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Pearson’s chi-square (Pe), likelihood ratio (LK), and Fisher {Fi}=Freeman-Haltoa test statistics are
cemmanly used 1o test the assoviation of an unordered # x ¢ contingency table. Asymptotically, these
tesl statistics follow a chi-sgnare distribution, For tmalt sample cases, the asympiolic chi-square
approximations are unreliable. Therefore, the exact p-value is frequently compnted conditional on
the row- and column-sums. One drawback of the exact p-valve is that it is conservative. Different
adjustments have been supgested, such as Lancaster's mid-p version and randomized tegis. In this
paper. we have considered 1 « 2, 2 « 3, and 3 v 3 tables and compared the exact power and signifi-
cance level of these test's standard, oud- p, and randonnzed versions. The mid-p and randomized fest
versions have approximately the same power and higher power than thet of the standacd test versions.
The mid-p type-I error probability seldom exceeds the nominal level. For a given set of parameters,
\he power of Pe, LR, and Fi Jiffers appraximately the same way for standard, mid- p, and rmndomized
\zst versions, Although there is o general ranking of these tests, in some situation$, especially when
averaged over (he parameter space, Pe and Fi have the same power and shightly higher power than LR.
When the sampleé sizex (i+., the cow sums) are equal, the differences am small, atherwise the observed
differences can be 105 ar more. In some cases, perbaps characterized by poarly halanced designs,
LR has the highest power.
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1. Imtroduction

The three usual test statistics for association in r x ¢ contingency tables sie Pearson’s
chi-square (Pe), likelihood ratic {LR), and Fisher's (Fi) exact tests (1, 2]. These tests are
asymptotically equivalent. For small sample situations, exact tests have been developed and
are available in commercial software. For & given set of observations, the p-values can be
different, and the tests can iead to different conclusions, But which test is preferable in small
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samples? The research to answer this question is scant. It has focused primartly on the question
of which of the three asymptolic tests matches its exact counterpart best. see StarXact § User
Manbal [3] and reforences therein.

When appropriately scaled, these test statistics asymptotically follow a chi-square distribu-
tion. In srnall sample situations, the chi-sguare approximation is not reliable and. usvally, exact
p-values are used. Exact tests use the distribution of the test statistics conditional on the row
and column sums of the observed data. For 2 x 2 tables with equal row {or column) suins, Pe,
LR, and Fi tesis always give the same p-valoes and conclusions [4]. Otherwise, they may give
different p-values leading to different conclosions. Lydersen and Laake [5] have computed the
exact power of these tasts for different situations in 2 x 2 tables. They concluded that these
three tests mayv have different power, but there is no general ranking among these tests. In
many cases, Pe chi-sguare and Fi exact tests have almost equal power and higher power than
LR. Inn a few cases, perhaps characterized by poorly balanced designs, LR performs best.

The present paper deals with 3 x 2, 2 x 3, and 3 x 3 tables. The rows and colunns are
unordered. In the case of ordersd cavegories. one should use more powerful tests like Kruskal-
Wallis test or a score test.

Consider vwo factors with » and ¢ levels, respectively, For example, ¥ = 3 treatments may
be compared with cure or no cure as the ¢ = 2 possihle outcomes. In general, the observations
form an r x ¢ table;

1 e Sum
1 |ap - np | mis
r el ott  Wpe | Hpy
Sum | wy; - Age | N

We consider independent, multinomially distributed rows. The counts in row number i ure
multinomially distributed with parameters #;, . 751, ..., T wWhere 7 + - -+ m;. = 1. The

null hypothesis is that each row has the same set of probability parameters m;, .. .. s
We want (o test:
Hq:fr[j=ﬂ'1j = = Mg fﬂfﬂ”j= 1.2.,...,£‘
Yersus

Hy:my; 7 my;  foratleastone i, J &,

Alternative sampling schemes are table counts that foilow a moltinomial distribation with
" parameters {N, my. ..., Trolyy + - - - + e = 1) or 2 Poisson distribution wilh cxpeclations
(A1, ..., Ar). In cach of these sampling schemes, the distribution of the test statistics. con-
ditional on the row sums, will be the same as for independent multinomially distributed rows.
With these alternative schemes, the pawer of a test may be computed using the law of total
prohability and the power for independent multinomial sampling; see Lydersen and Laake [5].

