®) —= Elﬂ-ﬂﬂ' (IA[[ JAT*|D
< 3 5{Plow < n}+-BI [ ST}
< £ 2Pl < n)H16, (1, VR,
il

< I 2Ploy < m)H3ITE
g=1
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Using hin !!F’“_ﬂ, = 0 (a9 Fﬁm_-}ﬂ and is bounded by m) for sach m,
we geb

lim sup [ SR rol [ £ 1?*}] < 3 2P < 4. (2.18)

Now taking limit as m—> 0 and using o T o we get that the left hand gide
of (2.18) is zero completing the proof.
Lemma 2.4 : (S, p) i3 a complele melric apace.

Proof : Buffices to show that if X® is a sequence such that p(X#+, Xu)

& 2-n, then X® gonverges to some X in .40 Get V3 pmi (X#+1— XB) guch

that Vg = 3 F# << co as in the previous lemma. Let ¥# —= X#H.-X%and
Hwm]l

let ¥» = N1 B* be a decomposition of ¥* with N%e_gf,, B%¢ ¥ with
[2( < N», N# > [ N9, NeJp i | Be|] <€ T

Lot M5 — 3 Nk, A% — £ Bb then XnH_X1 — Jrydn, Now
'l

Ewml

5=l
for all  implies that lim A7 = 4, exists, de¢@ and [ 47— 4 |;~» 0. Letb
]
i
Ut= E [{Nﬂj N“} }-I’«
#=1

Then Uec¥F+ is predictable and Uy, = 0. Hence we can get stoptimes om
suoh that U,m £ m and o, T 0. Then it follows that

i
(< MI—Mt, MI—M >, p < X (< NENES, B
" Fuai41 n

and. henee goes fo zero as 4, j— co, snd is bounded by m. The dominated
convergence theorem now gives
B < Mi—- M, Mf—-jﬁ},m—} 0

ag §, j—» oo for every m. This gives existence of M ¢ M}, such that
EcoMi—M Mi—M >4, 0. o (2.18)
The relation (2.19) also givea E[AM/—M, .&fi—j!!],“—} 0 and hence
< MM, MY ::-,“+[MI—M : MF—M],m—h 0
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in probability. This implies Mf®+ A% converges to X — 2/ 4-4 in the p metric.
Thug X7+t converges to X 1.3 This completes the proof, [

Remark t : Using arguments given above it can be chacked that

plX#, X)= 0

i#f there exists a decomposition Xr—X == MniAn with [4%|3—0 in
probability and < M*, M >;— 0 in probability for every £. We now
have

Thoorem 2.5 1 g, den ave eguivalent melrics on Q.

Proaf : Follows from the fachs that g, dym are complete metrics on 8%,
that under each of them, §.4 is a linear topological space, and Lemma, 2.1,
which implies that the identity mapping from (.4, p) into (B K, dug) I8
continnous. The rest is open mapping theorem.

The characterisation of convergence in the Emery topology as X%~ X
iff 3 A% % (X7 —X) with r,, [A*)— 0 yields simple proofs of various reaulte
on the topology given in Emery (1976b). A similar characterisation of con-
vergence it Emory topology via control processes is given in Emery (1980).
However, it does not yield 8 metric for the topology.

With the aim of obtaining pathwise formulee, we make the following
definifions,

Definition. : For proceases g=, g, say thet gt = g if

I |gt—glt<a
=l

Clearly, gﬂi} g implies that |gt—g|:— 0 s for ell ¢, ie. g% converges
to g as in tha uce topology (uniform convergence on compacts). The analo-
gons nofion for semimsrfingales is :

Definition : For semimarbingales X%, X say that X» SXif JFs 3
(X3—X)} such that 7# 2 0.

