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ABSTRACT A new modal combirdng parametric and semi-parametric approaches and jollowing
the lines of a semi-Markov model Is developed for multi-stage processes, & Bivariate sojourn
time distribution derived from the bivariate exponentiol distriburion of Marshall & Ollin (1967)
is adopted. The results compare favourably with the usual semi-parametric approaches that Rave
been in wse, Owr approgek alse has several advantages over the models in use including ifs
amenability 1o siotistical inference. For example. the rasts jor smmeny and oisa for
independence af the marginals of the sojowmn time dictributions, which were nor availuble eardier,
can now be conveniently derived and ore erhanced in elegont forms. A unified Goodness-af-iir
test procedure Jfor owr proposed mode! i3 also prerented. An application to the humen resource
planning invalving real-life data from Lniversity of Nigeria is giver

KEy Worps: Bivanate exponential, muilz-slage provesses, semi-Murkov, seri-parametsic, homan
resource planning

Introduction and Motivations

Population models of multi-grade systems have been discussed by & number of authors and
have also been applied in a number of ways, The grades normally correspond to recogmi-
zed divizions within the gystem like grades of staff in 2 manpower system, level of com-
mitment to a job, etc. as shown in MeClean (1980, Gani (1963) and the references thersin.
Refarences on their applications to biological systems, pharmacokinetic processes,
epidemiolngy, ete may be found in MeClean (1973). However, it seems that in all these
aress, no work has 3o far been done using a mulivariate modelling approach.

This paper is aimed at unifying the existing modcls by employing a joint distnbution
function in estimating the sojourn time of individoals in a mult-stage process. With this
model, it will now be possible 1o evaluate the conditional probability of sojourn fime 1n
any state given the sojourn time in the previous siate. This model also enhances the use
of statistical tests such as tests for independence and for symmetry of the sejourn times,
The model assumes namrally that the sojourn times in differeni states arc dependent on
their immediate past states, Estimation of sojourn times for event history can throw
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Jight on how the process works and help in planning for the future, e.g. as uf the sajour
times in different stages of a discase like cancer or AIDS.

Research has shown that for a chronic disease like breast cancer, women under the age
of 50 years have a shorer sojoum time than women aged between 5074 years (Tabgy
et af., 1995}, Some methods for the esliation of sejourn time using a specific sojourn
time distribution can be found in Day & Walter (1984), and Paci & Duffy (1991).

Chen & Porok (1983) used a non-parametric method and split ime inte discretw integ-
vals. The use of Markov medals for the natural history of a disease process from discase
free seare to the preclinical-screen detecrable phase (PCDC) and then 1o the clinical phase
can be scen in Duffy et @l. (1995) and Chen er ai, (2000;.

Many authors have proposed the use of multivariaie exponentizl distributions to mode)
lifetimes of components of a multivariate system, see, tor example, Marshall & Olkin
(1967 (MO nenceforth), Block & Savits (1981), Basu (1988). Several tests of the
parameters of these multivaniate models have also been developed in SenGupta {1995}
and these have enhanced the usefulncss of these models in statistical mmference,
Here, based on both practical and theoretical justifications, we enhance the multivariars
exponential model of MO (o rapdel multi-stage processes n general and data from
human resource dotoain in particular. Some of the justifications for this chojce are as
follows. First, exponential distribution is a commonly adopied model for the promotional
time in each category. We further believe that promuotions are usually based on merit and
efficiency rather than on the duration of service. This implies that the lack of memory for
promational time is only reasonable to enforce and this is a characterizing propedy of
our chosen imarginal distributions, i.e. the exponential distributions. Second, promotions
for each category are vsually (save out-of-ture merit promotions) given after the manda-
tory eligibility period at certain intervals of time at a pre-fixed date, say January 1. This
gives positive probability of exactly equal lengths of time for successive or scveral pro-
motinns. The chosen model encompasses such situaiions since M gives P{X=¥) =0
for the 1wo marging! random vanables X and ¥, This 13 not true for the other familiar
generalizations of the univariate exponential distribution. Third, as pointad out by a
referes, the existences of candidates who are high-fliers is only to be expected In
academic cases, the proportion of such cases may be quite high implying higher
probabilicy of promonon ar the eariier years rather than at some distant yvear — agan
4 propetty possessed by the cxponential distribution. Finally, we note that usually the
professional charecteristics of an individual tends to persist and, as driving forces,
should vield similar results for the transition of the individual from voe category ta
another and to the next. eic - 1.e. igtcumbents with early (late} promotions at the
initial categones are expected to receive early (late) promotions at the subsequent cat-
egories too. This fuct establishes that the comrrelation of promaotional times for different
categaries should be tuken to be positive. Here apain, our chosen model guarantecs this
requirement of the relevant corrclation.