The situaticn in the case of an r x ¢ table is more complex than that of' a 2 » 2 tabie and
the results from 2 x 2 tables may not be generalized:

- Even if the row sums are equal, the three tests often give different results.

— The test power is a function of r ¢ ¢ parameters, and substantially more difficult to study
Lthan for a 2 x 2 table with only four parameters.

— The nuniber of possible ontcemes explodes. For example, if the row suras are 20, then the
number of possible cutcomesinal x 2,3 % 2, und 3 » 3 tahle are 441, ¥261, and 53361,
respectively. For this reason, we used Monte Carlo simulations in the present study, while
Lydersen and Laake [5] could perform exact calculations for 2 x 2 tables.
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Ir 2 standard version of a test, the nul]l hypothesis iz rejected if the p-value does not excesd
the significance level «. This guarantees that the type-T error probability does not exceed .
However, it is often moch lower than e, and this fact causes much of the ongoing controversy
abont exact test (6]. In a mid-p test version, only half the probabitity of the observed value
js incladed in the mid-p-value. Ir & randomized test, the decision is based on the p-valve
supplemented by a randomization procedure to ensure that the probability of type-1 error
equals e.

The purpose of the present paper is to compare the standard, mid- p, and randomized versions
of Pe, LR, and Fi exact tests for # x ¢ 1ables with r or ¢ vaiues up to 3. Test power and type-I
error probability are compared. The objectives are to compare the three test varsions and to
identify areas of the parameter space where one test statistic is superior 1o another.

2, ‘Test statistics

Let
_?1!1 = 11'-'flc-
n=|: : (n
| Rr1 = Her |
be an observed r x ¢ table, Let
E:U R TS
x=]: : {2)
| Tr1 mt Xpg

be a possible r x ¢ table with the given marginals (nyy, ..., %1, 040, ... 824). [ our
natation, r denates the actually observed r x ¢ table and x denotes a possible r x ¢ table
with the same marginals as #. Conditibnal on the marginals, x has a multiple hyperpzometric
distribution under Ay (2, p. 97]

(Tra 704) (TT5my 21

Plxy= T = {3
MITL, 1-[_.'=1-"7-‘.II
The exact distribution of a test stafistic T'(#) conditional on the marginals is given by
PO =Tm = Y P, )

XefTxI=T 0]

where § is the set of possible x with the non-negative integer counts and the given marginals.
In the present paper, we define the test statistics T'{n) such that high values provide avidence
against i. The p-values are thns defined as

PITX) 2T = 3 P&, {5

xe85Tix)>=Tin)

Corditional on the row and column sums, the expected count in cell £, § under Hy is my; =<
Ri R/ N. Rows or columits with zeto sums are deleted from the table before calenlating the
test statistics. If this resnlts inr < 2 orc < 2, we do nof comprte amy test statistic, and define
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the p-valoe to be 1 regardless of the other observed cell counts. Else, Pe chi-square test. LR
test, and Fi exace test have the following test statistics;

(nij — i)
Tre(n) = ) ———"-, i6)
i M
Tipim) = Ezn,-j- log (:%) . whereatermisQif my; =0, (7
i 4
and
Twmin) = ~2log(y Pia)), (8}
where

152
s
¥ = (g;,r]{r—lluc—-liN-irc-lJ I_[(m_'_){r—l} ﬁ{"_l_j}lr—-l‘:
i=1 j=1
i8 & normalizing constant to make Tm(n) asymptotically chi-square distributed, like Pe chi-
square and LR statistics. OF course, any strietly decreaging fransformation of P(x), such as
15 () = —P{n), could be used as an equivalent test statistic for Fi exact test. The extension of

Fi exact test to r x ¢ tables was first proposed by Freeman and Halion [7] and is often narned
Fisher-Freeman-—Halton's test,