Bemark 2 . Tt ig easy to seo thet if r {Fn)— 0 then there existe a sub-
saquence {F»#g uch that ¥»¢ 5 0. From this it follows that if p(X®, X)— 0,
then there exists & subsequence {X#*} such that I»* 5 X. Simce X* 5 X
elearly implies p(X», X)— 0, we have the following. For p(X», X) to con-
verge 0 zero, it i3 nocessary and suffivient that every subseguence of Xn
containg a further subsequence converging to X in the sense of = . Ik ig olear

that the convergences does nob correapond o convergenco in any topology.
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However, it may be noted that for a subset A of 8.4, its closure consists
of all X ¢ $uA for which there exists a sequence X, in 4 with X, X,

The following result gives the importance of - for pathwise formulae,

Theorem 2.6 : Suppose X# 5 X. Then

Gy AnS X

(#) X converges a.8. o X in the ucc topology.
Proof 1 Let V8 =4 (X#—X) be such that

Up= % (MR <o
fpmul.
and geb atop imes oy T oo such that U,_— <4 Then (2.12} implies

1 ZP—X g I < 073 -2

and hence - -
BT [X—X|2 <9 X BV
=L i ml '
< Di
< 00,
This proves E | X#—X[?2 = oa.s,
At ¥

which, along with oy 1 o yields X» 5 X. 'The second part follows from this.

We now state some useful resulls whose proofs are elementary and hence
are omitted. The first one relates the notion of 23, =5 with stochastio
Integration.

Thoorem 2.7 : Let Xs, ¥, X, ¥ e 8.4, frfed. Then we have

X$LX, Y9357 = Xn,-Fo3 X+Y . {2:20)
-I""'-}'X = Iﬂxﬂ':} Eﬁx akE (E‘El}
2l f == [fdX % | faX o (2.29)

B3I T = [fsdXs X[ f4X. .. @5

Remark 8: Using the uwsual subsequential arguments and Remark %
1% can be shown thati (2,23) implies

folf*— f1—> 0, p(X%, X) > 0 == p(] frdXs, X} 0. .. (3.84)
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The next result eonnects the quadratic variation procesa with -%.
Theorem 2.8 : Let A, X, ¥ be semimartingales. Then

Vi X ==3 [X, X] PP .. (2.25)

X550  ==3[X» X8t 0 . (2.26)
Xn2 X ===3[Xn ¥} 5H[X, ¥] .. (227
Xr5 X ==[Xn, Xn] (X, X]. . (228)

Using the change of variable formula in the form given in Lemma 8 in
Emery (1979a) and the observation that if % is a locally Lipechitz function,

then Z» — Z implies A{Z%) 25 A(2), we oan prove Theorsm 2.9,

Theorem 2.9: Let & be fiwice continuously differentinble funchion and
suppose that its sscond derivative k e iz locally Lipschitz. Then X»% X implies
ME5) 2 h(X).

With a little work, a veotor version of this result can alse be proved.

3. SrTARPILITY OF SOLUTION TO SDE

Let 4 be a fizxed integer and L{d) be the clasa of all X d matrices. An
T{d) valued prucess X — (X%} is said to be a Semimartingale if X% ¢ ¢ for
all §, 7. This is writter as X & §.4 (L(d)) ot simply X ¢ Q4. BSimilarly, for
an Lid) valued process f = (%), f e B(respectively .4, @) if /4 ¢ B(respoctively
J, ).

A process Ve @+ (real velued) is said to be a dominaling process for
X = (Xye Sup(Ld) if 3 Ve, T XV and V=2 Y, and is
written ag X —~{~{ ¥ or ¥ %3~ X.

For {6 & (L(d)) and X ¢ AT}, T = [ fiX is defined by
Yib — 5 4 dX*
$
end i can he chocked that if X <~ ¥, then

By § faX22 < a2 (IfIl, ¥} e (31)
where || || is the Hilbert-Schmidt norm on L{d). The constant 4*in (3.1} can
perhaps be improved.