Several semi-Markov tnodels for human resource plating are available. These models
were developed using different approaches and applied to different aspects of human
respurce planming. The continocus time semi-Markov modelling approach may be
found in Mehlmann {1979), Bartholomew (1982) and McClean (1993). They defined
the force of transition or hazard rate from one grade to another given the duration in
the first grade and then used it to derive the probability that an enfry into a grade will
mave 10 the next grade given the holdiog time in the earlier prads. They also used the
method of maximnm likelibood estimate 1o obtain the probability of eventual transition
from one grade to the other. Mehlmann (19795, McClean (1980 and Bartholomew ef .
(1991} discussed the other version of a semi-Markov moedel as a tenewal Lype eguation.



Modelling Mulii-stage Processes through Muitivariate Distributions 177

Their approach defines the probabilicy of an individual being in a state at ime 7 given that
the itdividual was in the earlier state at time zere. They used it to derive a renewsl type
pyuation for predicting future manpower suucture. There have also been generalizations
i non-homogencous semi-Markov models in Vagsilion & Papadopoulon. (1992) and
McClean ef af. (1398). Some of these models assume fime homogeneity while the non-
homogeneous ones divide the calendar Gime into & succession of time windows, The
gppreach in this paper does not require those assumptions since it is based on observed
spjourn. times. However, we recall the result from MO that an wnderlying multivariate
Puisson process yields their multivariate exponential distribution. Hence the conditions
driving such a process are being implicitly assumed here,

The preliminary notions for the parametric and semi-parametric models are derived in
the next section. The section after discusses the models and estimaticn of parameters
including some statistical tests, soch as the test of goodness-of-fit for a sparsely distributed
cantingency table, test for independence and the symmetry test for the marginal of the
Bivariate exponential distribution. In the fonrih section, the model and methodologies
developed here are applied to the real-life data vn promotion times for faculry members
in University of Migeria. The fifth section contains the suggestions for further generali-
zations and concloding remarks.

Predliminary Notlons

Consider a systern with grades 5, ..., 5,. where the length of stay in §; conditional on
cventually making the transilion to S;. has & probability density function (p.d.f.) 78,
with distribution function Fi{f) and survivor function

Gy = 1=Fyly= | fde i £4i i<l M
F

(In many applications, & g. in promotional data where demotion is ruled out, we will have
f =< i) The corresponding p.d.f. of ime spent in 5; is £{¢) with distribution function F,(
and survivor function

Git) =1 - () = rﬁ{-’r}dx (2}

Consider now the cas¢ of grouped data, as in 2 contingency table, with 2-way classifica-
tion first. Let the random variable X, denote the sojourn time in 5, [ = ij. Let there be B
and X *“tirne-intervals’, defining the classes in the contingency table, for X; and X; respect-
ively. The datu may then be visualized as a ® % K contingency table of the two fax:turs S
and 5, at levels R and X respectively. This table yields the RK ‘wells’ for the joint dis-
mhutmn of X, and X}, the jjth cell cosresponding 1o the _‘r'-'.ﬂlﬂl event that X, and X; arc
i the time-intervals [z':” 1, and [7), £5)) respectively, r— I, .. B k=1,.... K,
and Rand K, j,j=1,...,m. Then,

Al = x> 1) = pla = 19, x; = P fplx; = 1)
Simnilarly,

Py = 1% < (7 = plx = 80 < P )plxy < o)

[ — 'r
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But

Pl < .3 < P = 1 —plx 2 01 - pby = Y+ plx = 19,5 > 4
Pl = P < @] = {1 = plx; = /]~ plxy =

+pln = 8% = /ol < 4N ()