The test versions are defined as follows. First, decide on a significance level o, for example,
e = {.05. Then, compute the test statistic T(n) for the observed daia set. Tn a standard test
version, reject My if p-value < a, where

p-value = P{T(x) = T(n)). (9)
In a mid- p test vession [8], reject Hy if mid-p-value < o, where
. 1
mid-p-value = P{T(x} = T(m)} + EP[T{I} = Tin))
1
= P({T(@x)=T{n)) - EP{T(IJ = T{n}). (13

In a randomized test version, cornpute the next possibly lower p-value than what was actually
cbserved:

p-next = P(T(x) = T(m

(1l)
= P(T{x)= T{m)) — AT (x) = T{).
Reject Hy with probability
. & — p-next
P(Beject Hayln) = 12
(Reject Holn) = g (p-value - p-next)’ (12
where
O ifr<0
PN =4qr if0=r=<1 {13)

1 ifr=>1.
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Figute 1. The decision rle in randomized test version.

In other words, reject Hy if p-value < @&, accept Hy if p-next > w, and reject Hy with the
above probability if p-next < o < p-value. This is illustrated in figure 1.

Iin order to ¢compute the sums in equations {4) and (5, we could, in principle, compuie T'(x}
for all possible » x ¢ tables x given the marginals, This may be quite computer tithe intensive
unless efficient algorithms are used. We used the SAS procedure StatXact PROCS to compute
P(T{x) = Tim)}and P(T(x) = T{n)} for given n, from which the p-value, mid-p-valne and
p-next are readily obtained from equations (93 to (11).

For a randomized test, the type-I error probability always equals the nominal significance
level . In practice, randomized tests are hardly ever used. One does not want to ‘throw a
dice’ to decide on whether to reject a hypothesis. However, we believe that a randomized test
version i8 a valuable 100l 1n assessing the performance of different tests. I we only looked
af the standard or mid-p version, we could risk unfair comparisons due to different obtainad
sigmificance levels.

Some further remarks and references on the test versions are given in Lydersen and Laake [5].

3. Methaod for calcmlating power and type-1 error probability

We consider independent, multinomially disiributed rows where the parameters may be
listed as

4. Ty - My
o= 1 : (14)

Brgr Trl - e

The probzhility of the r x ¢ table # (1) is given by a product of » multinomial densities:

r

9y = HLIENY o (Y
Pin: )= r-l (nj=l"3.?)gxu (15}

i=1
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The probability P(Reject Hy|6) is the power or type-I error probability when the parameter
& belongs to H, or £, respectively. In principle, these may be computed as

£(8) = P(Reject Hyl6) = ) P(Reject Hyln)  Pin: 8), {16)
H

where P{Reject Hy|n) is O or 1 in standard or mid-p test version and may be between O
and 1 in randomized test version. This was done for 2 x 2 tables by Lydersen and Laake [5].
However, the number of possible r x ¢ tzbles is much larger than the number of possible 2 x 2
tables. Even with an cfficient algorithm, we were confined to estimate 8¢8) by Monte Catla
sirnulations. In the present paper, we did this by 5AS and StatXact PROCs. For each given
sct of parameters @, a total of M simolations were performed. Except where otherwise noted,
M = 100,000, The SAS code using StatXact PROCs implementing the algorithm is available
from the authors.

In simulation number m, draw an 7 x ¢ table 1, from the probability distribution (135).
The probabilities P(7T (x) = T{ny,)) (3) and P{T{x} = Tin, ) (4) are found by StacXact
PROCs. Next, compute p-valne, mid-p-value, and p-next. In the standard or mid-p test ver-
sions, set P(Reject Hylny) = 1 (D) if p-value or mid-p-value is < @ (= a). In a randomized
test, P(Reject Hy|ny, ) is given by equation (12). Finally, compute the estimate

M
- - . 1 .
{8y = P(Reject Hyié) = w E P{Reject Hglng)- (1)

mr=1

For the cases where we compute obtained significance Jevel, we know that the true answer
i% Balf) = o for the randomized test versions. In these cases, we used the method of control
variates [see ref. 9] to adjust the estimated values for the standard and the mid-p versions:

fiai (8 = B(8) — (Bens (8) — ). (18)

4. Results

We have performed simulations for 3 x 2, 2 » 3, and 3 x 3 tables. An overview of the per-
forrned simulation studies is given in table L. n the table, we have also indicated the ranking
of the pawers of Pe, LR. and Fi tests. We have, to some extent, emnphasized on 3 x 2 tables,
since they oceur more often, in practice, than 2 « 3 and 3 » 3 tables.