For L(d) valued processes X#, X, we will say X8 X {or.xlir.x}ii’

Xn-t) 2 XU (or X#t3 2 Xt for all 4, j, whete X% = (T#U) and X = (XV).
A2-3
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We will consider stochastic differential equations (SDE) of the form

Z = Y+ [ QZ)dX e (3.2)
where ¥ €8, X ¢ 8.4, both L{d) valued and
G 1 B(L{d)—» HALd)
satisfien, for some 4 ¢ ¢+
1!@{31]——@{29][!: < A#—l]zf"zgut— 5 Z;_-, Zﬂ e B, o (3.3)
We will denote the class of s satisfying (3.3) by £(4).
By taking rows or columns of zero’s, we can convert equations of the
type (3.2) with ¥, Z 2xb matrix valued, @ mapping ¢x¥ matrix valued

processes 6o g X ¢ matrix valned process and X-an ¢Xb matrix valued semi-
martingale to the F{d) valued case.

The existonoce and uniqueness of solubions to (3.2) is well known., In
Métivier (1982), these equations are treated via a Grownwall type Lemma
which we state next. The firgt part iz lemmsa 29.1 in the reference cited above

and the second part of the lemma follows from the first part and the obser-
vation that

O, T) < 41478 § |1 V3T,
Lemma 3.1 : ILet A, B, V ¢ T and 1 be a slop time such that
BA, <o, EB, <o, F_< a.
(£} Suppose that for all stop btimes o £ 7,
BA, < b+E{([A4.dV), }.
Then EA,. & b0y, where Oy is a constant whick depends only on .
(#2) Suppose that for oll stop times o £ 7,
EB;_ < b-+B{0: (B, V)
then BBE_ < DL, where the constont O, depends only an a.

We now give an outline of proof of existence and unigqueness of solutions
to (3.2). Apart from being simple, and or the lines of proof’s in the ocast
of equations driven by Brownian motion, it also shows that the method of
§10cosgive APProximetion converges in the sense s,

Theorem 8.2 : Left X e A, ¥ € B, both L{d) valued and G ¢ XA). Define

Z» by
2 =Y

Zh = Y4 [ G(Zn)dX.
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Then, Zn— 22 0, where Z i3 a solubion to {3.2). Furiher, if Z' 42 any Solubton.
fo (3.2), then
Pl = Z,forall {) == 1,

Z

Proof : Leb ¥V y=p—X. Let B} = || Z#P—2Zn|% u 3» 0. Lot 7¢ be stop
yimes fincressing to oo such thab F*r* £ 3, At{_ < 4, Bgr_ < 4. Using
(3.3) for @, we get for oo £ my, with U = P2+ V,

BBv & dfEGE(+/BE, V)
< B4 4(1+E( [ B2EU),—

for > 0. Using B < ¢ and U, < i*4-iit follows thet b, — BB} < e
for all % = 0.

Let HP = Eﬂ-iﬂB}‘. Then EHY_ < and for stop times o <7y we
have for some constants K ;, K, depending only on 4,
BH#H i+ Rl [ Hndll),_
& i+ Ky B( | B30,

and thus by Lemma 3.1,
B (=% 4nn ) & K.
F e
Since this holds for all », we get

T 48 & Ky < o0,

fi=l

In particular, &% < 4% for large % and as a consequence !I{Z"f“"l—z“].i_lll <

2-# for large n. This yields existence of Ze¢ B such that [|Ze—Z|] - 0 in
probability, and smch that

(1Z0—Z|;, Jla < 2D

for large ». This yields Z* 5 Z. Lipschitz property for @ imylies G(Z"%) -3
G{Z) and hence by Theorem 2.7,

[ G(Z%dX D | H(2)dX.
Thus, Z is a solution to (3.2) and Z»—Z 3 0.
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For uniqueness, leb Z, Z’' be solutions to (3.2). Get stop times o¢ T oo,
with ¥, €3, 4, <¢and |62, < i Then for oll stop times 7 < oy,

B|Z2—Z';2 < EauB{{ § 12— 2} dU),. )
for U = V%4V and a constant K;. Then Lemma 8.1 vields B[ Z—Z' “:Fr,:{)
for all ¢ and hence
P(Zy = Z, for all §) = 1.