Lat the joint p.d.f. of the length of time spent in S; mdSJbegnvcnbyh,J(ﬁﬁJ{ﬂ} wiih
diseribution function i, ;(r¥?, /) and surviver fonction

Gi ) = 1 — H i) = J FJ;hFJ(IiJf}ﬂxfdxf (4)
r Yy

Define py ;(1%,#7) to be the probabité gﬂmtmmdmﬂual will spend Jess than ot equal tp
time in 5; and less (han or equal to 4" dme in §). Then

i) = plx; < &0, x; < P )
It can easily be shown that equation {5) is equivalent to
= 1—plx = @]~ ply 2 )+ ply = 0 = () (6)

Then, the cell probabilities can be expressed as follows

o <X <l <X <o)
=plx <ol <) - pls £ @ < 1 —plu < Ly < )
+ ol < &0 < 4 M
= FD 0 — FE® D) — F L 89 4 pot, 4 (8)

where Flab) = p(X; < a.X; = b)is the cumulative distribution and can easily be obtained
from equation (6).

The Models
We caonsider below both the parametric and the semi-parametric basic modeis.

(1) The Parametric Model

Given the states of a multi-grade process, the probability that an individual will spend
less than or equal to #* time in S; and less than or equal to r‘i:_")l:irne in §; gives such 4
bivariate distribution as

o o
F'EJU{;}-’P)ZF J By, 7, x; ekl 9
g

This can easily be svaluated using equations (5) and (8).

(2) The Semi-purameiric Mode!
There is a probability that an individual spends ¥ tinoe in 5; given such an mdlﬂdlﬂl
eventually moves 1o §; with a certain force of transition and then spends time t,, in §.
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We assume that the Gme spent in §; is independent of the probability dictating the
force of aansition from §; to §; but it possibly depends on the duration of the individ-
ual's stay in §;. Then the probability of such an ocetrrence iz given by,

Pl < ) plnxlply < i /xis] = plx < £2, % < £M)pls; /)
'J;n M
= 7; ;&) L f B dn, giddy  (10)

where pls;/x)] = z; {#7) is the force of transition from §; to §; at duration £ and its
Kaplan—Meier estimate (McClean, 1980) is given by

e
26 = % ad n.=Y S "
" ri

where #, ;(1'?) is the observed freyuency in Zjth cell at durstion #,

We note that the forve of transition depends on the conglomeration of candidares as a
totality and is normally evaluated from a priori information on this group whereas the
time spent by individuals in §; may very well depend on the amount of time spent in 5;
by those very individuals. Farthenmore, if we have Markov trunsitions between grades
then the duration of stay in each grade is exponential and does not depend on the dastina-
tton. If instead, we consider semi-Markov tragsitions, then we may include our knowledge
of the distribution of length of setvice before leaving, and also allow for the fact that the

length of time spent in a state may depend on the destination as well as the present grade of
the individuoal {McClean, 1976).

The Bivariate Exponential Distribuiion

Several bivariats sxponential models may be considered given the basic assumption
of dependent sojourn times, and the usual practice of modelling univariate sojourn time
by an exponential distribution: it was just approptiate to adopt the modal given by MO,
In justifying the usc of thiz model, we considered that p(X; = X;3) > 0. If X, and X;
are sgjourn times before pramoton then it is much more likely since management
normally meet al a pariicular time of the year o take decisions on such matters. The
distdbution function ol this bivatiste exponential model (henceforth, BVE) is then
piven as follows:

PX, > 3, Xy = ag] = exp(—Aux — Apxa — Az max (x1,22)) (11}
The bivariats model proposed in MO has the marginal exponential distributions given by
exp(Ae + A€ =12
let,

A=A 4 A F A (12)
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Thea,

BXD = Ag+ A2 =12 and

Cov(Xy, X2) = ApfAA; + Ap)(ag + A >0
Adopting the method of moments to essimate the parameters of equation (11}, we have the
following three equations,

T=d+A2f=12

X% = E{xoa) = A7 (A + A2y + (e + A)7 ) (13

where we e Wsing the notation EY — ¥ s EY to denote the sample average of
ik =1,....n which estimates the corresponding population moment as is done tn the

method of moments.
Then it foliows that

- -

ho@rimmdn =i+ - Lh =l+mih=i+x 04

Some Statistical Tests: Goodness-of-Fit Test

To determine the adequacy of the BVE distribution, the power divergence Geodness-of-
Fit test of Cressie & Read (1984) can be usad,
The test statistic is piven by;

