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EXISTENCE OF EQUILIBRIUM STATIONARY
STRATEGIES IN DISCOUNTED
STOCHASTIC GAMES®

By T. PARTHASARATHY
Indiun Statistical Institute

SUSMSMARY. In this papor wo shiow that Lo oxistonco of p-oquilibrium stationsry stra.
togios imply tho oxist of cquilibrium etationary ios when tho state epeco is uncount
ablo undor tho condition that the roward functions and transilion probabilitics are continuous.
Using this and a thoorom of Himmolborg ¢f al wo sre ablo to give a sct of sufficicnt conditions for
the oxistonco of an oquilibrium puir. This anawers partially a quostion raised by Wand Whitt
rocontly.

1. INTrRODUCTION

A stochastic game i3 determined by six objects: S, A, B, ¢, r,, r,. Here
S is tho unit interval [0, 1], tho sct of states of the system; A4 = {1,2,..., 1}
and B={),2,.., I) are finito sets denoting tho available actions or alter-
natives to players I and II respectively; r,(s, a, b) and rys, a,b) are the
(immediate) rowards to I and II respectively when s is the state and a and b
are the actions chosen by I and 1T respectively. As a consoquenco of the
uctions chosen by tho players two things happen : players I and 11 receive
(8, a,b) and ryfs, ¢, b) and tho system moves to s new stato ¢ according to
4}s,a,b). Then the whole process is repeated from tho now stato 8. The
gamo is played over tho infinite fature. Both 1 and II want to maximise
their accumulated income. The problem then is to find good strategies for
the two players.

A stratogy T for I is a sequenco ([1,, I, ..., I, ...) where I, specifies
tho action to Lo chosen on tho a-th day depending on the past history h,.
Hero 11, is a probability distribution on .4 given the past history, wnd
M (E|k,) is measurablo in &, for cvery fixed Borel set E. A strategy [T
called stationary if thero is a Borel map f: 8 — Py (= class of all probubility
distribution on A) such that 1T, = f for all #. Analogously strategics and
stationary strategios aro defined for playor 11,
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Let £ be'a fixed number with 0 € < 1. A pair ([1, T) of strategios
for I and II associntes with each initial state & an n-th day oxpocted roward
0 for player I and a total expectod discounted reward for playor i

L D) = £ po-r e, ).
n=t

Call & pair ([1*, r*) an equilibrium pair in the senso of Nash if

I(IT*, T*)s) > 1M, T“)a)
and
LTI, 1oY8) D I11°, U)s) forall IT, T and o

Let p bo o probability distribution on § =10,1]. Call & pair I1*, I* &
p-cquilibrium pair if thero exists a Borel set B with P(E) = 1 and for overy
seEand

1N, 1) s) > 1,(I1, T*)(s)

and

I(T1°, T*)(s) 2 I(M1° T)(s) for all 1T and T.

In other words thoy will bo an equilibrium pair on a sot of p-measure one,
We aro now roady to state our main results.

Theorem 1: Let S=1[0,1], A={1,2,..,4, B={,2..,0 and
Pe(0,1). Lel r(s, a, b) and ry(s, a, b) be continnous over SXAXDB and let
q(* |8, a, b) e strongly continnous over SXAxXB. Let p be a probability dis-
tribution over [0, 1) with g(+|s, a, b) absolutely continuous with respect to p. If
there exisls @ p-equilibrium slationary pair for the discounled slochastic game
then there cxists an equilibrium pair.

Theorom 2: Let S=[0,1), A=({},2,..,4, B={,2 ..} aud
Be(0,1). Let rs,a,by=1(s a)tmls,b) for i=1,2, .., where i and my
are continuous funclions in 8. Let q(-]s,a,b) = {q(-{8, a)+q7(]s, b)) |2 where
¢ and q" are probabilily measures which are strongly conlinuous in & for each
a,b. More over suppose ¢ and q are absolutely continnous with respect lo
Lebesque measure. Then the discounied stochastic game has a pair (f°, g*) of
equilibrium stationary stralegies and further Ii(f*, g*)s) and I(f* ¢°)(s) are
Borel measurable in s.