Remark 4 :  Bichteler (1931) had shown that Z#-% Z and Emery (1979h)

had shown that Zt— 7 in the p-tepology.

The noext result gives a refinement of a result of Emery vis-a-vis*-
convergense,

Theorem 3.3 : Let X, X e S, T*, ¥ ¢ B and G, & ¢ of (A) for some
Aett., Let Zn, Z be solubions to

Zn = Yn | JGﬂ{Zﬁ]ﬂﬂ
Z = T+ [HB)X.

Suppose further that X 5 X, Y1 2 ¥ and
GH{Z} > G 2). o (34)

Then 70 2y Z. If further, Y% 35 Y, then 20 5 7.
Proof : Let T® ) (X7—X} be such that B2 = I (V5)*< co for all ¢ and
]

lot FOy=b~ X. Using Theorem 2.2, get I/t Ybom X% guch that U%  Fi+ V5
Lot

Dy = TP+ BIHIF@E 2 16m2)—0(BI+ T [Ye~T).

Let 7y =inf {t:D; > ;. We then have D, ¢ and as a consequence,
(U2 2<% 45 <4 (W, P <4, |F(5)|3L < ¢ Using these inequalities
and writing
ZA—F = Y5+ [(GH{ 2% —Gr(Z))d X+ (P Z)— G{ Z)d X"
+ JHZW(X*—X)
we gob, for any stoptime ¢ & 7¢
(4041 B 28— 212 < BifY=— Y| ;X 4-iB6 (|2 Z)L, U=)
+HEN(Z)—GF(Z);2 +-B(V;-)°
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Henoe, for eonstants Ky < o, 8,; such that T 853 < 0, we have
B||Za— 22 < St KBGO (1 29— 2L, Un)
for sll stop times ¢ < 7¢. sing (U7 i,_}“ &% 2¢ we conclude from Lemms 3.1
that for a suitable constant K,
EjZ»—2)7%_ & duky
and hance EE -2 <Ko £ty <o

sl
This proves Z#= Z. For the ssennd part, firat note that

G Zw) (2} O ... {8.5)
which follows from the fack that G%, & ¢ 4) and that
GR{Z5)—G(Z) = G Z4R)— G (Z)+ G Z)—G{Z).
Thus, [lGMZM—G(Z)dX- 0, . (8.8)
Now (HZ) ¢ .4 and (3.5) imply
sup @M ZR)2 < oo. e (37)
Applying Theorem 2.2 40 each component, get
W e [ GHZP) A X P —X)
such that Wt < dAlIA( 27}, V#)
< 3dYE{ZAY) VY
Now (3.7) and § (V&2 < oo yields E (W2 << oo, Thus
[ GMEME?—X)-5 0
which along with (3.8) gives [Q#(Z%)dX»S [((2)MX. Now Y73 Y implies
Zn3 Z.

Bemark 5: In Emery (1979b), it iz proved that in the set up of
Theorem 3.3, if p(X#, X)— 0 and r(G%(Z)—G(Z))— 0 (instead of assumptions

involving¥s, %) then s {Z#—Z)— 0 and if p{T», ¥)— 0 then p(Zs, Z)—s 0.
This can be dednced from tho theorem given sbove via usnal subsequential
arguments and Remark 2.

Remark 6 : In Thoorem 3.3 if one assumes

G Zn)—G(ZM2 0 e (8.8)
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insbead of (3.3), then the conclusions are still valid. This can be proved by
Zo—Z = ¥o— ¥+ [HEME?~X)+ ({20 G Z)dXn
(@Y 2%~ G Zm) X

and using arguments analogous to the ones in the proof of Theorem 33. In
fact we do not need to assume G ¢ £ (4).

4. ParawIse FORMULAR
Bichteler (1981) proved that for X ¢ S A, Y .8, the integral |¥_dX
can be evaluated pathwise, i.e, (f ¥ _dX}w) can be written as an explicit
fanction of the w-paths {¥(s, w), Xu{a, w), 0 & 8 & T. Such pathwise forraulae
are important for statistical applications.