2 L] M Flas n
1'; ‘l'](ﬂ-l-l}z E"“[(El:; —l], —0u = 7 < 06 {15)

where ny, is the observed frequency, Ej is the expected frequency in the ifth cell. The
expected frequency E; = n. H‘}. end [[; is the estimated pmhabﬂuy of an individuzl
who spends £ time in $; and £ tlmemS;*r-l Rapdk =1,....K

ie. My=p@=Xi=d0 &' <x <)

where l]u iz obtained from equation (R) by using the estimated A. }.1 and Az and then
replacing £y by Ey =n. .1, Far this test, 7%, is cquivalent to y* when y = . They
recommended the statistic 'mth n=2/3, wh.mh they found less susceptible than ) 10
the effects of sparsely distwibuted data

Test for independence
The test for indeperdence of X and X; is conducted using the test statistic:
= Z{_ﬂej - Epy Y {16)
Ty

where v is the number of estimated parameters, We do Lhis under both the parametric and
the semi-pararmetric scenarios,
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{ay The Parametric BVE Approach
The probabilities | |, and [T of the exponential marginal disiributions for the vations
time intervals under independence were first computed. These estimated probabilities
frnm the marginal distributions ate given respectively as II; = Ja Aje™ ™ dz; and
_[,m Aze~%% 4, for the respective time intervals.
Then the expected frequencies were obtained as EH =a.. 0L II
(b} The Non-parametric Contingency Table Approach.

The usval non-parametric test is implemented with the expected frequencies given by
Ey =ningfn. ., where m;, and n; are the marginal totals in the fth row and jth column,

Test for Symmetry of the Marginal (under Dependency)

The test For symmetry could be done by first using the method of momenis on equation

{11} to obtain the estmates for the common (under symanetry) parameter A; = Ay = A*
and J"H! where,

A= e 5 b =G + 5 -1
A=A —{ET 2 ) an
Furthermore, I1; for the given data was obtained by using the method of evaluating ifth

cell praobabilities as in equations (7} and (%) and using the estimates .11 = Az AYand Ajps.
Finally, the expected frequency is E,; =n. I]

The Trivariaie Exponential Disiribustion
The BYE modei extends easily to the multivariate simation. In particular, we illustrate this for
a three-stage sojourn ime with the survival function for the tnvariake distribution given as:
PIXl aLXe P a X5 = Ig_l = EXp (=Apxy = Aaxy — Aqz max(xy,xz)
— A1y max (x;, x3} — Ay max (xz,x;)

— Az tax (xy, ¥z, xa)
i']‘u'! "‘-ﬁu -'-'1-1'13 = ﬂ; i ié,h I-_.F =S 1¢2. .

(18)

We note that all the lower dimensional marginals will follow the exponential distribution
and, in particular, the two-dimensional marginals of the above distibution are BVEs and
the one-dimnensiongl marginals ars exponentizls,

Estimation of Parameters

Let, A= ArHaa + A + A+ Az + An + A

We shall adopt the method of moments in estimating the parameters of equation {18).
To obtain a marc compact notation for this distribution, let 5 denote the set of vectors
(51,52, 83) where each 5 = 0 or 1 but (5.5, 5) 5 (0)), To do this, it is convenient &
replace the parameters A; by the new parameters g, s € S, defined by g, =3, A
ie. g, is the sum of all A, such that spme coordinates are 1 in both » and 5. For
example, with n = 3, gy00 I8 the sum over all A, where 5, equals L, then,

Zuo = A+ A g+ Am+Fuw = A+ At A A

So. A =g,
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It then follows that,
100 i L0 1A
010101 tl|a
010111 As

(g100, Boivs Zoar, B> F1ot §os goy=|1 1 © 1 1 1 if| Ap

10t 1 11 1(|a
@11 11 1 1] Ay
(1111 11 1] An

i g= M), say.