Beforo proving theso results, wo would like to mention results known in
thin direction. When r, = —r,, Thoorom 1 a3 woll as Theorom 2 ig truo with-
out any assumption. Wo neced only the assumption that r, and g(+|s, a, b)



1i8 T. PARTHASARATRY

are measurable in s for every a, b. This is proved in Parthasarathy (1973),
In Himmolberg, Parathasarathy, Raghavan and Vleck (1976), notion of
p-equilibrium pair is introduced. Theorem 2 is a strengthening of tho resuly
in Himmelberg, Parthasarathy, Raghavan and Vieck (1976) of courso with
a strongor hypothesis namely that the functions r,, r, and ¢ are assumed to
Lo continuous over SX AXB. Very fow modifications in the proof of Theorom
1 of Himmelborg, Purthasarathy, Raghavan and Vleck (1976) are required
but to eimplify the readers’ task we will retrace tho main steps and do some
of them in detail. This will bo done in Section 3. Theorem 2 isa partial
answer to a quostion raised in remark 4, pago 47 in Whitt (1080). Thore,
e-oquilibrium stationary pair is shown to exist when r), r, and ¢ aro uniformly
continuous by the approximation procedure. In Ricder (1079) existence of
equilibrium pair (not necessarily stationary) is proved when r,, ry are conti-
nuous and g is strongly continuous in the sonso that whenover
(s Gue b2) = 20, gy b, [ofMg (+12003,00,) tonds to o+ |8y, . be) for
overy bounded measurable function v on S.

Organization of the present paper is as follows, Scction 2 contains a
selection lemma and a proof of Theorem 1. Scction 3 gives a detailed proof
of Theorem 2. Section 4 contains a generalization, fow remarks; and open
probloms.

2. SELEOTION LEMMA AND A IROOF OF THEOREM

Proof of Theorom 1 can bo oxplained as follows. \We know that thero
exists a p-equilibrium stationary pair (f,, g,) for the two players—that is,
(fo» go) will be an equilibrium pair for some stochastic gamo (S, 4, B, r,, 1)),
where p(S;)= 1. Since ¢ is absolutely continuous with respect to
P,q(8,]8,a,b) =1 for every s, a, b. Henco it follows that if the initial
state 8¢ S, the state of the system from tho sccond day onwards will be in
8,. * Exploiting theso facts wo will construct & pair of stationary cquilibrium
strategies (f;, g,) for the game (S}, A, B, 4,7, 75) where S| is tho complement
of S, with respect to [0, 1). Now ono can easily dofino a pair of equilibrium
stationary strategics with tho help of (fo 92) and (f,, 9,) for the entire game.
Wo nced the following sclection lemma for the proof of Thoorom 1.

Seloction Lomma : Lel & be an arbitrary Borel subset of S=[0,1)
Let Py and Py be the space of all probability disributions on A and B res-
pectively. Lot hya,p, A} and ks, 4, 2) be fwo conlinuous funclions on
S'X Pax Py wilh the further property that both hy and by are bilinear functions
on Pyx Py for cach fired s, Thal is for each fired 8 and p, hs, i, A) is lincat
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in A and for each fixed 8 and A, h(e, p, A) 18 linear in p for i =1,2, Then
there exist hwo Dorel functions f, and g, such that

B3, £,(8), 9D 3 R, . g,f0))
D, £(0), 9.4e)) > ks, fi(s), X) }
Joralls e 8, pePy AePywheref,: S > Pyandg,: S - Pp.

Proof: Dofine a set valued map ¢ :8 - PyxPy as follows, Yor
cach &, Y(s) = tho sct of all Nash equilibrium pair corresponding to tho non-
cooperative gamo whoso pay-offs are given by (s, p,A) for i =1,2. In
fact

Ps) = {(', X) s Bfe, 10, XY > Byfs, 1, X')
and
ha(o, 1, ') > hyfs, p, A) for all pe Py, AePp).

From Nash (1951), it follows that y(s) #£@. Furthormore ono can chock
that the mapping 8 — y(s) is upper-somi-continuous, Invoking the funda-
montal seloction theorem (Kuratowski and Ryl-Nardzewski, 1965) we have
measurable function X(s) € y(s) for each e, where k:S' = PyxPg.
Write k(s) = (f\(s), 9\(8)). Sinco k(s) is measurablo, f; and g, are measurable
and they satisfy the conclusion of tho lomma. This torminates tho proof of
the scloction lemma.