Biochteler also gave a poathwise formula for solution te an SDE. A
different formuls, was obtained by Karandiker (1881a) for SDE's driven by
continwous semimartingsles nging elementary methods.

In this section, we will show thab the notion of dominating process intro-
duced earlier yields these regults and moreover, gives elegant conditions on,
the coeffidents when the Euler-Pesno scheme or the modified suocesstve
approximation scheme yield a pathwise solution to the BDE in guestion.

A sequence {rg of afop times will be gaid to be & partition {of [0, co)} H
To=0, 11 § Ty, for all § and 74— o0,

For & partition {r;}, we define J: 3.8 and H:28 > by

JX = En Lo L gy

i

HY =2 X 1,00

Note that given £ > 0 and X1, ..., X* e R(L(2)) ; fr defined by
Te = 1
T == inf f# 3 7 1 |\ XI—X || > & for some j, 1 5 < B}

is o pertition and [JX/—XJ) < ¢. The sequence {r;} defined above wil
be called that the canonical s-pertition for X2, X8, ..., X% Note that th
canonical e-partition for X1, ..., X¥ is defined pathwise 1.6, r{cw) is an explici
function of the paths (XM, w):1 €< k45 0L
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In what follows, we will be considering o soquence {#:i >0}, 2 » 1
of partitions. We will denote the corresponding operators J, H hy J», H#
respoctively. More specifically, we will be dealing with {7} such that

|8 Xn—X= |2 0 e (4.1}

where X2 ¢ B i3 8 given dequence. Note that if {77} is the canonical g,-parti-
tion for X and Tef < oo, them it follows that (4.1) heolds,
Leti ¥ ¢ .% and {r7} be such that

[7*Y—TY]= 0

and suppose Xn2 X. Then H#Y= ¥_ and thus [(HoY)dXs2) [ ¥ dX,
Taking {r}} to be the g,-canomical partition of ¥, we get the following :

Theorem 4.1 : Let ¥ ¢ B and X#— X, Let {17} be the canonical e -parti-
fion for ¥ with D €2 << oo, Let

2o, w) =3 Trl(o), w) (XHw) A & o)~X5(r)o) A b w).

{=D
Lel £, = {0 : Z9{., o) converges in u.c.c. fopology} ond
lim I, o), if we )y ;
Zit, w) = &
0, otherwise.

Then P(Q}) =1, Z = [¥ 5 dX and Zn5 2.

This gives a pathwiss formuls for {Y_dX when X is only approximately
Imown, If we take X® == X, we get Bitchtelor’s formula.

We now turn to Pathwise formulee for the solution o SDE of the type
considered in the last section. We assume that the functionel & : B J i
of the form

A2} (b, ) = F(Z) {¢—, o) . (2)
where ' : B— % iz in furn & pathwise mapping
F(Z) (£, w) = bil, m, Z{e)} e (4.8

and & : [0, o} QX D0, o), L{2)) is & mapping, such that F(Z) defined hy
(4.3) belongs to % for all Ze.B. Here D([0, o), L{d)) is the vpace of
all r.c.1.1. functions from [0, o0) into L{d). We further agsume that

1BiE, @, P)—biE, e, o)l & A wipi—S4ll} o (445
for some 4 ¢ @, Then G defined via (4.2)-(4.3) belongs to £(4),
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Qur object is, given ¥# 5 ¥, X7 5 X, o obtain a formula for the zolu-
tiom Z to the SDE (3.2) where for w ¢ Q fixed, Z{, «) is given explicitly in
terms of the pathe {F3(., w): X8, w); B, w,.), # 2 1}. Nofe that since
we know that the snccessive approximation method (in case Xr* = X, ¥n = 1)
converges uniformly a.a. and that Z#* can be computed pathwise from
Za using Theorem 4.}, we already huve a pathwise formuls, However,
this involves repeated limits snd is thus wnsuitable for computational
purposcd, The importance of obtaining & formula involving a sinple limit
it seli evident from the point of view of applicationa,

The first formula we give was obteined by Karendikar {1981a} when X
is & continuous semimartingale and Y2 =X, ¥* = F.