In all the simulations performed, we observed thal the mid-p and the randomized test
versions have approximately equal power. It follows from its defimition that the standard
version has lower power. In some cases, the power is nolably lower., as shown fora 3 x 2 table
in figure 2. In 3 x 3 tables, the three test versions have approximaliely the same power. This
is understandable, since the number of outcomes is much larger in 3 x 3 tables, making the
test statistic closer to a contiouous stochastic variable.

The obtained significance lavel of the standard test is sometimes substantially less chan .
The mid-p test version obtains a significance level closer 10 ¢, and seldom exceeds . By
definition, the obtained significance lave] of the randomized test equals ¢, Thiz is illustrated
in figure 3.

Figure 4 shows a comparison of the mid- p versions of Pe, LR, and Fi tests. In this particolar
case, Pe and Fi tests have approximately the same power and LR has somewhat lower power.
Comparisons of the standard versions and comparisons of the randomized versions show
approximately the same power differences {ligures not included here). In fact, we have
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Toble 1.

Svmmary of perfonned Moate Carlo simoulations.
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3 x 2 Tables

a4
0l
0.i

Blp =fze = /3= k. k€ {510, .., 100}

Pe = LE = Fi

0.4
01
a1

Wiy =3km =nz, =k ke {310,....100)

LE=Pe=FH

0.4
0.1
0l

My =K m3 =y = 362 {5,10,.._,100)

PeruPi=LE

1
04
0.4

H1+=Hz+-ﬂ'3+=k.t€ {51 ID...nlm]

LE=F =~ Ps

al
ol
4

M4 =3kl"2+ =H3y =k1kE [sl I-Dt“H1 lm}

Pex=Fi>1LE

1
04
a4

My =fkn =8y =3k (5. 10, ..., 100}

LR=PerBi

025 075
023 0.75
025 0.75

ALy =8y =g =k k € {5, 10,. .., 100}

m = 00, 002, ..., 0.5)

My = Moy =My

. mhy =, =10

0.4
0l

.6
.9

025 (75

Rip=np =Ry =k k{5 10,..., 100

PesaFi= LR

07
0
0l

i
8
LR

A =np.=n3 =k ke’ 10,...,19)

PexIR~H

0.7
N2
Ta

03
0.8
1 —_ !'!‘35

where ) = (0,08, 0,10, ..., 0.85)

Rl+ =2+ =n4+ = 10

Mainly Pe = LB =~ Fi
but for mid-p and
3 near L.5:

LE = Fi » Pe

0.7
0.2

]fj'l

0.3
0.8
1—my

where yy ~ K(0,0.3)

Rl =ty =Hy =k ke [S.IU....,ICIJ}
M = 10,000

Fa==1LR =~ Fi

4.3
08

T

0.7
0z

1 =1y

whers ) ~ B0, 0.3)

Al =Ry =My =k ke [§ 1, ..., 30
M = 1,000

Per= LR = R

4.3
0.8

T

0
0.2

1=m

Wlhere frq) -~ R, L7)

R+ =I'I.2,|_=H3.|_=k,kE l.s, ]D,u.,?ﬁ}
M = 14,000

PexlRrHR
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Table 1. Continum?,