Proof of Theorem }: From hypothesis, we have a pair of (fy, g,) of
p-equilibrium stationary strategics. That is(f,, go) will be & pair of equilibrium
stationary strategics for somo stochastic game (8, 4, B,q,r,ry) whero
p(S) =1 =¢q(S,|s,a,d) for ench s,a,b. For each 868, define
u(s) = I\(fo, 7o)(8) and v(8) = I,(f,, g,)(8) and further theso wu, snd v, will
satisfy the following Nmctional equations, (see Theorem 6f of Blackwell, 1063)

ugls) = mox [ri(4, 1t 98N+ fuuol-Ydgl 18, 1, g6fo))]
s Py
and

vfs) = ‘n]';x‘ [rafe, folo), A)+4 Sog(a(+| 8, fofs), X))

Noto that fo and g, are mensurnblo stationawry strategies defined on ).

Wo will now extend (f,, gy) to the wholo of S = [0, 1] in such & way that
they still form an equilibrium pair for the whole game,
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Let S; denoto the complement of 8, with respect 1o [0,1]  Define 3
and hy ns follows :
In(s, @,b) = r(s, a,b)+ fuy(s)dg(:|s, a,b)
and
e, @, ) = rfa, @, L)+ fe{Wly(- |, a, 1),
Since A and B are fiuite sets, (s, a,b) for + = 1,2, are continuous on §
for ench (m,bye A3 and q{+| 2,a,b) is strongly continuous on § for
each (7, b) e AX B, it follows that hys, s, A) and ks, g, A) sre continuous
over SxPuxPp whero  yfs, jt, A) = ry(s, jt, D)+ [ uo(*)dg(-] 8, jt, A) ond
R, g0, Xy = rifs, j1, 4B fe()dg(-] 8,0, ).  Clearly ky and %, satisfy the
conditions of the selection lenuna, on §;X PyX Pg.  Conscquently wo can find
two Borel functions fi and g such that
hy(s, fi(s) a(@)) D Ils, 1, 7))
and
hals, (), 9y(8)) 2 Rfs, fi(8), A)
for all 8 € Sy, jt 6 Py, A € Pg whero fy: S; 5 Pyand g, : S; — Pp.

Wo will now define a pair of stationary strategies (f¢, g°) and show that
they form an equilibrium pair for the original stochastic game (S, 4, B,q,
. 7). Defino f* and g° as follows :
fo(8) if s€ S, 9o(8) if 8¢S,

and g*(s) =

o= fi(s) if a6 8]

94(8) if s € S},
Also define u*(s) and »*(s) as follows :

ugls) if 8¢S, vy(s) if 8¢ S,
u(s) = { and o*(s) = .
Rylo, fi(#), gy(a)) if 4 € S} Byls, (o), gife)) if 0 € 8-

Observe that #® and v* satisfy the following functional equations, for every
1¢[0, 1).

max  [r{, 1, 9% () A f w*()dal e, 1, g°(8))] = u¥(e)
A

»eP,

and

max (e, f50, N+ [ el (o L), N = v,

lrg



STRATEQIES IN DIFCOUNTED STOCMASTIC UAMES 119

For every stodionery g, detiuo the vperslor T frum M(S) = space of Borel
functions on S to J/(S) as follows. Teot ueJ/(S). Then

Tonloy = max (e, e 5(a) A u(Mgl | 1, o))
e, A

Clearly Ty e M (S).
One important point to note here is that,

Jutl)lglul e, 1, 9%8) = [ uy( )yl |4, o, 9%(s)
and
[ ()18, £°(s) A) = Ju{Mq(-] &, f2(a), 2)

sinco ¢(Sy | 8,a,b) =1 for every ,a,b. Sinco T'. is » contraction operator
from M(S) to JI(S), u* is the unique fixed point of the operator T,. and henee

u® i3 & Borel measurable function on 8. Similurly one ean show thet ¢° is
also Borel mensurable. If wo fix ¢°* {or f*) it becomes & problem in dynamic
programming and from Theorem 6f of Blackwell (1969) we have that

u*(s) = max I(IT,g°)s) forellaeS
n

and
v'(s) = max I(f*, T)s) forallsesS.

Tho equalitics asserted shove hove jn them maxima taken over plans in the
dynamic programming problem and they sro still true even if we allow
strategies of the game problem, This can be done es in Theorem 3.1 in Maitra
and Partheacrethy (1970). Also it is casy to verify thet 1%s) = 1,(f*, s°)(s)
and v'(8) = I,(f*,¢°)(s). Thus we heve shown thet (f°,4°) forms & peir of
equilibrium stationary strategies and the return functions * and ¢* snd
Borel measurable functions. This terminates the proof of Theorem 1.