Theorem 4.2 :  Let b satisfy (4.4). Lt 77 S Yand X5 X, Piz e, > 0
such that L el < co. Pul Z2°= T° and define {Zv, {30.: i 2 13} inductively
5

by
=0, Z5=Xp

Talw) = inf {6 3> 7w} : i, w, Z0-Hw))—blri(w), @, ZFNwl| > o5
and for T} <P T,
B = Zip+ Tr— Yoot b(7f,., 23X X)),
Then Z0 5 Z where Z is solution to (3.2), where &, b are relufed via (4.2),
(4.3). Az a consequence, Z sa limit of Z0 in the u.c.c. topology, a.2.
Proof : Let J®, O% correspond to {7}}. Tt is easy to verify that
Zn = YnL [ In{P{Z3-1)d X%,
Then Zn—Z = ¥o— Y + [(EF(Zr)— (Lo D)X
+HA(Z ) —G(Z)Hd.Xn
+ (A Xn-X),

Using [[Ha(F(Z5)—G{ZY)|| & ¢, and X% X, it follows from Theorom
2.7 that

| (EMF(Er-1)— G Z )X 2> 0.
Thus wa have
Za—2 = Wt ({2~ )X,

where W2, 0. Now proceeding a3 in the proof of Theorem 3.3, it can b®
shown thet Z8= Z. One needs to use that 3D s D+ such that 4, 30m 4-3-X*
with U7 « D;. This fact was noted in the proof of Theorem 3.3,
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Under additionsl conditions on b, one could get other approximati
schernes. W give a eondition under which Fuler-Peano scheme gives a path-
wise formula.

Theorem 4.3 : Suppose b eatisfies (4.2) and further that for oll & and for all
é & D((0, o), L))

P =dle A B Wi=0Dlf, 0, ) =b(s A {, &, $). ... {4.5)
Lot bo ouch that B} <o Let {78, 27} be defined by

5=0, Z3= T}
tha = inf § > 7F [ ¥5— Fipb-birl,, Z9)(XT—X 00 2 =, e (48)
and for 17 < i< iy
Zy = z;}+r,-_ Yos+birh,., zqqxp-x‘,‘?;.. o (A7)

{(Note that b{r?, w, ZM) can be evalualed once Z} 1§ & 1P ts debsrmined).

Then Z® converges in u.c.c lopology (z.8) to Z-the soluiion io (3.2). In fucl,
Zs s, Z,

Proof : As in Bichteler (1981) it can be argued that 7} — oo (a.4) a8 = o0
and hence that 7P is a partition.
Let J*, H% oorrespond to {rf}.
Then Z8 — Yo [ HoF(Ze)dX».
Thus, to prove that Z%2 Z in view of Theorem 3.2 suffices to prove thab
ASF(ZN—GH{Z") — 0
or equivalently, JAF(Zn)— F(Z%) > 0. S R
The assumpkion (4.5} on & implies that JeF(J8Z%) = F(J»Z#) and hence
IJeF(Z8)—F(Z%)|} & (| JPR{Z%)—J*F{J2Z%)|!
+{F(SeZe)—F (2
o 24| 28— JeZnfy
< 2da,
by choice of the partition {rf}. Since X e} < oo, this proves (4.8).
]

Remork 7: When b(f, w, §) = g(¢s) for some Lipuchitz fanotion g, then,
(4.5) holds, In this oase the above resalt is proved in Bichteler (1951),

A 2-3
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Suppose b does not satisfy (4.5). What docs the Tuler-Peano Bcheme
yield ? Here, in the definition of {r%}, Z*, one replaces bir},., Zm) (Xi—X") by
'

[% ,, bla—, o, (ZHHNNIX: .. (4£9)
{riaf]
where W5 = W,,, and H*s) = 7} for 8 e (72, 78, 1.
Now, Zn = Yo [B(s—, ., (Zn)H"Hg X"
and gince  [b(s—-, ., (BRI N—b(s—, ., Zn)]| < Als, )| Zr—(Zm)EY;
< dls, ),

one can show that 222, Z in this case as well.