T Hia Tast power
(ric, wze, w4y ) conslsts of Py =Hyp =tz = 25 Small diffetences
a1l triplets fromn
{0.1,0.2,...,0.9}
{711, w21, M3y} Conaists of Ry =45 1y, =15, m3; =15 Pe = Fi. TR
a1 iriplets from larger or lagrer
{0.1.02,....009
2 = 3 Tahlex
4 03 03 Hip=rm=ngp =k ke {510, . 110 Almoest squal
0] 045 045
025 DAT5 0375 Moy =My =iy =k k€ {5.10,.... 110}
25 037F 037s
0ol 02 07 A=Ay =M=k e |5 10...., 25) For & = 10;
¢35 03 02 Pe=Fi~ LR
Fig k = 5;
LE =~ Pe=F
01 02 07 Hiy = ray =Rz = 15 For ) nesar Dog 1:
1-mwy 1-my
T3 —'2— = IR =Fewh
where o) € {0.05,0.10, .., 0.95) else;
Pes=Fi=~1LR
3 x 3 Tables
04 03 pAa My =Hze =n3 =k &2 |5 10, ..., 45] Pe=LR=H
01 045 045
0l 045 045
01 045 0.45 Ry =nyy =ty =K kg5 10, ... 45) LR < Fi » Pe
04 D3 03
04 D3 0.3
ap {001, 002, . ., 05} Al =02 =y, =10
w =g =)
moja = A3
04 03 0.3 rL=Rry, =03 =f |5 I0,...,45] Fe» LR =Fi
01 {45 045

015 0375 0375

observed that for almost any fixed set of parameters the power differences among Pe, LR,
and Fi are approximately the same whether we look ak the standard, mid- p, or randomized
test vexsinns. The exceptions are the cases where the randomized versions have approximately
equal power and the standard versions have different power, However. in these cases, the
standard versions with lowest power also had lowest obtained significance level. As the ran-
domized versions always meel the target significance level, we mainly look at randomized
versions for comparisons of Pe, LR, and Fi,

We have observed that in general the ranking among Pe, LR, and Fi does not depend on
the row sum, as long as the m;; and the ratio between the row sums are kept fixed. The oaly
exceplion we have seen from this observation was for a certain 2 x 3 table in which LR has
highest power for row st less then 7, when the power was less than .45 and the vost has

Bmited practical application.



Compariron of exact teses in coningency iables 435

12
1 —i— +
0.8
|—— Yurdand Famrucy |
il i Iy
i it AL Priiiion
gn.s
oA
oz
i
v L & 80 w 0 2

Figure 2. Power for stundard 1est version, 3 < 2 table, equal row sams, (1, 79y, 7393 = (0.4, 0.1, 0.1).

Since the ranking among Pe, LR, and Fi hardly depends on the sample size, it is of interest
io study the power of these tests when the probability parameters & vary. This was done
by estimating the power for all 9° = 729 triplets (w1, &3, 73;) from {0.1.0.2, ..., 0.9 ina
3 x 2 1able. We did this for ewo cases, when #, = ny, = 3, = 25 and when 7, = 45 and
n3y =z, = 15. Out of these 729, there are 720 triplets where at least two x;q differ. For the

.06

)

0,03

P{Rsject H¥)

b2

0.4

L] x 0 an a0 100 120
Fera WM

Figire 3. Obipined sighificance Javels, 3 2 table, equal row sums, 7)) = 7y = 15 =0, 25.
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-

0,6

P{Raject Hi)

04
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Flgwe 4, Power, 3 « 2 able. row sums nyy = 3y = Iagy, (o), /w20, 751) = (004, 0.1, 0,10

case with equal row sums, the average power for these 720 wmplets for Pe, LR, and i arc
shown in table 2. In this case, the ranpes of power differences for the randomized version are
found t¢ be between Pe and LR (—(0.0215, 0,0260}, between Pe and Fi { —0.0208, 0.02243, and
berween LR and Fi {—0.0046, 0.0032). For the case row sums 43, 15, and 153, thase ranges are
beiween Pe and LR (—0.0711, 0.11319), between Pe and Fi (—0.0285, 0.0219). and between
LR and Fi (—0.115%, 0.0842).

The power differences are bager for the case with mequal row sizes. and we caplure these
further, A point of interest would be to fty to identify areas of the {7y, &3, a1} space where
a certain test is bener than another. For the randomized test version (and the mid-p version),
Pe and Fi have approximately the same power for all values of {7, 72, 75 ). In a closer
investigation (not included here), we ses that for my; from 0.4 to 0.6, LR is most powerful
and for zy; below 0.3 ot above (.7, Pe (and hence Fi) are most powerful. The areas where
the test bas a power closer to 1 than to  is of most praciical interest. Figure 5 shows the
power difference between Pe and LR as a fumction of the power of Pe. The figure shows that
Pe, and hence also Fi, are most powerful mainly where the power is higher, Another point of
interest is the area where there is an important difference between at least two ;. Table 3
shows the average test power for the SE8 triplets where two of (g, iy, 1) differ by at
lzast 0.3, when all row sums equal 25, and whear;, =45 andn;, = n3; = 15, The averape

Tehle 2. Averape power for 2 3 x 2 table for the 720 mwiplets (xy), 720, 203 froem (0L, 02, L Q.90 where at
least pwo ;) differ.