One cnn generalize Theorem 1 as follows,  Prool of the following ix the
samo as that of Theorem 1 and Jenco omitted.

Iheorem 3: Let S, A and B compact melrvic spuces,  Lel rs, a,b) and
ry(s, a, b) be jointly continuous on S X A x B and g(.| 8, a, b) be strongly continuous
on SXAXB. Let pbea probability distribution on S with g(.|s, a, b) absolutely
continvous with vespect to p.  1f there exists a p-equilibrium pair then there cxisls
an equilibrium pair.
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Remark 1 : Theorem 1 remains true even il S is not a compact set pro.
vided A and B aro finite sets, whilo in Theorem 3, S compact is essential to
conclude r(s, yr, A) is contimuous on SXI xP given r(s, a,b) is continuous
on §xAXB (sce Lomma 2.1 in Maitra and Parthasarathy (1070).

Remark 2: We aro not able to determine whether thero always exista
a p-equilibrium stationary strategies under tho conditions of Theorem 1.
We know from Fink (1004) and Takahasi (1064) and Theorem 5.1 jn Partha.
sarathy (1973) that it is true when S is cither finite or countable,

3. EXISTENCE OF p-EQUILIBRIUM PAIR

As already remarked, proof of Theorem 2 requires very few changes in
the proof of Theorem 1 of Himmelberg, Parthasarathy, Raghavan and Vleck
(1076) but to mako tho paper self-contained we will retrace the main steps
and do somo of thom in detail. Tho real problem is to suitably topologize
the space of stationary strategies so that it becomes compact and metrizable
consequently we can uso sequential arguments and fixed point theorems
of Kakutani and Glicksberg (1052). To achieve this we follow closely Warga
(1967).

Let 8 o Banach space of real-valued functions on Sx'd where S =10, 1]
ond A hos kclements. An clement ¢ e @ if ¢(s,a) is measurable in 2 for
ench a¢ A and there oxists an integrablo (with respeet to Lebesgue measure)
sealar function Y(s) such that[@(s, a)| & Y(s) for every s,a. We define the
norm in & as follows :

18] = njl max (s, a)|ds.

Let f Lo o stationary strategy, that is & measurablo function from § — Iz
where P4 as usual denote the space of probability distributions on 4. We
will write f(s) = (f(s, 1), f(5, 2), ... f(8, k) where f(s, @) denote the probability
with which action a is chosen in state 8. We will identify f with the bounded
lincar functionnl Ay in @° = dual of & that maps ¢ into Ay(g) where

A= [ (Ef(o, ), e

In this way we can identify A4 = spaco of stationary strategies as o subsed
of 8. We will say f; = f, if they coincide almost everywhero with respect
to tho Lebesgue measure. We will equip &° with the wenk-stor topology.
Specifically we shall say that o sequence Ay, Ay, ..., in @° converges to A ¥
An(#) = A(g) for every g6 8. We will now prove the following :
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Proposition : M4 i compact and melrizable in the weak-star lovology
(considered as a subset of &3°).

Proof : If we show that M 4 is & closed xubset of the unit sphere in G°,
we are through. For every de @

1Ad#) | = I 1 0. 0ge,)

< o} mux | g(s, a)|ds = |@]

which shows that 8° norim of Ay is less then or equal to one and consequently
every sequence in 34 hes o subsequence converging to some point in 8°,
Let A € & be r limit of a scquence A,_e M4 Clearly Alg) > 0 when-

ever ¢ > 0 end further A(g) = L(E) (= Lebesgue measure of E) if (s, a) = 1
on Exd end g(s,a) =0 on S—ExA for every measurable set EC S. It
is well-known thet (see Lemma 4.3, pp. 633 in Warga 1967), there exists a
measurable mapping f* from S to the class of regular signed Borel measures on

4 such that A(g) = j(zj'(a,a)ﬂa, a))ds. Consequently it follows that
a

f'(8) € P4 for almost all s. Hence A = Ap for somo f* ¢ M4. This terminates
the proof of tho proposition.

Similarly one cen show thet Mg is also compact end metrizeble in the
werk-star topology. Obscrve both M4 and Mp ere convex. Proof of
Theorem 2 will follow from tho following two lemmas &nd Theorem 1.