However, in this case, the integral in (4.9} involves a limifing operation
and thus the resulting formula for Z involves iferated Ymits.

Thus, the Euler-Teano scheme converges in 7> sense if & satisfies the
Lipachitz condition, and if further b satisfies (4.5), then it yields a pathwise
formula involving a gingle limis.

Remark 8 : In Theorem 4.3 if {7}} is the canondcsl ¢ -partition for X»
instead of being defined by (£.6), but Z# iz defined via {4.7), even then it can
be shown that Zn 2, Z.

The exponenticl equation. We will now look at the exponential aquation
and pathwise formulae for its solution. In this case, we can see the impor-
tance of obtaining a pathwise formula for the solution fo (3.2) in terms of paths
of X# (yuch that Xn = X).

For X ¢ &.# (L{d)), the solution Z to the SDE

Z=I4+X,+[Z24X . (410)

is callod the exponential of X and we will denote it by «(X). It is also oalled
the multiplicative integral I1(J -4X) (see Emery, 1978 and Karandikar, 1981b).

The pathwise formulae for {X) when X is continuous has been found
to be useful in. diverse contexts namely, Girsanov problem for a Lie group
valued Brownian mofion (Karandikar, 1982) and study of large deviations
for products of random mabrices (Watking, 1987).

The next result is in proparation for pathwise formulae for &(X),
Theorem 4.4 : Let X5 X and €, > 0 be such that €2 < co.  Let {18}
be a partition such thab the corresponding J® satisfies for some A ¢ P+
| Xn—X|| < e,4. e (11
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Define {25} by 23 = (I+-X5) and

2= I+ X=Xy, M<Ky . @19

Then Zn Z = e(X}.

Proof: Let G(W)=W_+Ilp and GWW)=HsW-Ilp. Then
7 = I+ [6{Z)dX and Z» = I4-[G%(Z) dX», Thus siffices to prove

IR Zm)— G Z%)|| 2> O oo (418)

The conclusion Z% =3 Z would then follow from Theorem 3.2 and Remark 8
following it. Note that

G{Zn) —H ZR) = HnZn—Z2 (14
g0 that (£.13) Is same BB
|| JnZn— Znj| 2 0, v {8.15)
Now [ Z%— J8Zn|; = | JRZ#{(Xn—TsX M)}
& endy|lJHEB). e (4.16)

'To complete the proof, we will show that for suitable stop imes o3 T 20,
Rup E’Aii—!i.f nZ|| :f:— < 00,

which elong with (£.16) gives (4.15).

Using X* 5 X, get D e 2+ and U# %= X® such that U} < Dy, a8 in
proof of Theorem 3.3. et oy T <0 be defined by

oy =iof i 3 0: D53 dor Ay 3 1)
From Zr = I 4 [GnZn) dX»
we get, for any stop time 7 < oy,

B|Zn|2 < Ky g+ B0 (2T, UR)
which yialds
Byze? < Kig

where K; 5, K, 4 ate constants depending only dn §, 4. Now Aq. < ¢ iniplies
qup BAZ, |23, < & Kz
g, - -

This completes the proof.
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Taking X® =X and {r{} to be the canonical e,-parition for X, with
Z ¢2 < o0, we get that the random Riemann producls
%

zt = (+X9 0 (1433, \—X7,)

converges nniformly on compacts, a.a. to Z = ¢(X), indesd, Z05 Z.

It is nseful o ohtain anslogous result with exp(e) replecing (I3 B),
Such a result with Z» epnverging in u.c.c. in probability was proved in Emery
(1978). Almost sure convergence was proved in Karandikar (1981b) for
continuous semimariingales.