Since M is a non-singuler matrix, we have,

M=y (19)

hd rud

We recall that the moment generaring function of a trivariate exponentinl distibution
function is given by

HF2i
T e ol Tl o O o5
+ (gme + 520"} + (101 + 81 + 53 Hlgroo + 51070 + (oo + 83171
+(gon + 52+ 83) " (g0 + 52" + (oo + 3™ }] (20}

ey, 52, 1) = [Ca110 + 61 + 320" (@100 + 510"

We obtain seven equations to estimate the seven paramsters by the method of moments,
The first three sets of equation (21) are obtained from the univariate exponential margin-
tls, while the next three are obtained from the BVE marginals and giver in equations (22)

and (23}, The seventh equation, equation (24), is obtained from the fall erivariate exponen-
lial distribation.

_ 1 _ 1 _
RowEX, =y m EXy =y = = @l
K 500 B0y ool
— Fob 1 1
mem = Sr] o L(L_ 1) @
192 | ey B0 \ B0 2010

Similarly,

. 1 /1 1
T = EX,X; = (5 + );xz_quEEXQ}f]: 1 (3‘ + ') (23)
Sl \Swe ol B Voo Kol

The caleudation of the third moment ix somewhat tedious. After some computations and
sumplifications we attive al

P o R i 1 (51 L )
dndndsyl, _one o 811 LB10 \gie ol

1 1 L
“ai ) G )
£161 we Aot goil WBuole  BoH

Xanx = EX X-X, =
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Table 1. Ohserved frequencies for the groups

Xz
X 0= =2 2=1 144 =4
0—1 &4 38 20 11 B
1=2 5 28 LG 3 14
23 20 11 10 L] 2
3=4 13 3 3 2 4
=4 & | B & 2

whers we are using the notation EY =y = E¥ to denofe the sample averape of
yif=L,...,n, as is done in the method of moments.

Then it f::-]lnws that solving these saven equatiens simultaneonsly will yield the estimate
of ¢ say 2. Then, from equation (19), we easily pet the esiimates of the parameters, A,

Finally the method of moments guarantees the optitnality properties of consistency and
asymptetic joint normality of these estimators.

Example

The models and methods of analysis developed above are now illustrated using the data
collected from the personnel department of the Uriversity of Nigeria, Nsukka during
1970-1995. Complete data on 354 staff who have passed through the promatdon process
from Lacturer to Senior Lecturer and then to Associate Professor were taken. We have
considered the actual waiting Gme in years, beyond the mandatary eligibility period, until
notification for promotion is given. We define the random varisble X; to be the sojourn
timne in grade S;,i = 1,2, where 1 and 2 refer to Lecturer and Senior Lecturer respectively.

The set of data was grouped in Table 1 to enable us to get the consalidated picture of the
jaint distribution. In addition, Bartholomew ef af. (1991 have recommended grouping of
even relatively small sets of such data.

Results and Discussions

In our quest for fitting a model to our data, we considered aeveral bivariate exponential
distributions. Based on the assumptions for thelr use. we decided on the BVE distribotion
that readily gave a good fit to the set of data. The striking feamree in the data is the equality
of both variables al several points, which uncquivocally advocates the choice of the
above model. The basic assumptions for the use of that model were also found to be sat-
isfactory. The velues of the estimated parameters of the distribution were obtained as
A| =0.54;4; = 0,62.1; = 0.05. Figures 1(2) and (b) display the plots {using the values
of the estimated paramaters) of the cumulative and suarvivor distribotions of the distri-
bution respectively. A sumnmary table of the power divergence test to determine how
good the model fits the data is given in Table 2. The values show that the test is not
significant at 5% levels and 21 d.f., the comresponding cut-off value being 33.67. We
thus adopt this modei for our data.

Adopting this model, we conducied a test for independence of X| and X;. The parmmetric
test for the nult hypothesis Fly: A2 = 0 guve the ¥ value of 45.33 with d.f. — 22. See Table 3
for the estimated frequencies and marginal probabilities vsed in this tesl. A similar (esl was
done using the non-parametric contingency table approach and gave the x* value of 29.78
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Figure 1. () BVE distribution function of Marshall & Olkin; (b) Survivor distribution
fomction of the fitted model

Tabk 2. Summary result of test of Goodness-
of-Fit using power diverpence st

A Chi-square vulues
. 2862

23 2859
0.1 853

~{1.5

3042
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Table 3. Estimated frequencies using the exponential marginals under independence