Lemmal: Let{f}eMaoand{g)e Mpwithf,.— foe Maandg,— g,e Mp
in the weak-star topology. Let r(s, a,b) = l(s, a)+m{s, b) for every a,b where
L and m are bounded measurable funclions in 8. Let

Bole) = r(s, fu(8), 9,(0)) = E %'(4. a, b)f.(s, alg,{s, b)
and
Sols) = r(s, f(8), 9ols) = E- Z r(s, a, b)f (s, a)gy(s, b).
a
Then ¢,(5) - §(a) in the weak-siar topology that is

J‘ h(8)P (8)ds = j I(s)p,(8) ds

Jor every integrable function T{a).
Al-16
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Proof: Let k be any integrablo function. Then

nf Mo)d.(o)ds = n} KO)ET(I(e, a)-+mile, B s, a)g (o, bds
= | ha) S S 1s, a) s, g s, s
[} ba
+ 1 hs) Z X (e, Bffe, a)g, (s, s
0 ab
= | St anse. ot | 5 (h(as, D), Ui
- ! Za(s)l(s, a)fy(s, a)ds+ j i.‘. h(s)m{s, byg(s, b)ds

= ] o e)de

This torminates tho proof of the lemma,

Lemma 1 is erucial to the proof of the next lemma.

Lemmu 2: Let 7: M 4xXMp— 2Alax A (= all nonempty weak-star closed
convez subsels of (M 2% M g) where
o ={f'.9" : uls)
=ny(8,1'18), 9(8)+ B [ ug(*)lg(+] 8, f (s, 9(s)) a.e.
and
vrl8) = ry(8, f(8), 9’ () +A | vl )dal+|5, /(5), '(4)) a.e.}.
Then the map 7 is upper-semi-continuous and further there exists
(f, 90) € 7(fo, 9o) for somo foe My, go€ Mp.

First we will explain tho sct valued mapping clearly and then give the
proof of Lemma 2, As in the proof of Theorem 1, u, ie tho fixed point of the
operator Ty and vy is the fixed point of tho corresponding operator given by
for with ono difference. Now the domain and the range of the operator Ty
is the space L, of cssentially bounded (with respect to tho Lebesguo measuro)
meusurable functions on 8. This is the renson that the term a.e. is occwring
in the definition of 7(f, g).
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Proof of Lemma 2 : We will first show that the map 7 is upper semi-
continuous. Since M4 and Mp arc compact metric spaces we will resort to
scquentinl arguments. Let f, — fo, g => 0o, (/3 00 €{fnr 00) With f3—> f*,

gn->9°. We will show that (f*,0*) e 7(f,,g,). Wo will write =, for u,

and v, for Y Then

uu(8) = 1y(3, [2(6) () B § walVlgle |4, f3(0). g,(8)) nee.
and

v,{8) = rila, fu(2), ROV [ 0,(Yg(+| 8, £.48), gaie)) nc,
Since the functions u, are uniformly bounded integrable functions. (This
follows from the fact that r is bounded and f€(0,1) it has a convergent
subsequence, (sce pp. 294 of Dunford and Schwartz, 1957). We will assume
without loss of generality that 1, — %, in tho weak-star sense. \ (In this connec-
tion sco also problem G in pp. 339, Dunford and Schwartz,.1957). From

Lemma 1, it follows that ri(s, fa(s), 7.(8)) tends to ry(s, £2(s), gy(e)) in the weak-
star sense. \We will now show

el 1200, 0,060~ I 3t o, 5%0), 3600

in the weak-atar sense.

Vote that
1 1
{ u)dg(- ], a, by > § uotednl-1,a.0)

for each s, a, b, sinco ¢ is absolutely continuons with respect to the Lebesgue
measure and %, = %, in the wenk-star scnso.  Set
b
ula, a,b) = [ uy:Mq(-}a, a,b)
and

dos,a,b) = f no(s)dq(+|a, a, b).
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Let k he any integrable,

| JH0)S S .00, 17000100,
a
— {he)S S s, a, Bif (s, s, B) de
[] b e

<

[ SR 00,10~ 4l 0, U020, 0o, )

+

£ Z oo, 0, X130, 100,910, o, ) do

< S [ h0] 1406, 0, B)~Byle, 0, b)) de
dao

+ ]S T heIo, 0, BT, 10,00, 0)="0, e, ) do
—0 a8 n o0,

Here we use the fact that |f3(s, a)g.(s,8)] < 1. Above the first expression
goes to zero by the Lebesgue’s Bounded Convergence Theorem and the second
expression goes to zero by Lemma 1. Honce it follows that the two limite of
u, must coincide a.e. That is

ui(8) = ry(8, /*(8), gol#))+ 8 § uo(-)g(+] 5, f*(s), aofs)) ae.
Similarly
0(8) = 108, Ju2), 9°O)) 4+ [ vo()dal- 19, fi(#), g%8)) n.c.