R+ = Mg = A3 = 23 Ml =43 ke =15, 81, = 15
Standard Mid-p Randomir=d Srandard Mid-p Randomized
Ps 0748 .740 0.762 6.706 Br2 4721
1R .15 0.760 Q762 L.710 714 715

R 2.751 016l 762 .76 .72 07N
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Powar difference, Pearson - LR

Paower of Peargon's test

Figure 5. Thifference in power fora 3 x 2 table, for my = 45 #z, = 15 43 = 15, for the randemized versiona
of Pe and LR, a8 a fumwetion of the poser of Peamon™s g
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Table 3. Average power for a 3 x 2 table for the 588 Iriplets (7)1, M35, 91 ) from [0.1, .2, . .., 0.9} where two
m;) differ by at lease 0.3,

Alg =npy = Hyy = 25

ny =45, =15, 03, =13

Standard Mid-p Rondomized Standard Mid-p Aendemizad
Fe 0,268 0.874 0819 0823 0835 0836
LR 0871 0.E78 Q&7 0813 D23 (LECrL
Fi 0.871 0.578 0.37% 0831 0.835 0.836

obtained significance levels are given in table 4. Far equal row sums, there are practically no
differences between the average test powers, For 1 =45 and 53, = r3; = 15, Pe and Fi
are slightly beattar than LR for the mid-p and mndomized version. For the standard version,
Pe has lowest power and lowest obtained significance bevel, whereas Fi has highest power and

highest obtained significance level.

Table 4. Averape significance level phtaimed fora 3 « 2 lable For the tive triplets (21, 20, 73] fiodn

0.1,02,...,09] with equal ;).

i+ = B3 =gy =25

Mg =4.'5,n5+ = 15,H3+!= L5

Standard Mid-p Randomized Standard Mid-» Boandanzed
Fe FLIEE Q046 0.050 0039 0.0a% 0.050
LR 1.039 0046 a50 0043 051 050
Fi 2.040 Q.043 0.050 0044 D.051 00
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5. Conclusions and discussion

The mid-p and randomized versions have approximately the same power. The standard version
has lower power. especially in smaller tables (small ¥ or small r x ¢). The obtained signifi-
cance level is, of course, smallest for the standard test verstons. The mid-p and randomized
test versions have nearly the same obtained significance level. The obtained significance level
of the mid- g version seldom exceeds that of the randomized version, and never much.

There are cases where the power differences among Pe, LR, and Fi are of practical impor-
tance, with power differences up to about 0.10. If there is 2 certain ranking of the tests for a
given set of parameter values, this ranking tends 1o be the same if the row sums are multiplied
by the same constant. Further, for any given set of parameter values, the ranking among Pe.
LR, and Fi tends to be the same for the standard, mid- p, and randomized versions.

If the row sums are equal, the power does not differ moch. This is in accordance with the
2 x 2 tables, where the power is equal for equal row sums [4]. For the cases with onequal row
sums, the *wirner' depends on the parameter values. There is no uniformly best test among
the three. For the cases we have studied. averaged over the K values of (7, /2y, 3 ) the
power of Pe and Fi are approximately equal and is slightly higher thant LR. For some particular
parameier values, we have seen power differences of about (. 10'in favor of Pe and Fi. In a few
cases, perhaps characterized by poorly balanced designs, LR performs slightly better than the
other. From the frends we have seen, this conchision ¢ught to be valid also for 7 x ¢ tables
with r or ¢ greater than 3.

We have only carried out simulations for o = 0.05. Forthe 2 x 2 tables studied by Lydersen
and Laake [5], the mutual ranking of the tests did not depend on the significance level. We
found no reason to believe this fact to be different for r x ¢ tables.
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