We will be considering fumetions f from I{(d) into itself. A generio
olement of L{d) will be denoted by x= (2. We fix a function f:
L{@)=» L(d) such that f{0) = 0, the partial deviations

a;%: f= [ agﬁa fne =fﬁ.llﬂ

exish, are continuous and that fpm are locally Lipschitz continmous for
155k Lm<d Define g:Lid)x Ld)— L(d) by

glx ) = flz+y)—flx)— ﬁ Fiiw)ys®

1
-3 E:ﬁfﬂm{wtym' e (417}

We need the following esfimates in the sequel :

Lemma 4.5: For & > 0, there exisis a consiont O such that for 2, ¥, vy, ¥s
& L{d) with |~ < @ Wl < @, | & <, gl < «, we have

fgler, 1) —g(0, ¥l < Ol Iyl e (4.18)
(=, yo)—g(x, yalll < Clgra—yall larsl e (419
Proof ; Fix z, gy, and for 0 < £ < 1, define
h{t) = fle+oy)—fle) —t E Sy

E
—2. 7 Fofm .
R
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Then A0) = 0 = %'{0} and henes by Taylor’s theorem
glx, y) = h(1)

— ;r (1-1h°) &

1
= [0=0 [ 2 Fmmle-+t)—fmmilyty=) @
The required proparties follow from this and the assamptions cn f.

Theorem 4.6 : Let f be as above and lat e(d) = I+f(A). Let T4 5 ¥,
Let {17} be o partition such that the corresponding J» satiafy, for some 4 € T,

I Te—Fo| < e A . {420)
with T a2 < 0. Define Xn, Zn by

57 3¢ (T
and &
4 = E] (Y:",M_Y:;‘M)

(These are really finile sum and product respeclively. Also, we wrele il;.I‘t By
to mean B,B.B,..HBq,...)

Then X» 5 X and Z 25 Z = &X),
1
= — £ 0) ¥ Yim
where Xe= 2 [pOTH 5 Z fmO YT
4 T g0, AY,). . (421}
rad

Proof : Tt is essy to soe that X%, Z® satisfy (4.12). Since o5 ¥,
15| = | Y a.5. and henee sap [|¥9]; << co a.8. From this it follows thaé
the partition {7} sabisfies (£11). Thus if we show X»-5 X, than Zn 5 %
waould follow from Thecrem 4.3.

Note that for any 8 ¢ S #(L(d)) and stop times o < 1, Ito’s formula yields

f (St'"’ ur) = le: I llu'.t]fﬂ{'gﬁ—_*'g#} dS#

+% :i.l:,E I ltmdfﬁ.lﬂ{"gﬂm - f:' lﬂﬂ’t, M

+ 2 F{E‘lo- —ﬂﬂ M‘H}*

FOHLT
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Using this for 8 = ¥%, 7 = 1},Af, o = 7} Al and summing over ¢, we

geb
Yo = Wls | R L Wis

where
Wt = B | fa{Fs—JrY®8)_ d ¥ u.i&
ik

Wi == ¥ I)‘}k,mfrﬂ—ﬂ‘lfﬂ}_d[rﬁfﬁ, I'ﬂr-lm]
JE Im

Wi = T g((¥a—JeY®)_, AYS).
ek

Now, it follows from the local Lipschitz propetty of fz and fy m that
fiel Yo —JoYR) 2 fl0)
Jaam(Y8—-J2T%) S i 1n(0)
and hence winl ;Er JulO) Yk . (4.22)

Finly T fum(0)[¥4%, Yim]. e (423)
ik.Im

Let Up = Wim— 2 g{0, AY,) and V7% — | Un#|, Then
!
H7sl < ,?;', lg{{¥5—TnF1},_, AY}—g(0, AX)|
€ I lg(Ta—ToYw)e_, AV — (Y7 IFo)y, AT,

3 g(Tn—Jn T, AT)—g(0, AT,

<K {}3“ IATI—AY] |A TR0 T — JHF%), || JAT, P

< 3:,KA 3 [V, ),
%

where K(t, w}=C,, with a =mp |75 {»), ¢, as in Lemma 4.5. This
"n

yislds P22 0 which along with (4.22), (4.28) implies X» % X. This com-
pleten the preof.
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