Now it is not difficult to check that u, and v, are the fixed points asaciated
with T, and the operator corresponding to f,. This proves that tho map is
upper-semi-continuous, Now apply Kakutani-Glicksberg (1952), fixed point
theorem to get an (f;, go) € b(f, g,). This completes the proof of Lemma 2.

Proof of Theorem 2: We will write u, and v, for Uy and v, where

(for ) € T(far 90) 08 given by lemma. Once again using (Theorem 6f in
Blackwell, 1065 and Theorem 3.1 in Maitra and Parthasurathy, 1070) we can
conclude that (fo, 6o) is & pair of p-equilibrium pair. Now use Theorem 1 to
show that (fy, go) is an cquilibrium pair, This completes the proof of
Theorem 2.
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Remark 3: Theorem 2 remains true, if instead of assuming ¢’ and ¢"
are abeolutely continuous with respeet to the Lebeszue mensure if we assume
g ond g° are absolutely continuous with respeet to any probability distribu-
tion p on § =[0,1]). As alrendy remarked S nced not be a compact set—it
can be any mensurablo subset of the real line:

4, FURTHER GENERALIZATION, REMARKS AND OPEN PROBLEMS

In this section we will generalize Theorem 2, make a few remarks snd
montjon some open problems.

Let u, and u; bo any two bounded measurable functions on 8. Let
A and B are finite sets, Set

ks, a,b) =r\s,a 6)+B [ u,(-}dg(-]2 a.B)
and
ho(o, @, ) = ry{s, 0, )+ [ u)dg(+] e, a,b).
Let
Ylo) = {(p', X') 1 (o, '  X') 3 Byfs, 1, X')
and
hys, o', X'y 2 Byfs, g’ A) for oll £ and A}.

This is the set valued function as defined in the selection lemma. Graph of
v={ap,X): (1, X) ey(s)}. We supposo Graph of ¢ is a Dorel subset
of 8xP4XPg for every 13 and u,. Wo will call this condition as (C). Now
we are ready to state a gencralization of Theorem 2.

Theorem 4 : Let S 6e a Borel subset of a complete separable melric space,
A={,2,.,kB={12, .. 0 and Be(0,}). Letr(s,a,b) = lfs, a)4m(s,b)
Jor i=1,2 wnere Iy and m; are bounded measurable functions in s. Lel
o], 2, b) =[g'(<| 8, a)+q' (|8, b))/2 where g'(«|4, a) and g"(<|4, b) are measur-
able in . Let p be any probability distribution over S. Suppose ¢’ and ¢" are
absolulely continuous with respect to p. Further suppose condition (C) is
satisfied. Then the discounted slochastic game has a pair of equilibrium
slationary stralegies.

Tho proof of Theorem 4 is the same as the proof of Theorem 2. How-
ever, one should note that selection lemma holds good under condition (C)—
this can bo scen from Corollary 1 in Brown and Purves (1073) or Theorem 3
in Himmelberg, Parthasarathy and Vieck (1076).

e would like to make a fow romarks now,
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Remark 4: \When S is countablo, clearly Lemma 1 holds good without
uny scparability assumption on r and g, since in that case wo can slwayr
have a p-distribution on § which has non-zero mass on every point of §.
Further more in that case weak-star convergence and strong convergence of
sequences in L(S, p) aro the same (sce Corollary 13, pp. 295 of Dunford
and Schwartz, 1957).

Remark 5 : Trivially condition (C) is satisfied whenever § is countable,
When S, 4, B are compact metric and further if r,(s, 2, A) and [u(-)dq(-| s, 4, A)
are continuous on §X P4 X Pp for every measurable u, then also condition (C)
is satisfied.

Open Problems: (1) We are not ablo to determine whether Theorem 2
remains true without the separability condition on r¢ and ¢. e cannot
imitate the proof given in the present paper completely for Lemma 1 may
fail to hold good without the separability assumptions.

(@) Let §=[0,1], A={L,2,..,4, B={1,2,..,0} and fe(0,1)
Let v, and r, be bounded measurable functions (or continuous functions)
even SXAXB. Docs there exist an equilibrium stationary pair for the
discounted stochastic game ?

Problem 2 is harder compared to problem 1. e strongly believe that
problem 1 has an affirmative answer.
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