Xz
X 0=—1 1—»12 23 . JEU =4 ﬂ‘f
0- 1 7470 4108 22.77 12.62 17.25 0.476
152 39.01 2145 11.89 6.59 9.01 0.249
32— 3 19.94 10.96 6.08 3,37 4.60 0.127
354 10,17 5.59 3.10 1.72 2.35 0.065
>4 13,16 7.23 4.01 223 104 0,084
I, 0.444 0.244 0.135 0.075 0.102

with d.f. = 16. The abserved frequencies are given in Table 4. Bath these tests are signifi-
cant at the 5% level. Thus we conclude that X and X; are not independent.

The test for symmetry was alse done adopting the BVE diswribution. Under the hype-
thesis of symmetry Hy: Ay — Az, the estimates of the parameters were A =A; =058
and Az = 0,05, These values were used far evaluating the required probabilities. The
x* value was 46.31, which implied significance at the 5% level of significance. We con-
clude that the model is not symmetric. See Table 5 for the estimated frequencies under
symmetry. Tables 6 and 7 show the expected frequencies for the parametric and seri-
parametric models respectively. These were obtained from the cell probabilities calcul ated

Table 4. Estimated frequencies using the nob-parametric approach urxder independence

X3

X, 0—1 1—=2 2= 3 =>4 =4 n
00— 1 H2.53 KN 22.70 10.75 i195 141
1—=12 45 8] 2696 18.52 87T 9.78 115
2=13 20.84 1102 T.56 3.58 108 47
34 11.09 5.86 4.3 1.1 212 25
>4 11.53 &.06 419 1.9% 2.28 25
n; 157 ] 57 27 30 354

Table 5. Estimated frequencies under symmetry of the BVE distributicm
X;

X, 0—1 12 23 33—+ 4 =4
=1 78,73 3667 2142 12.3% 1685
| =2 52.71 3168 15.4% B35 O34
2—+73 14.05 o7 6.05 2.55 297
3—=4 10.95 617 346 219 1.02

=4 9.13 7.54 4.2 234 297
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Table §. Estimated freguencies for the parametric model

X;
X 01 1=2 213 3+ 4 >4
0—1 R1.49 36.92 18.87 12.78 68
12 54.52 24.50 o 2,51 8.92
213 22.41 12.07 7.29 3.29 3.36
34 12.45 6.66 3.61 2.16 1.98
=4 508 8,07 4.32 2.36 2.69
Table 7. Estimated frequencies for the semi-paramelric modei
Xa
X, 0—1 1=2 2-+13 3.4 >4
0t 78,50 36.82 21.42 12.57 708
12 52.71 24.74 11.65 6.20 7.05
2513 18,97 1161 74D 347 3.9
34 9.17 6.20 347 2.19 2.19
=4 8.23 708 3.93 223 2.43

as described eartier. With the satisfactocy result obtained from these tests and tables, it is
then obvious that this maodel has been an appropriate choice.

Conclusions

By determining the conditional probabilities of length of stay in the grades, one can easily
assess the level of dependency of the length of stay in the two grades and on the individual
promation prospecits on entry to a grade. The above model can also be used in predicting
sojourn times in different grades — this work is ongoing.

With the joint distribution function. one can also determine the expected times spent in
each part of the system given the grade of entry. We may similarly use gur above fornm-
lation to investigate the movermnent pattetn prevalent in the system. Yet another important
application of this approach is that we can obtain the probability of an individual’s sojoumn
time in the present state given the sojourn time in the last state. Further, the extension of
this approach to more than three grades may be considered.

Nonetheless, there are some limitations in this study. For example, this model cannot be
applied if the marginals do not follow exponential distribution. We note that fitting expo-
nential distribution to length of service has been criticized in Banholomew er al. (1921).
They sugpested the use of lognotmal since it always has a peaked distribution. This limit-
ation can also be avoikded by simply invoking other multivariate exponential or gamma
distributions in our general approach. However, for promoticnal data the length of stay
in a grade is vsually shorter than the length of service. We observed that exponential
distribution did give good fit to each marginal modelling this short stay in a grade
before moving 1o the next higher grade and the test for adequacy of fit of the model
confirmed that the BVE model is quite a reasanable choice.
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